

Linespace: A Sensemaking Platform for the Blind
Saiganesh Swaminathan, Thijs Roumen, Robert Kovacs,

David Stangl, Stefanie Mueller, and Patrick Baudisch
Hasso Plattner Institute, Potsdam, Germany

{firstname.lastname}@hpi.de

ABSTRACT
For visually impaired users, making sense of spatial infor-
mation is difficult as they have to scan and memorize con-
tent before being able to analyze it. Even worse, any update
to the displayed content invalidates their spatial memory,
which can force them to manually rescan the entire display.
Making display contents persist, we argue, is thus the high-
est priority in designing a sensemaking system for the visu-
ally impaired. We present a tactile display system designed
with this goal in mind. The foundation of our system is a
large tactile display (140x100cm, 23x larger than Hyper-
braille), which we achieve by using a 3D printer to print
raised lines of filament. The system’s software then uses
the large space to minimize screen updates. Instead of pan-
ning and zooming, for example, our system creates addi-
tional views, leaving display contents intact and thus pre-
serving user’s spatial memory. We illustrate our system and
its design principles at the example of four spatial applica-
tions. We evaluated our system with six blind users. Partic-
ipants responded favorably to the system and expressed, for
example, that having multiple views at the same time was
helpful. They also judged the increased expressiveness of
lines over the more traditional dots as useful for encoding
information.
Author Keywords: 3D printing; accessibility.
ACM Classification Keywords: H.5.2 [Information inter-
faces and presentation]: User Interfaces.
INTRODUCTION
For visually impaired users, making sense of spatial infor-
mation is a challenge. While sighted users’ ability to per-
ceive many items in parallel allows certain similarities and
structures to pop out, visually impaired users have to scan
spatial information displays sequentially and slowly. Only
after they have absorbed a relevant portion of the infor-
mation, they can start to find connections, recognize struc-
ture, and ultimately make sense of the data.

Figure 1: (a) Linespace is a sensemaking platform for

the blind. Its custom display hardware offers 140 x
100cm display space and it draws lines as its main prim-
itive. Here Linespace runs the home-finder application
that enables users to browse maps in search for a home.

(b) Linespace’ main primitive is raised lines, which it
produces using a modified 3D printer.

Since building up spatial memory is key, any update to
displayed contents is potentially dangerous as it may inval-
idate users’ spatial memory, in the worst case forcing them
to manually rescan the entire display. Making display con-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org. 
CHI'16, May 07 - 12, 2016, San Jose, CA, USA 
Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM 978-1-4503-3362-7/16/05…$15.00  
DOI: http://dx.doi.org/10.1145/2858036.2858245

tents persist, we argue, is thus the highest priority in de-
signing a sensemaking system for the visually impaired.
Unfortunately, current systems designed to allow visually
impaired users to browse spatial information (e.g., the
Hyperbraille 120x60 Braille dot array [9]) make it difficult
to persist screen contents. Since they offer only a moderate
amount of display space (30x15cm), viewing larger data
sets requires users to switch between views or to zoom and
pan, all of which invalidate users’ spatial memory.
In this paper, we present a tactile display system designed
to minimize display updates in order to preserve user’s
spatial memory. We achieve this by making the display
very large (140x100cm) and by designing its software
system to leverage this display space in order to preserve
displayed contents.
RELATED WORK
Our work builds on research in accessibility and personal
fabrication.
Traditional approaches to create spatial content
The most common approach that allows blind users to
create their own spatial content are line drawing boards that
consist of plastic sheets that buckle under pressure [23].
To translate existing digital content into tactile content,
blind users mainly use swell-form graphics and thermoform
books. Swell-form graphics work with swell-touch paper
[26]: Applying heat to the paper raises the paper’s surface
in the heated area, thereby creating tactile content. To cre-
ate a swell-form graphic, user first create a 2D black/white
image of their content and print it on a 2D printer. After-
wards, they insert the 2D print into a swell-form printer
known as fuser: The black areas attract the heat, thereby
raising the lines. Thermoform books in contrast require to
vacuum form plastic sheets (see chapter ‘vacuum forming’
in [8]). While their resolution is better than swell paper
(i.e. they produce different levels of relief), the creation
process is more expensive and time-consuming.
Blind technologies for interacting with spatial content
While braille displays are normally used to sequentially
display braille text, HyperBraille [9, 21] is a large Braille
display that can be used to explore spatial content. To make
optimal use of the space, Prescher et al. [21] demonstrate
an optimized Braille-based windowing system.
Since scaling Braille arrays involves proportional cost,
researchers have proposed to use alternative haptic cues,
such as vibration, as a means to communicate spatial in-
formation to visually impaired users. For instance, TGuide
[15] uses 8 vibrating elements to output directional infor-
mation for navigation purposes. Beside vibration, research-
ers also suggested the use of force-feedback devices: Cros-
san et al. [7] designed a system that teaches shapes and
trajectories using a force feedback arm. Similarly, Plimmer
et al. [18] trained blind users to learn writing using a force
feedback arm. Finally, researchers also suggested to add
small braille displays onto force feedback arms and to
update the display in accordance to its current location

(PantoBraille [24]). To display 3D geometry with fine
texture features, Colwell et al. [6] introduce a haptic device
that provides feedback to the user by monitoring the posi-
tion of hand and altering the force accordingly.
Finally, researchers have also examined how to combine
analog means for displaying spatial content with a digital
touch screen. By overlaying swell paper onto the screen,
users of TDRAW [16] can simultaneously draw and anno-
tate their drawings using voice over. Users create drawings
using a pen featuring a hot tip. The hot tip causes the swell
paper to buckle, allowing users to feel strokes produced
earlier. However, while the device provides users with a
means to create tactile content, the device has no means of
creating tactile output itself.
Audio-tactile graphics systems
Audio tactile graphic systems help blind users to explore
spatial information by combining tactile and audio modali-
ties. Talking Tactile tablet (TTT) [17] uses tactile sheets on
top of a touch sensitive surface to provide audio feedback
on various spatial content. Following up on the TTT pro-
ject, Miele et al. [18] looked at the process of automatically
translating maps into tactile sheets for the tablet. Similarly,
researchers have looked at how to automatically translate
existing graphics, such as floor plans and organization
charts, to tactile graphics by segmenting, vectorizing and
simplifying them [3, 8, 12]. To enable the creation of multi-
model applications, Pietrzak et al. [19] introduced a soft-
ware architecture that supports developers in creating these
complex types of applications.
Personal Fabrication for Visually Impaired
Originally, personal fabrication tools were developed as a
means for rapid prototyping. However, the output created
by personal fabrication machines, such as 3D printers and
laser cutters is inherently tangible, giving it relevance to the
visually impaired community. Physical visualizations [25],
for example, result in a type of display that is accessible to
blind users.
Recently, 3D printers have been proposed as a means to
generate tactile output for blind users: VizTouch [4] for
instance, generates 3D printed graphs and data plots by
extracting contours from a 2D input image. ABC and
3D [5] 3D print geometric objects that allow visually im-
paired students to improve their math skills. Similarly,
Kane et al. [13] 3D print tactile representations of debug-
ging output to make programming more accessible to the
blind. Tactile Picture Books [14] are books for blind chil-
dren that contain 3D printed objects instead of 2D images.
Finally, Yahoo presented a search engine that 3D prints
physical representations of search keywords that are input
via speech [11].
LINESPACE SYSTEM
Linespace is an interactive system that consists of hardware
and software and that allows visually impaired users to
interact with spatial contents.

Linespace offers 8 types of interaction (see Figure 7 for a
preview). Its primary way of providing output to users,
however, is to render information in the form of raised lines
that visually impaired users can explore using their hands.
As illustrated by Figure 1, Linespace’s display area is very
large (140cm x 100cm). This is a key aspect of the system,
as it allows the software system to minimize display up-
dates in order to preserve user’s spatial memory.
We created Linespace’s display on top of a drafting table.
The device can be tilted to allow for any angle between a
horizontal and vertical setup. While users can conceptually
sit in front of the display, we tend to use it while standing,
as this is common for drafting table usage.
Display hardware
As illustrated by Figure 1, Linespace’s ability to create
display output is based on the mechanics of a 3D-printer.
The device operates like a plotter, i.e., its print head moves
across the display surface in two dimensions.
Figure 2 illustrates the horizontal component. The carriage
that holds all motors and electronics rides along the top
edge of the drafting table, moving the arm with the print
head to the desired x-position.

Figure 2: Horizontal actuation: the shown carriage with

motors and electronics rides along the top edge of the
display board.

In addition, the carriage positions the print head vertically
by pulling the arm with the head up and down (Figure 3).

Figure 3: Vertical actuation: (a) printing at the top end
of the board, and (b) at the bottom end. (c) When the

printer is inactive it moves out of the way.

As illustrated by Figure 4, the lower end of the arm holds
the print head that extrudes plastic filament (PLA), which
creates the raised lines.

Figure 4: Close-up of the print head: A ball caster stabi-

lizes the print head and keeps it at a fixed distance to
the display area. The ball caster also reduces friction.

Next to the print head, we mounted a “scraper”, i.e., a nee-
dle mounted perpendicular to the display that allows the
system to remove contents. When the scraper is not needed,
Linespace can retract it (Figure 5).

Figure 5: (a) Removing content with the scraper.

(b) When not needed, the scraper is retracted.

Linespace Hardware = Tactile Lines, Touch, and Speech
As mentioned above, Linespace’s primary mode of interac-
tion is spatial interaction based on tactile lines. This func-
tionality is key as it allows the system to arrange data spa-
tially in order to leverage users’ spatial memory. Extending
on this, we designed Linespace as a platform, i.e., to pro-
vide application builders with a rich interaction vocabulary.
Linespace therefore also supports transient spatial interac-
tion by pointing and textual interaction based on speech.
All interactions with Linespace are designed with sym-
metry in mind, i.e., user and system can both perform the
same actions. Figure 6 shows this at the example of Line-
space’s permanent spatial interaction abilities. (a) The
system renders contents by 3D printing, which (b) users
perceive by scanning the fingers across the display. (c)
Users create output by drawing using a plastic extruder pen
(3Doodler [1]), which (d) the system perceives using its
camera.

Figure 6: Linespace’s input/output capabilities are de-

signed with symmetry in mind.

Similarly, the system can erase lines by scraping them off
using its scraper; so can users, simply using their fingers.
Users can point at printed content on the display, which the
system perceives using its camera (we use markers on
users’ fingers for the touch recognition). Similarly, the
system can point to objects on the display using its print
head. The system outputs sound through a wireless speaker
mounted to the print head, allowing users to locate the print
head based on their auditory sense.
Finally, also Linespace’s textual interaction is symmetric.
The system can talk to the user based on speech output.
Users can talk to the system by activating speech input by
pressing a foot switch.
Figure 7 summarizes Linespace’s input/output capabilities
on which we based our software framework.

 system to user user to system
draw line 3d printer extruder pen
erase line scraper fingers
point print head, speaker finger w/ marker
text speaker voice

Figure 7: Summary of input/output capabilities.

DESIGN RATIONALE
Linespace’s hardware provides it with a large amount of
display space and the ability to render lines, a primitive
particularly well suited for the content types involved in
spatial sensemaking tasks, such as graphs, diagrams, maps,
and drawings. Based on this hardware, our objective in
designing Linespace’s software system was to allow users
to build up and maintain spatial memory of the contents.
Primary design rule: leave displayed contents intact
In order to not destroy spatial memory Linespace’s primary
design rule is: “leave printed display contents intact”. We
express this using four sub rules:
p1. No panning and scrolling. Instead, extend contents.
p2. No zooming. Instead, add overviews or detail views.
p3. No animation. Instead, use static animation [10].
p4. No pop-ups and dialogs. Instead, use auditory output.

Secondary design rule: spend display space carefully
Within all solutions that satisfy these rules, our secondary
design objective is to spare display space, as it is the dis-
play space that allows the system to achieve its primary
goal.
s1. No unnecessary scale. Render as small as readable.
s2. No chrome. Instead, structure contents with whitespace
s3. No display windows. Traditional windows are a way

of reserving space oftentimes before it is really needed.
While Linespace allows apps to run in parallel, appli-
cations are supposed to start at display size zero and
grow their space use over time as needed. Apps have
whatever shape their content has, which will typically
not be a rectangle.

s4. No displaying of text and no displaying of elaborate
icons. Instead, use a small number of simple tactile
icons that play back auditory output when touched.

Tertiary design rule: allow for speedy operation
Within all solutions that satisfy these rules, our tertiary
design rule is to allow for speedy operation, in particular by
handling the limitations of Linespace’s print mechanism.
t1. No printing at app launch: all applications start with

a blank display, allowing apps to start instantaneously.
t2. No printing at app switching: Touching content of a

different app moves the focus to that app instantane-
ously. Remove or relocate an application only when
another application grows into its display space.

t3. Let users interact while system is printing in regions
distant enough from the print arm.

t4. Let system print while user is interacting; pre-render
contents likely to become necessary soon.

t5. During printing sonify what is being printed: This
allows for immediate feedback. Given that the speaker
moves with the print head, it helps users to build up
spatial memory of what is printed where.

DEMO APPLICATIONS
We now go over our 4 demo applications and use them to
explain how they implement our 3 sets of design rules.
1. Minesweeper
Minesweeper is an adapted version of the minesweeper
number puzzle that used to ship with the Windows operat-
ing system. Players’ objective is to clear a board containing
hidden “mines”, with help from clues about the number of
neighboring mines in each field. While not a sensemaking
application, minesweeper does involve a good amount of
spatial reasoning, so we included it as our first example.
To launch minesweeper, users press the foot switch and say
“launch minesweeper”. The app launches with a blank
screen (t1) and welcomes users with: “Minesweeper. Your
entire screen now is a mine field. Touch anywhere and say
“reveal” to see whether there is a bomb. Say “usage” to
learn more.” (s4).
As shown in Figure 8a, users tap onto the board and say
“reveal”. Minesweeper responds by announcing the item
that is located there, i.e., either “free”, “mine”, or a number

system plots raised lines
using 3D printer

user feels lines
by touching

user draws raised lines
using 3Doodler

system observe lines
using camera

a b

c d

denoting the mines surrounding that cell. At the same time,
Linespace persists this information by plotting an icon at
the location. To maximize content density, minesweeper
distinguishes only between a “free” cell (a slanted line
icon) and cells that have an adjacent mine (a circle icon);
instead, the actual number is read out loud every time the
user touches the cell (s4). (b) In the shown case, the cell
was “free” which causes the app to also reveal surrounding
cells. Note how the app separates cells using whitespace
rather than gridlines (s2).

Figure 8: The Minesweeper app (a) reveals a cell,

(b) here a free cell. (c) Users scan a local neighborhood
of cells with their fingers to infer the location of mines.

(d) The prototype.

Users' spatial task is to locate mines without revealing
them. Users scan an area of interest with their fingers, listen
to the number and build up a mental model of the con-
straints. When they infer where a mine must be located
they touch that location and say “mine”. The app responds
“marking as mine” and draws a mine icon (a triangle).
As users continue to reveal more area of the board, the
minesweeper application grows which extends the display
space it occupies (p1). To explore the potential of the sys-
tem, our version of minesweeper is intentionally designed
to fill the entire display area by default (>9000 cells). If
users solve the entire puzzle, the app plays a congratulatory
message and terminates.
After a brief pause, the app manager starts to free up the
app’s display space by scraping off all contents (Figure 9a).

Figure 9: The app manager cleans up space until (a) the
user requests a new application, which (b) causes Line-

space to interrupt its clean up immediately.

Users do not have to wait though. They can switch to a
different app or (b) launch a new app (e.g., re-launch the
game) in a fresh screen region any time. The system ac-
commodates this by interrupting its clean up, allowing it to
respond instantaneously (t3).
2. Homefinder
Homefinder is a simple app that allows users to search for
real estate, such as a four bedroom in a city.
When users launch homefinder, the app launches with a
blank screen (t1) and welcomes users with: “Welcome to
homefinder. What city or neighborhood to plot where?”
(s4). Users point to an empty screen region and name their
city and neighborhood. Homefinder responds by saying,
e.g. “63 homes” and plotting a few characteristic land-
marks, such as an outline of the city (Figure 10a). The user
says “filter four rooms or more” to reduce the set of houses.
The system responds, e.g. with “12 homes found”. (b)
When users say “draw”, homefinder plots the homes onto
the map (Figure 10c), each one as a simple icon (a circle).

Figure 10: The home finder application.

To learn more about a home, users scan the map with their
fingers, pause over a circle icon and say “reveal”.
Homefinder responds with a brief verbal description of the
place, in prioritized order starting with price, number of
rooms, etc.

(c) When the query does not find enough homes in the
neighborhood, users can point at a blank space and say
“extend”, causing homefinder to sketch an additional
neighborhood and populate it with homes, in this case re-
sponding “7 additional homes found”. Users can also adjust
the filters using speech input, e.g. also allowing three
rooms, which causes homefinder to fill in additional
homes.
(d) To provide users with a sense of what has changed, the
additional homes are plotted with a modified icon (a dash
inside the circle icon. Similarly, users can reduce the num-
ber of homes with the filter, which (e) causes homefinder to
scrape off the icons of the surplus homes and replace them
with an icon indicating the absence of an item (a dash).
(f) To learn more about the relationship between price and
number of places, users can also query a slider by saying
“place price slider here”, which causes homefinder to draw
a slider at the specified location. Users can now slide their
finger up and down the slider while homefinder is continu-
ously announcing the numbers: “300 thousand—16
homes… 350 thousand—12 homes”.
Note how homefinder always provides an auditory sum-
mary first and only then refreshes the screen. This is very
different from similar applications for sighted users, that
tend to update the screen whenever possible, e.g., continu-
ously while users drag a slider. Such tight coupling is only
of limited use for visually impaired users, as users cannot
take in the spatial display at a useful rate (independent of
how fast or slow the system can render the changes).
(g) Finally, when users have found a home that sounds
promising and would like to get a better understanding of
its surroundings, they can display additional detail. For this,
users point at the place with one hand and use their other
hand to point at a patch of blank space. When they say
“zoom here” Linespace responds by (h) plotting a zoomed
in map of the area (p2) in the blank space, allowing the user
to examine its potential in detail (Figure 5a).
3. Drawing application
Since our first two applications are focused on allowing
users to explore, we added a drawing app as a means for
users to create.
As an example drawing, we explain how to make a bicycle
(Figure 11). To draw the front wheel, users place their
fingers three inches apart and say “circle, draw”, causing
the drawing application to say “drawing circle” and draw-
ing a three-inch circle in between. Users create the rear
wheel by pointing at the front wheel and a location eight
inches further right, then say “clone, draw”.
To draw the fork, users start by pointing to the center of the
front wheel and where they want the upper end to go. After
saying “line, draw”, the app draws the line.
To allow for efficient drawing, users can create the frame
by using the line tool in “polyline style”, i.e. by specifying
all five lines before updating the display. This also allows

them to use their fingers as bookmarks as they can keep
their fingers on the display. To save a line for later printing,
users say “memorize line”, which causes the system to
respond with “line memorized”. At the end, when users say
“draw”, they get the polyline.

Figure 11: Drawing a bike using the draw app (see Fig-

ure 11 for a drawing by a blind user).

Users can also add freehand drawings, such as the curved
handles of the bike, by using the hand-held extruder pen.
4. App manager
The handling of individual applications and their canvases
and sub-canvases is done by a program called app manager.
App manager also allows users to launch and kill other
apps, configure them, and switch between apps. App man-
ager loads automatically whenever Linespace starts up.
App manager launches with a blank screen display (t1) and
does not occupy any screen space itself (s2, s3). Instead app
manager runs in the background and listens in on speech
input (s4), so that all interactions with app manager itself
are based on speech.
Users, for example, launch an app by saying “start <app
name>”. Linespace responds by loading the respective app
and confirms “<app name> loaded” and hands control over
to the app, which follows up with a welcome message. The
minesweeper app, for example, says “your entire screen
now is a mine field. Touch anywhere and say “reveal” to
see whether there is a bomb. Or say “usage” to learn more.”
While app manager itself does not occupy display space, its
apps do. Users consequently interact with the apps by
pointing at them, then adding a verbal command, such as
“kill” which causes app manager to terminate the app and
remove its screen contents, or “relocate”, which deletes
display contents and redraws it to a new location pointed
to.
GUIDED WALKTHROUGHS AND INTERVIEWS
We organized feedback sessions with six blind users in
order to observe how users use Linespace and to collect
their thoughts about our system.
Participants
We contacted blind self help organizations to recruit our
participants. We invited 6 of them (4 male, 2 female) to our
lab. Our participants included: a blind artist (p4), a comput-
er scientist (p2), a person from the blind sport union (p5), a
social worker of the national blind organization (p3), and a

blind teacher from a blind school (p6). P1 did not want to
state his profession. All participants were blind except one
(p2) who had 10% remaining vision. Three participants had
experience with tactile drawings (p4, p5, p6). Experience
with technology varied widely from one participant who
has never used a computer (p1) to the computer scientist
who works on search engine optimization (p2). Partici-
pant’s ages ranged from 39 to 58.
Procedure
At the beginning of each session, we gave users a short
introduction on the type of output Linespace produces and
on how to interact with the system based on tactile lines,
touch, and speech. We then demonstrated Linespace’s
drawing and home finder application to our participants.
During the walkthroughs an instructor stood beside the
participant and demonstrated how to use the features of
each application. After the demonstration, participants then
used those features. At the end of the walkthroughs of the
application, the participants were interviewed about the
system and the principles behind its design.
We encouraged all our users to talk aloud and offer verbal
comments during the walkthrough. Whenever comments
required more explanation, we encouraged participants to
explain their thoughts in more detail. After each
walkthrough we conducted semi-structured interviews.
Interviews were recorded and the session was video taped.
A guided walkthrough session with interview typically
lasted between 1-2 hours.
Walkthrough scenarios
For the drawing application, we asked participants to re-
produce a very simple tactile drawing of a car that we had
prepared on swell paper. The car consisted of two circles
for the wheels as well as two rectangles for the body of the
car (see Figure 11 as an example).

Figure 11: Participant 2 creating a drawing of a car

with Linespace.

For the home finder application, we asked participants to
find potential new homes of their home city (Figure 12).
After selecting their preferred area of living, they used the
filters to define the maximum price and the minimum room
size. As an additional task, participants were asked to find
homes with extra parking space. For this, participants se-
lected two homes of their choice which caused Linespace

to print a detailed map of the area on the side of the over-
view map, which they could then use to compare the hous-
es.
Results
All participants (p1-p6) successfully operated the system
and performed the tasks.
Participants responded very favorably to the system. Sever-
al participants expressed seeing great potential in using a
system like Linespace for their life and work: “there are
many situation in which I would use it… for orientation
when using maps…in blind schools to teach different
shapes, what triangle and rectangle is…” (p3), “it would be
great for sharing graphical information with my friends.”
(p5), “for making artwork accessible, you point and be-
come special details“ (p3), “it could be fun to play games
like chess” (p5), “blind children need to have things drawn
to make them understandable—a system like this can help
them.“ (p4) “If there are things I want to learn, I can tell the
computer to do a painting”. (p6)

Figure 12: (a,b) Participants using Linespace to find

homes in a map. (c) After each guided walkthrough, we
interviewed them.

Large display area
Participants pointed out the benefits of having a large dis-
play area: “It’s great to have such a big area, where you can
put information. This is really more than the 80 characters
that most devices can show.” (p3). “If you have a big map
it takes a lot of space…you need to zoom in… it’s the big-
gest problem because you need many states and you lose
the reference.” (p2). Some commented directly on the as-

pects we set as design goals for our system, such as “It is
very comfortable to have both [overview and detail] at
once, then I can look at both at once.” (p3)
Lines vs. Dots
Participant pointed at the increased expressiveness of creat-
ing lines instead of dots with Linespace. “Hyperbraille is
better than nothing, but it is quite pixelated. You get very
coarse graphics that have corners where there should be
none. With your system this is not the case, you get smooth
lines.” (p5). “In the refreshable displays we only have dots,
but lines would be more comfortable.” (p3). “If you want
detailed information of course line drawing is the best”
(p6). "It’s more flexible compared to a braille system. In a
braille system you can only use points. With your system
you can make thicker and thinner lines. This allows to
produce more details." (p5) “The texture of lines could be
used to distinguish different types of data. It could also be
used to indicate which parts changed”. (p4).
On spatial memory
We also asked participants about their experiences with
memorizing spatial content and if additional features such
as spatial audio would help: “Spatial audio is not necessary.
Blind people know where they put stuff. For instance, if I
draw a circle here then I know the circle is there. And even
if I miss it slightly, I will quickly find it with my hands.”
(p1). “Taking the hands off is no problem, I find stuff that I
already have drawn before easily.” (p1). P4 pointed out that
“changing the posture makes spatial memory harder” and
should therefore be minimized. However, participants also
mentioned that there is a limit to spatial memory, especially
when it includes long in-between time spans: “when I draw
my paintings, I have to wait for each color to dry before I
can continue. When I draw very large paintings (>
100x120cm) it can get difficult to remember everything.”
(p4). A strategy all participants used to orient themselves
on the large board was to use one hand as a static reference
point while the other hand was exploring nearby content.
Suggested features
Several participants suggested that the system should allow
users to take the tactile drawing off the drafting table: “If I
had a map of an area with navigation hints, it would be
great if I could take it with me.” (p4), and “If I draw some-
thing for my friend, it would be great if I could take it with
me when I visit him next time.” (p3). A straightforward
way of implementing this would be to attach large sticky
notes before a session starts.
One participant felt strongly that the display should be
horizontal, barely above her knees (p4). While we had set
up the system to an angle of about 45˚ with ergonomics in
mind, her main point was to maintain physically constant to
the display while the system was drawing in order to better
maintain spatial memory and re-find her last location on the
board faster.
The same participant also suggested thicker lines to speed
up recognition, as well as textured lines to allow recogniz-

ing different types of display elements more quickly. We
will consider these in future versions e.g., by replacing the
nozzle of the embedded 3D printer with a thicker one, as
well as adding a texture feature to the line drawing primi-
tive.
Interestingly, speed was not an issue for participants: “It is
the best that we have, even if it’s slow.” (p3).
HARDWARE IMPLEMENTAITON
In order to help readers replicate our design, we present a
brief overview of the design decisions behind our display
hardware. To put some of the design aspects in perspective,
we include a discussion of the design process and refer to
the earlier versions of Linespace (see Figure 13).
Increased display area
We built our first prototype on a low-end off-the-shelve 3D
printer (PrintrBot [22]). This printer is open source and
easy to modify, making it well-suited for the project.
During prototyping our application home finder on our V1
device, it became clear that the display area (25.7cm x
12cm even slightly smaller than a Hyperbraille) was so
small that any reasonably complex app would have to con-
stantly redraw display contents.
Increasing the display area (v2: 42 x 47.5cm, v3: 65 x
45cm, v4: 140 x 100cm) required us to address several
technical challenges. As the arm holding the print head
increased in length with every version, we introduced the
caster to hold it up and we reinforced the arm to prevent it
from jittering sideways. Next we switched to a thicker
display surface (now 2.5cm), as previous versions started to
bend under the weight of the attached printer.

Figure 13: (a) Linespace V1 based on PrintrBot,

(b) Linespace V2 with increased display size,
(c) Linespace V3 with stationary display and moving

printer unit. V4 is shown in Figure 4.

Keeping the table stationary
The original PrintrBot 3D prints by moving the print head
in and out, while moving the print bed left and right. This
was unsatisfactory, as it caused users to lose their spatial
reference. It also prevented users from interacting while the
device was in operation (design principles t3, t4).
We addressed this by rebuilding the printer, introducing the
carriage shown in Figure 2 that has two stepper motors to
move along the horizontal edge of the board and to vertical-
ly position the printhead. Earlier versions of the carriage
moved on linear bearings along a linear shaft. In the final
version of Linespace, the carriage actuates itself by pulling
along a belt as shown in Figure 14.

Figure 14: The backside of the final Linespace proto-

type.

Ergonomic posture
When we switched to the tiltable drafting table for better
ergonomics, we added the large wheel at the backside of
the device shown in Figure 14. By pushing against the back
of the table, the wheel generates a counterforce that pre-
vents the carriage from falling off the edge when the print
head is moved to the top edge of the device.
SOFTWARE IMPLEMENTATION
Linespace’s software is written in Python 3. It uses the
PrintrRun library for controlling the printer and several
Inkscape extensions for simplifying path geometry.
We use an event driven architecture for sending and receiv-
ing events between different components of the system,
such as when users select a printed part via touch or when
users query information via a voice command. Events are
sent to the app manager component and then propagated to
the respective apps and their widgets.
For organizing the widgets in apps, we provide various
layout containers, such as a stack container and a docking
container. These enable system developers to specify how
the widgets are distributed in an app.
In the current prototype, the content of the apps comes
from the Linespace database and is manually optimized for
rendering via the 3D printer. Future versions of Linespace
will use live-data from the web, which will also require

automatically optimizing the graphics for rendering with
Linespace (e.g. using methods from [10]).
Converting vector files to 3D printing g-code
Linespace automatically imports SVG files that specify the
tactile paths for an application and and converts them into a
set of lines. Linespace then stores these lines as internal
geometric objects to enable geometry operations such as
resizing the content based on the available space on the
print bed.
When the tactile paths are queried for printing, the corre-
sponding internal geometric objects are converted to 3D
printer instructions in GCODE. We take the beginning and
end point of each line for the print head travel commands
(e.g. G1 X0 Y0 followed by G1 X10 Y0 draws a horizontal
line). We use three different travel speeds: moving (F3600),
printing (F1200), and erasing (F2400). This translated to
the printer moving at a speed of 6cm/sec, printing at
2cm/sec and scraping at 4cm/sec. Finally, Linespace also
computes how much material should be extruded while
moving along a path. For this, Linespace uses a fixed extru-
sion amount per unit, which is defined by the length of the
filament that will be extruded through the nozzle while
moving along a certain distance (e.g. printing a distance of
1cm requires the extruder stepper motor to extrude 5mm of
filament, GCODE: E5).
Generating GCODE for removing outdated content
To effectively remove lines, we move the scratching pin
along the zigzag pattern shown in Figure 15b. To generate
the GCODE for the print head movement, we first segment
a shape into lines, then offset the start point of each line
either towards the normal of the line or the reverse normal.
Beside the horizontal pin movement, Linespace also gener-
ates the GCODE for moving the pin up and down via a
solenoid. We drive the solenoid directly from the PrintrBot
microcontroller. For this, we connected the solenoid to a
general-purpose I/O pin on the microprocessor. To activate
and deactivate the solenoid, we set the voltage of the pin
accordingly (M42 S255 P14 vs. M42 S0 P14).

Figure 15: Removal GCODE generation: (a) To remove
this rectangle, (b) the scraper moves along the red path.

Tracking user input via the camera
To translate the camera coordinates to print bed coordi-
nates, we perform a homography on all camera images.
After this, we threshold the HSV values from the camera
image to track the input color markers on users’ fingers.
Audio output and speech input
For both speech input recognition and speech output, Line-
space uses the Microsoft Speech Platform SDK 11.

CONTRIBUTION, BENEFITS, LIMITATIONS
The main contribution of this paper is a sensemaking plat-
form for the blind. The key principle driving its design is to
preserve user’s spatial memory by leaving displayed con-
tents intact. To allow for this strategy, we provide Line-
space with a very large display, i.e., 23x more display space
than a Hyperbraille array. We achieve this by basing our
mechanical design on a 3D printer that draws screen con-
tents. Its ability to draw lines also makes our system partic-
ularly suited for the content types involved in spatial
sensemaking tasks, such as graphs, diagrams, maps, and
drawings.
We also contribute a software framework that allows de-
velopers to quickly build applications for Linespace.
Finally, the approach of using a 3D printer allows us to
fabricate the device inexpensively ($400, about 1/200th of a
Hyperbraille). The printing material incurs (insignificant)
running costs.
The main limitation of Linespace is that plotting contents
takes time; also the turn taking between user and device
requires users to wait. We address these challenges in part
using the design principles mentioned earlier in the paper.
CONCLUSION
We presented Linespace, an interactive system that allows
visually impaired users to interact with spatial contents. By
basing our design on a 3D printer, we were able to extend
the display area to 140cm x 100cm. The increased interac-
tion space allowed us to eliminate the necessity for many
types of display updates, such as panning and zooming,
thus allowing blind users to always stay within their spatial
reference system.
As future work, we plan to examine how Linespace can be
extended to help blind users with more complex sense
making tasks. We are also planning on creating a mobile
version.
ACKNOWLEGDEMENTS
We thank Thomas Schumacher and Deike Sumann who
organized our initial user survey visits at the school for
blind children Johann-August-Zeune-Schule für Blinde. We
thank Peter Woltersdorf and Paloma Rändel from the
ABSV organization for their help with recruiting study
participants. We also thank all our study participants for
their time. We thank Martin Kurze for his feedback during
the early stages of our project, Jack Lindsay for feedback
on the hardware, and Doğa Yüksel for his help with setting
up the study setup in our lab.
REFERENCES
1. 3Doodler. http://the3doodler.com
2. Patrick Baudisch, Desney Tan, Maxime Collomb, Dan

Robbins, Ken Hinckley, Maneesh Agrawala, Sheng-
dong Zhao, and Gonzalo Ramos. Phosphor: explaining
transitions in the user interface using afterglow effects.
In Proceedings of the 19th annual ACM symposium on

User interface software and technology (UIST '06),
169-178.

3. Anke Brock, Philippe Truillet, Bernard Oriola,
Delphine Picard, and Christophe Jouffrais. 2012.
Design and user satisfaction of interactive maps for
visually impaired people. In Proceedings of the 13th
international conference on Computers Helping People
with Special Needs (ICCHP'12), 544-551.

4. Craig Brown and Amy Hurst. VizTouch: automatically
generated tactile visualizations of coordinate spaces. In
Proceedings of the Sixth International Conference on
Tangible, Embedded and Embodied Interaction (TEI
'12), Stephen N. Spencer (Ed.), 131-138.

5. Erin Buehler, Shaun K. Kane, and Amy Hurst.. ABC
and 3D: opportunities and obstacles to 3D printing in
special education environments. In Proceedings of the
16th international ACM SIGACCESS conference on
Computers & accessibility (ASSETS '14), 107-114.

6. Chetz Colwell, Helen Petrie, Diana Kornbrot, Andrew
Hardwick, and Stephen Furner. 1998. Haptic virtual
reality for blind computer users. In Proceedings of the
third international ACM conference on Assistive
technologies (ASSETS '98), 92-99.

7. Andrew Crossan and Stephen Brewster. Multimodal
Trajectory Playback for Teaching Shape Information
and Trajectories to Visually Impaired Computer Us-
ers. ACM Trans. Access. Comput. 1, 2, Article 12, 2008.

8. Polly Edman. Tactile graphics. American Foundation
for the Blind, 1992.

9. HyperBraille, http://www.hyperbraille.de
10. C. Goncu, S. Marinai, K. Marriott. Generation of

accessible graphics. In Proceedings of 22nd
Mediterranean Conference: Control and Automation
(MED), 2014, 169-174.

11. Yahoo Japan, Hands-on search. http://sawareru.jp/en/
12. Chandrika Jayant, Matt Renzelmann, Dana Wen, Satria

Krisnandi, Richard Ladner, and Dan Comden. 2007.
Automated tactile graphics translation: in the field.
In Proceedings of the 9th international ACM
SIGACCESS conference on Computers and accessibil-
ity (ASSETS '07), 75-82.

13. Shaun K. Kane and Jeffrey P. Bigham. Tracking
@stemxcomet: teaching programming to blind students
via 3D printing, crisis management, and twitter.
In Proceedings of the 45th ACM technical symposium
on Computer science education (SIGCSE '14), 247-252.

14. Jeeeun Kim and Tom Yeh. Toward 3D-Printed Movable
Tactile Pictures for Children with Visual Impairments.
In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI '15), 2815-
2824.

15. Martin Kurze. TGuide: a guidance system for tactile
image exploration. In Proceedings of the third
international ACM conference on Assistive
technologies (ASSETS '98), 85-91.

16. Martin Kurze.. TDraw: a computer-based tactile
drawing tool for blind people. In Proceedings of the
second annual ACM conference on Assistive
technologies (ASSETS '96), 131-138.

17. Steven Landau and Lesley Wells. Merging tactile
sensory input and audio data by means of the talking
tactile tablet. In Proceedings of EuroHaptics '03, 414-
418.

18. Joshua A. Miele., Steven Landau, and Deborah Gilden.
Talking TMAP: Automated generation of audio-tactile
maps using Smith-Kettlewell's TMAP software. British
Journal of Visual Impairment 24, no. 2 (2006): 93-100.

19. Thomas Pietrzak, Benoît Martin, Isabelle Pecci, Rami
Saarinen, Roope Raisamo, and Janne Järvi. 2007. The
micole architecture: multimodal support for inclusion of
visually impaired children. In Proceedings of the 9th
international conference on Multimodal interfaces
(ICMI'07), 193-200.

20. Beryl Plimmer, Andrew Crossan, Stephen A. Brewster,
and Rachel Blagojevic. Multimodal collaborative

handwriting training for visually-impaired people.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '08), 393-402.

21. Denise Prescher, Gerhard Weber, and Martin Spindler.
2010. A tactile windowing system for blind users.
In Proceedings of the 12th international ACM
SIGACCESS conference on Computers and
accessibility (ASSETS '10), 91-98. h

22. PrintrBot. http://printrbot.com/
23. Raised Line Drawing Kits:

http://www.maxiaids.com/raised-line-drawing-kit
24. Christophe Ramstein. Combining haptic and braille

technologies: design issues and pilot study.
In Proceedings of the second annual ACM conference
on Assistive technologies (ASSETS '96), 37-44.

25. Saiganesh Swaminathan, Conglei Shi, Yvonne Jansen,
Pierre Dragicevic, Lora A. Oehlberg, and Jean-Daniel
Fekete. Supporting the design and fabrication of
physical visualizations. In Proceedings of the 32nd
annual ACM conference on Human factors in
computing systems (CHI '14), 3845-3854.

26. Swell-form-graphics:
http://www.americanthermoform.com/product/swell-
form-graphics-ii-machine/

