
G-ID: Identifying 3D Prints Using Slicing Parameters
Mustafa Doga Dogan1, Faraz Faruqi1, Andrew Day Churchill1,

Kenneth Friedman1, Leon Cheng1, Sriram Subramanian2, Stefanie Mueller1

1MIT CSAIL, Cambridge, MA, USA
{doga, ffaruqi, adchurch, ksf, leonc, stefanie.mueller}@mit.edu

2University of Sussex, Brighton, UK
sriram@sussex.ac.uk

Figure 1. 3D printed objects inherently possess surface patterns due to the angle of the print path and the thickness of the trace the
3D printer lays down. G-ID exploits such features that would normally go unnoticed to identify unique instances of an object without
the need to embed an obtrusive, additional tag. G-ID provides (a) a user interface for slicing individual instances of the same object
with different settings and assigning labels to them. After (b) 3D printing, users can (c) identify each instance using the G-ID mobile
app that uses image processing techniques to detect the slicing parameters and retrieve the associated labels.

ABSTRACT
We present G-ID, a method that utilizes the subtle patterns
left by the 3D printing process to distinguish and identify ob-
jects that otherwise look similar to the human eye. The key
idea is to mark different instances of a 3D model by varying
slicing parameters that do not change the model geometry
but can be detected as machine-readable differences in the
print. As a result, G-ID does not add anything to the object
but exploits the patterns appearing as a byproduct of slicing,
an essential step of the 3D printing pipeline.

We introduce the G-ID slicing & labeling interface that var-
ies the settings for each instance, and the G-ID mobile app,
which uses image processing techniques to retrieve the pa-
rameters and their associated labels from a photo of the 3D
printed object. Finally, we evaluate our method’s accuracy
under different lighting conditions, when objects were
printed with different filaments and printers, and with pic-
tures taken from various positions and angles.
CCS Concepts
• Human-centered computing → Human computer interac-
tion (HCI); Human-centered computing;

Author Keywords
personal fabrication; 3D printing; identification; making; tags.

INTRODUCTION
Machine-readable tags have many applications ranging from
package delivery and tracking [39, 40], to interactive mu-
seum exhibits [15, 55], and games [20, 46]. While in the last
decades, researchers have mainly focused on developing 2D
tags [11], the rise of 3D printing now enables researchers to
investigate how to embed tags directly with the geometry of
3D objects. For instance, QR codes are no longer limited to
2D applications and can now also be used as part of a 3D
object’s surface geometry by modifying the 3D model [23].

One key challenge when using tags is how to make them un-
obtrusive [4]. To make tags less visible, researchers have in-
vestigated how to leave the surface intact and instead change
the inside geometry of a model. InfraStructs [53], for in-
stance, scans the object’s interior with a terahertz scanner,
while AirCode [26] requires a projector and camera setup to
detect internal air pockets using subsurface scattering. Even
though these approaches leave the object’s surface intact,
both need large equipment, which prevents these solutions
from being used in everyday scenarios.

To be able to use regular scanning equipment, such as a mo-
bile phone camera, researchers proposed to analyze small
imprecisions on the object’s surface that are created during
the fabrication process. Those imprecisions are unobtrusive
yet machine readable and can therefore be used as tags. Such
imperfections make it possible to identify which fused depo-
sition modeling (FDM) printer was used to create an object
[27]. For the purpose of easier explanation, we will refer to
FDM printers as 3D printers for the remainder of the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI '20, April 25–30, 2020, Honolulu, HI, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6708-0/20/04…$15.00.
https://doi.org/10.1145/3313831.3376202

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 375 Page 1

In this work, we propose a different approach to identifica-
tion. When a 3D model is prepared for 3D printing, it first
undergoes slicing, a computational process which converts a
3D model into layers and their corresponding print path (a
G-code file), which the extruder then follows to create the
3D object. The parameters for the slicing process can be
modified for each individual instance, which allows G-ID to
create unique textures on the surface of objects that can be
detected with a commodity camera, such as those available
on a mobile phone. Since our approach allows us to be in
control over which printed instance has been modified with
which slicer settings, we can identify each instance and re-
trieve associated labels previously assigned by a user.

Our contributions can be summarized as follows:

• A method to utilize the subtle patterns left as an inevitable
byproduct of the conventional 3D printing process to iden-
tify objects without the need to embed an additional tag.

• A tool for users who want to create multiple instances of
an object but intend to give each one a unique identifier.

• A mobile app that helps users take pictures of objects to be
identified, as well as a stationary setup to detect finer vari-
ations in slicing parameters using image processing.

• An evaluation of the space of slicing parameters that can
be varied to generate unique instances of a 3D model and
the corresponding detection accuracy under different envi-
ronmental and hardware-related conditions.

We demonstrate these contributions with a diverse set of in-
teractive applications.
BACKGROUND: TAGGING 3D OBJECTS
There are many factors that influence the design of a tag that
can be embedded in a physical object. These range from de-
ciding what purpose the tag is to serve, how to embed it with
the 3D model geometry, the fabrication process, and the tag
detection mechanism. In this section, we review the literature
to highlight factors that aid the development of tags.
Purpose of the Tag (Data Storage vs. Identification)
A tag is a label used to (1) store data or (2) identify items.
Inherently, every tag contains some amount of information.
If storing data is a tag’s main purpose, then it must have a
capacity large enough to represent the encoded message. For
example, QR codes are a type of matrix barcodes that are
able to store more information than 1D barcodes. The more
elements the matrix has, the more data can be stored (a 21x21

or 177x177 QR code with high level error correction can
hold 72 or 10,208 bits, respectively). This allows for storing
larger data such as a URL in the code itself (e.g., [26]).

Not all tags are intended to store large amounts of infor-
mation. For instance, to identify similar looking items, it is
often sufficient to extract a few features from the object. An
object’s physical appearance can serve this purpose, i.e.,
color codes function as a tagging mechanism without the in-
tent of storing information; color coding of otherwise similar
looking electrical wires helps identify which cable is con-
nected to which voltage. Similarly, 3D objects’ visual char-
acteristics can be appropriated for identification [24, 27].

In this work, we use the subtle patterns left by 3D printing to
identify objects. Our goal with using different slicing param-
eters is not to store a lot of information but to create a param-
eter space large enough to identify individual instances. The
identifiable features can then be used to retrieve more infor-
mation about the object at hand.
Model Geometry (Color, Surface & Internal Geometry)
After deciding which type of tag to use, the tag can be em-
bedded in the model by either changing the 3D model’s
color, surface geometry, or internal geometry.

Current approaches that change the surface color of the ob-
ject to embed a tag significantly change the object’s visual
appearance. For instance, LayerCode [28] prints layers in
different colors to create barcodes on the surface of the ob-
ject. Less obtrusive are techniques known from 2D image
processing that hide tags in existing images (e.g., using half-
toning [6, 36]). While not yet explored, such techniques can
likely also be applied to the color textures of 3D printed ob-
jects using recent advances in multi-color 3D printing [3].

For 3D printers without multi-color printing capabilities, tags
can also be embedded into a 3D model’s surface geometry.
Embossing tags (3D QR codes [23, 44]), however, is obtru-
sive. Subtler results can be achieved by either embedding ge-
ometric noise on the surface (Aliaga et al. [2]), but the result-
ing features are harder to detect. To keep the surface un-
changed, tags can also be embedded as part of the internal
object geometry. AirCode [26] and InfraStructs [53] change
the model to place air pockets beneath the surface of the ob-
ject. Yet such voids cannot be printed directly, which could
jeopardize the object’s integrity and makes its fabrication
more complicated. AirCode addresses this issue by splitting
the model into two parts that are printed separately and then
assembled together. InfraStructs proposes to use multiple
materials with different refractive index values, or to add
openings to the model that allow for support material to be
washed away from small cavities, however, this adds post-
processing time. With our approach, the surface and interior
stay intact and the model is not split into multiple parts.
Fabrication Process (Filament, Slicing, & Printing)
During the printing process, one can change either the fila-
ment, the slicer settings, or exploit features of the fabrication
process to create unique identifiers.

Figure 2. Different ways to embed tags into 3D models while
leaving the surface intact: (a) changing the internal geometry
(Infrastructs [53]), (b) varying slicing parameters (G-ID), (c) re-
lying on fabrication imprecisions (PrinTracker [27]).

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 375 Page 2

Different filaments can be used to create tags by either com-
bining them in two different colors to create a barcode or by
printing layers from two types of specialty filaments that
look different under NIR light (LayerCode [28]). Optimizing
the filament choice for tags, however, is not always possible
when specific filaments need to be used (e.g., PC filament
for extra strength does not exist in different colors) or when
the 3D printer only allows for single-material extrusion.

The slicing process can be used to influence how a 3D model
is converted into layers and the resulting print path, which
can be used as a tag. Thus, it is possible to alternate between
different print settings, such as two-layer height values to
represent two types of binary bits in a barcode (LayerCode).
This approach is inspired by Alexa et al. [1], who showed
that by adjusting the layer height setting during printing the
fabrication time can be reduced.

Finally, the printing process can be used to create tags. In-
spired by physical unclonable functions (random manufac-
turing impurities) to generate semiconductor chips with
unique identifiers [13, 52], researchers showed that varia-
tions in mechanical components of the printer (motors, noz-
zles) leave a unique “stamp” on the printed object [27, 35].
Such deviations can be used to differentiate between multiple
copies due to accidental under and over-extrusion on layers
[44]. However, since these signatures are uncontrollable,
they first have to be read, learnt, and stored before identify-
ing the object. Similarly, in other fabrication processes, such
as metal 3D printing, the inherent randomness present in the
fused micro-structures have been used to create tags [8].

Our approach does not require modifying the 3D printer or
changing materials during printing.
Detection Mechanism (Camera/Scanner, Microphone)
Tags can be detected using various mechanisms, including
different types of cameras and scanners for visual detection,
and microphones for audio detection.

To visually detect a tag that is on the surface of the object,
users can use a commodity camera [23, 28] or a 2D scan-
ner [27]. To visually detect tags embedded inside an object,
the use of large or expensive equipment is necessary. Such
equipment can include Terahertz scanners (InfraStructs
[53]), high-resolution 3D scanners [18], micro-CT scanners
[5], or large multi-component setups (AirCode [26]). These
are not accessible for nontechnical users in everyday use.

For acoustic detection of tags on the surface of objects, re-
searchers investigated how to create ridges and knobs that
when strum sound differently (Acoustic Barcodes [16], Tick-
ers and Talkers [41]). For the detection of tags on the inside
of objects, researchers investigated how to design cavities
that sound differently when squeezed (SqueezaPulse [17]),
blown into (Acoustic Voxels [25], Blowhole [47]) or when a
vibration frequency is applied (FabAuth [24]).

To enable everyday use of 3D printed tags, the tags need to
be detectable using commodity hardware, capturing the tags

must follow a simple workflow, and the detection method
needs to work across a variety of different environments. G-
ID only requires a conventional smartphone camera, i.e., it
does not require any large or expensive imaging equipment.
G-ID: LABELING AND IDENTIFYING OBJECTS BY THEIR
SLICING PARAMETERS
The main contribution of G-ID is a framework to label and
identify 3D printed objects by their distinct slicer settings.

G-ID labels 3D printed objects by intentionally varying the
slicing settings of an unmodified 3D model which determine
the path the extruder will follow. This allows G-ID to pro-
duce multiple instances that all have a unique artifact, e.g.,
the small grooves on the surfaces of the object that can be
shaped differently when the print path is laid down.

G-ID then identifies the 3D printed object by such textures,
i.e. after users take a picture of the object with a commodity
camera, G-ID applies image processing techniques to first
extract and then correlate the features with their initial slicing
settings to retrieve the identifying label.
Main Benefits of Using Different Slicing Parameters
Slicing parameters reveal themselves on any printed object
as a fabrication byproduct that is normally ignored. One may
make use of these inevitable textures that come for free due
to 3D printing. G-ID combines a wide range of slicing pa-
rameters to create a sufficiently large parameter space. For
each slicing parameter for surface and infill, there is a variety
of values available (see section “Spacing of Slicing Parame-
ters”). The use of so many values is enabled by G-ID’s recog-
nition algorithm, which uses a Fourier-based method for pre-
cise measurements. Detecting these values precisely in turn
enables new applications such as “Finding optimal print set-
tings” (see “Application Scenarios”).
G-ID Workflow for an Identification Application
In the following section, we describe how we use (1) the G-
ID labeling interface to assign each instance of a 3D printed
object a unique tag prior to 3D printing, and how we use (2)
the G-ID identification app that runs on a mobile device to
detect each object’s tag after 3D printing.

We explain the workflow of G-ID using an application sce-
nario, in which we will create a set of forty key covers—each
with an unobtrusive feature that identifies its owner. We use
these key covers in our research lab: At the end of the semes-
ter when members depart, we often forget to write down who
has returned their keys. Using G-ID, we can quickly identify
whom the previously returned keys used to belong to and
then send a reminder to those who have outstanding keys.
Labeling Interface (Slicer)
To assign each key cover a unique tag, we open G-ID’s la-
beling interface (Figure 3) on our computer and load the 3D
model of the key cover by dragging it onto the canvas. Since
we want to create 40 key covers, we enter 40 instances into
the left-hand panel of the interface.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 375 Page 3

#1 Generate Instances: We select “Mobile phone” as the de-
sired detection setup. Next, we click the “Generate previews”
button, which slices each instance of the key cover with a
unique set of slicing settings. In this case, since we only re-
quest 40 instances, G-ID only varies the slicing parameters
initial bottom line angle and initial bottom line width (more
on this in section “Slicing parameters used for labeling”). Af-
ter slicing is completed, G-ID previews each instance as
shown in Figure 1a.

#2 Enter Labels: We can now enter a label in the form of a
text, an image, or a URL next to the preview of each instance.
Since we want to give each key cover the name of one of our
lab members, we enter one name per instance. We can update
these labels later any time, for instance, when a new team
member joins our lab and we need to reassign the key.

#3 3D Printing: Upon clicking the “Export” button, each in-
stance’s G-code file is saved, as well as a digital file (XML)
that stores the object information and the entered label cor-
responding to each instance. We can now send the G-code
files to our FDM printer to obtain the printed instances. We
also transfer the digital file that stores the object information
to our smartphone to be used later for identification.
Identification Interface (Mobile App + Object Alignment)
At the end of the semester when we update our key inven-
tory, we use the G-ID mobile app on our phone to identify
which of the returned keys belonged to whom. After launch-
ing the app, we first select the model we would like to scan,
i.e., the key cover, from our object library (Figure 4a). The
app then helps us to align the camera image with the object
by showing an outline of the object on the screen, similar to
how check cashing or document scanning apps work (Figure
4b). When the outlines are aligned in this human-in-the-loop
setting, the app automatically captures and processes the im-
age (Figure 4c). It then identifies the features in the photo
associated with the surface-related slicing parameter set-
tings, retrieves the user-assigned label, and shows it on the
screen (Figure 1c). We check off the lab members who re-
turned their keys and send a reminder to everyone else.
Surface & Interior: Detecting Infill Using a Light Source
In the above described scenario, G-ID was able to success-
fully label each instance using only slicing parameters that

affect the object’s surface, such as the initial bottom line
width and angle because the number of instances was small.
However, for scenarios requiring more instances, G-ID can
also sense the interior of objects (infill) at the expense of add-
ing a small light source as described in the next scenario.

For our department’s annual celebration, we are asked to
print a set of 300 coffee mugs as a giveaway. Each coffee
mug, when inserted into a smart coffee machine (camera and
light source below the tray table), automatically fills the mug
with the user’s preferred drink. Similar to the previous sce-
nario, we use G-ID’s labeling interface to generate the in-
stances, but this time G-ID also varies the parameters infill
angle, infill pattern, and infill density once it used up the pa-
rameter combinations available for the surface. As users in-
sert their mug into the smart coffee machine, which has a
stationary setup, the integrated light makes the infill visible
due to the translucent nature of regular PLA 3D printing fil-
ament (Figure 5). G-ID takes a picture, extracts the infill an-
gle, pattern, and density in addition to the previously men-
tioned bottom surface parameters, and after identification,
pours the user’s favorite drink.

SLICING PARAMETERS USED FOR LABELING
In the next section of the paper, we report on the types of
slicing parameters for surface and infill that can be used for
creating unique identifiers.

Figure 4. By adding a light, we can also detect variations in in-
fill, such as different infill angles, patterns, and densities, which
allow for a larger number of instances. Here, the coffee maker
recognizes the mug’s infill and pours the user’s preferred drink.

Figure 5. G-ID mobile app for identifying instances: (a) select
model from library, (b) face the object, (c) once outlines are
aligned, the app automatically takes the image.

Figure 3. G-ID labeling interface: load a 3D model and enter
number of unique instances needed.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 375 Page 4

Surface Parameters
Bottom Surface: Resolution & Angle
When the bottom layer is printed by moving the print head
along a path, two parameters influence how the path on this
first layer is laid out. Initial bottom line width defines the
width of a single line on the bottom surface and thus the re-
sulting resolution. Initial bottom line angle sets the direction
when drawing the lines to construct the surface. Combina-
tions of these two parameters are shown in Figure 6.

Intermediate Layers: Resolution & Angle
It is possible to vary the slicing parameters for the interme-
diate layers in the same way as for the bottom surface. Layer
height when varied leads to different layer thicknesses across
the printed object and thus affects the overall print resolution.
Rotating the 3D model on the build plate leads to different
layer angles across the side surface. Combinations of these
two parameters can be seen in Figure 7.

However, using the slicing parameters for layers comes at
several drawbacks. As can be seen, changing the layer orien-
tation results in a significant increase in print time due to the
extra support material required. Further, changing the layer
resolution can result in a notable difference in print quality
across different instances. We still include it here to provide
a complete overview of all available parameters.
Infill Parameters
Next, we review slicing parameters that change an object’s
internal print path.
Infill: Resolution, Angle, & Pattern
Three parameters influence how the infill is laid out. Infill
line distance determines how much the lines of the infill are
spaced out and thus determines the internal resolution. The
denser the infill lines, the higher the infill density. Infill angle
rotates the infill lines according to the direction specified in
degrees. Different combinations of these two parameters are
shown in Figure 8a. Infill pattern allows for different layouts
of the print path (Figure 8b), such as grid or triangle shapes.

Selecting Parameters that Minimize Print Time & Material
When the user enters the number of instances, G-ID varies
those slicing settings first that have the least amount of im-
pact on print time and required material. For instance, the
bottom line angle does not add any print time, does not
change the resolution, and does not require additional mate-
rial, whereas changing the bottom width changes the resolu-
tion slightly. Infill parameters are varied afterwards since
they affect most layers of the model, starting with the infill
angle, followed by infill pattern and width.
DETECTING & IDENTIFYING SLICING PARAMETERS
To detect these slicing parameters on a 3D print, we apply
common image processing techniques. Our pipeline is im-
plemented using OpenCV and uses SimpleElastix, a state-of-
the-art image registration library [25].
Aligning the Object’s Base in Handheld Camera Images
In the first processing step, G-ID needs to further refine the
position and orientation of the object in the photo the user
has taken to match the outline of the 3D model that was
shown on the screen. For such alignment, most existing tag-
ging approaches include specific shapes with the tags. For
example, QR codes [17] have three square finder patterns
and AirCodes [22] have four circles that are used to align the
image. We did not want to add such markers and therefore
decided to infer the position and orientation of the object
based on the contour of its surface, which G-ID can extract
from the 3D model.
Images Used for Alignment
When the user processes the 3D model in the G-ID labeling
interface, it automatically saves the outline of its base in the
XML file as a binary image (stored as a Base64 string).
When the user loads the XML file in the app, the object ap-
pears in the user’s model library. After choosing the desired
model, the app shows the user the stored outline to assist
them with facing the object from the right angle. The app
automatically captures the image when the contours are
matched (i.e., the bitwise XOR error between the detected
contour and target contour is below an acceptable value).	G-
ID then applies several pre-processing steps, such as apply-
ing a bilateral filter to smooth different color and shade re-
gions without blurring their boundaries.	

Figure 8. Cross-sections of the mug model show (a) different
infill angles and densities, (b) different infill patterns.

Figure 6. Combinations of different line widths and angles.

Figure 7. Different layer angles achieved by rotating the model
at the expense of additional support material and print time (a
vs. b), and various print qualities (b vs. c).

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 375 Page 5

Removing Overhangs
In the next processing step, G-ID removes overhangs, i.e.,
filters out object geometry that is not part of the bottom sur-
face but appears in the image due to the camera angle. G-ID
filters these parts out based on their shading in the camera
image: Since the bottom surface is flat and located at a dif-
ferent height than an overhang, the two surfaces have differ-
ent reflection properties, and thus appear brighter or darker
in the image (Figure 9a). To find the shading of the bottom
surface, G-ID samples a small region of interest to extract the
HSV values to get the corresponding threshold range. G-ID
then uses the threshold to mask the contour.
Reducing Perspective from the Image (Undistorting)
After extracting the contour, G-ID applies an affine transfor-
mation (translation, rotation, scaling, shearing) to compute
the deformation field required for alignment. As input to this
image registration, we use the masked image from the previ-
ous step (converted to a binary outline) as the moving image.
The fixed image is the outline of the 3D model at a constant
scale. While a projective transformation would best rectify
the perspective, it can be approximated by an affine trans-
form since the perspective deviation is minimized due to hu-
man-in-the-loop camera image capturing.

To find the best affine transformation, we use adaptive sto-
chastic gradient descent as the optimizer. As the objective
function, we use mean squares since we work with binary
images, which have little gradient information. The com-
puted parameter map of the affine transformation is then ap-
plied to the image the user has taken to align it with the dig-
ital 3D model outline (Figure 9b).
Detecting Bottom Line Angle and Width
Since the traces of the 3D printed surface have a periodic
layout, we are able to detect their orientation and widths by
looking at the frequency spectrum, i.e., we take the 2D Fou-
rier transform of the image. From this spectrum, we can de-
termine the bottom line angle 𝜃 by extracting the slope of the
line on which the periodic peaks lie (peaks are marked yel-
low in Figure 9c). We can determine the bottom line width d
by casting the intensity values on this inclined line into a 1D
array and computing the distance 𝛥x between the maxima,
which is inversely proportional to d. This approach is more
robust than looking at the original image itself because in
case the lines have irregularities, their distances may be in-
consistent, whereas the Fourier transform acts as a smooth-
ing filter and provides an averaged value.

Error Checking
If the picture the user has taken is of poor quality (out-of-
focus, poor lighting, or accidental shaking of camera), the
lines on the object surface will not be clear enough to extract
correct measurements of parameters. Fortunately, these false
readings can be avoided due to the nature of the 2D Fourier
transform. In the Fourier spectra of digital photos, there is a
strong intensity along the x and y-axis since real-world ob-
jects have many horizontal or vertical features and symme-
tries [38, 48]. If surface lines are not distinguishable, peak
intensities appear on the x and y-axis and therefore errone-
ously result in detection of 0° or 90°. Thus, the detection of
either of these two angles indicates a false reading. There-
fore, we exclude these two values from our allowed slicing
parameter space. Whenever our algorithm detects these two
angles, we notify the user that the image has to be retaken for
correct measurement.
Detecting Infill Angle, Width, and Pattern
To detect the infill parameters, we first remove noise from
the image that is caused by the bottom lines on the surface
(Figure 10). We remove them by (a) increasing the contrast
of the image, (b) blurring the image with a 2D Gaussian
smoothing kernel, and (c) applying adaptive thresholding.

To detect the infill pattern, we compare the resulting shapes
after thresholding to the known infill pattern templates
shown in Figure 10d/e. To determine infill density, we com-
pare the infill templates at different scales to the size of the
shapes in the image, the matching template then indicates the
size of the pattern. Similarly, the infill angle is detected by
rotating the template and finding the angle that gives the
smallest sum of squared difference to shapes in the image.
Since infill is detected in the stationary setup, alignment of

Figure 10. Image processing to extract the components of the
infill pattern: (a) photo, (b) contrast increased, (c) blurred, (d)
binarized, and (e) matched to the template of the respective in-
fill type: grid, triangles, trihexagon from top to bottom.

Figure 9. Image registration & processing pipeline. (a) The captured outline is registered with that of the 3D model model for (b)
improved alignment. (c) Its Fourier transform is used to infer line angle θ and width d. (d) The distance ∆x between intensity peaks
on the inclined line is inversely proportional to d.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 375 Page 6

the base is less of a concern and image registration can either
be simplified or ignored for shorter processing times.
SPACING OF SLICING PARAMETERS
We conducted an experiment to determine which parameter
spacing can be reliably identified using our detection
method. For the experiment, we printed a number of in-
stances with different slicing settings and used our detection
method to identify each pattern. Table 1 summarizes the re-
sults of this experiment under regular office light conditions.
We focus this analysis on the parameters related to bottom
surface and infill, which are seen from the object’s base, and
do not consider those related to the side (intermediate layers).

Table 1: Each slicing parameter’s range (min, max) and incre-
mental spacing values as determined by our experiments. The
last column shows the number of variations that can be realized.
(*2 angles reserved for error checking).

Using the object’s base for identification has many ad-
vantages: (1) it is easier for users to take aligned pictures of
the base since it is flat, (2) it is more time and material effi-
cient to manipulate base-related features since they only af-
fect a single layer and have no influence on the print quality
of the main surface of the object, (3) there are more combi-
nations of identifiable features since both bottom surface and
infill can be seen just from the base, (4) it is convenient to
computationally process a flat surface.

We therefore decided to first focus on the bottom layer and
infill parameters, however, further analysis can be done con-
cerning side surfaces by repeating our experiment.
Selecting 3D Models to Evaluate Parameter Spacings
How finely differences in slicing parameters can be detected
depends on the size of the area of the bottom surface. The
larger the surface, the more features can be used by the algo-
rithm for classification. To determine a spacing of parame-
ters that works well across different 3D models, we used ob-
jects with varying surface areas for our experiment.

To select these objects, we downloaded the top 50 3D models
from Thingiverse [48] and ranked them by their bottom sur-
face area (i.e., the largest square one may inscribe in the con-
tour of the first slice, determined by an automated MATLAB
script). We found that 25 models had a large surface area
(>6cm2), 7 models had a medium surface area (1.2-6cm2),

and 18 models had small surface areas (<1.2cm2). These
ranges were determined empirically based on our initial tests.
We randomly picked one object representing each of these
three categories and printed multiple instances using the pa-
rameters below.
Determining the Range for Each Slicer Setting
Before slicing each of the models with different settings, we
first determined the min and max values for each setting.

Bottom: For the bottom angle, we can use 0°-180°. Going
beyond 180° would cause instances to be non-distinguisha-
ble (i.e., 90° looks the same as 270°). We took the min value
for initial bottom line width as 0.35mm, the default value
recommended in the slicer Cura. Although this parameter
can be as large as twice the nozzle size (2*0.4mm), we limit
the max value to 0.6mm to avoid disconnected lines. For the
pattern settings, which do not have min and max values, we
considered the “line” pattern for the bottom surface.

Infill: As for the infill angle, we can use a range of 0°-60° for
the trihexagon and triangular patterns, and 0°-90° for the
grid pattern, as their layouts are periodic with period 60° and
90°, respectively. For infill line distance (density), we deter-
mined that having infill units smaller than 2.6mm makes the
pattern unrecognizable — we thus used it as the min value.
The max value is 3.2mm for objects with medium base area
but may go up to 8.0mm for larger objects. Going beyond
this value would imply an infill density of less than 10%, and
thus fragile, less stable objects. The three infill pattern (type)
settings do not have min or max values.
Slicing with Different Spacings and Capturing Photos
Next, we used our three selected objects (small, medium,
large), and printed them with different slicing settings. Our
goal was to determine how finely we can subdivide the given
parameter ranges for accurate detection. To find the optimal
spacing for each parameter, we made pairwise comparisons
of two values (e.g., for angles, instance #1: 8° - instance #2:
5°; difference: 3°), while keeping all other parameters con-
stant. Based on 16 pictures taken for each pairwise compari-
son, we report the accuracy at which we can distinguish the
two instances. For the prints with infill variations, we held a
small light source (Nitecore Tini [34]) against the side of the
3D printed object before taking the image.
Results of the Experiments
As expected, objects from the “small” category did not have
sufficient base area to fit in enough infill units and thus not
give satisfactory results. We therefore conclude that G-ID
cannot be used for very small bases and excluded them from
the rest of the analysis. We next discuss the results for each
slicing parameter for the medium and large object category.
Bottom Line Angle & Width
The dashed lines in Figure 11a,b indicate that a spacing of
5° and 0.05 mm provides a classification accuracy of 100%
for both the medium and large base area categories, respec-
tively. Thus, a range of 0°-180° would give us 36 variations
for the angle. However, we exclude the two degrees 0° and

 Min Max Spacing Variations
Bottom:
Angle (°) 0° 180° 5° 36-2=34*
Width (mm) 0.35 0.6 0.05 6
Bottom Total: = 204
Infill:
Angle (°) 0° 60°/90° 5° 12 / 18
Width (mm) 2.6 3.2 0.6 2
Pattern (type) - - - 3
Infill Total: = 84
Total: = 17,136

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 375 Page 7

90° from the bottom line angle range since these are reserved
for error checking (as described in section “Detecting Slicing
Parameters”), therefore we have 34 variations. A range of
0.35-0.6mm allows 36 variations for the width.
Infill Angle & Line Distance (Width)
The dashed lines in Figure 11c,d show that a spacing of
5° and 0.6mm provides a 100% detection accuracy for the
two categories, respectively. Thus, for the ranges of 0°-60°
and 0°-90°, we can use 12 or 18 variations, respectively. For
the width, we can use, for medium objects, a range of 2.6-
3.2mm (2 variations); and for large objects 2.6-8.0mm (10
variations). We report the smaller number in Table 1.
Infill Pattern
The confusion matrix in Figure 12 shows that the “grid” and
“trihexagon” work for both medium and large classes. For
large objects, we can also use all three different patterns.

Total Number of Instances Possible
Based on the results, using a parameter spacing that works
for both medium and large objects, we can achieve a total of
204 instances if we only use the camera, or 17,136 instances
if we use both the camera and light (see Table 1). In compar-
ison to other types of tags, we can say that these parameter
spaces have a larger code capacity than a 1D barcode with 7
or 14 bits, respectively.
Cross-Validation
To cross-validate our parameter spacing, we printed another
random set of 16 objects (10 large, 6 medium) from the same
top 50 model list from Thingiverse (excluding the ones we
used in the previous experiment) with white filament. Before
printing, we randomly assigned each model a combination of
slicing settings from the available parameter space and then
tested if G-ID can identify them. Our second goal was to see
if the parameter spacing still applies when multiple parame-
ters are varied at the same time (our previous experiment
only varied one slicing parameter per instance at a time).
Among the 10 objects with large bottom area, all slicing pa-
rameters were correctly identified. Among the 6 objects from
the medium category, 5 were correctly identified. In total, the

detection accuracy is 93.75%. The falsely identified model
had the smallest bottom surface area (1.4cm2), which con-
firms the fact that objects without sufficient surface area can-
not be recognized.
SYSTEM IMPLEMENTATION
An overview of the system is shown in Figure 13. G-ID’s
labeling interface for creating multiple instances runs on the
browser and is based on WebGL. Once the user drags a 3D
model (.stl) onto the canvas and enters the number of in-
stances, the interface calls its backend written in Python,
which is responsible for the distribution of the slicing param-
eters. Once the slicing parameters are determined for each
individual instance, the backend calls the slicer
CuraEngine [43] to compute the G-code for each instance.

After the instances are sliced with their individual slicer set-
tings, the user is shown the 2D sliced layers as well as the 3D
model. For rendering these previews, we use the JavaScript
library Three.js. Finally, G-ID saves an .XML file with the
slicing parameters, labels and the contour of the object’s base
as an image (created using an automated MATLAB script)
for future identification with the G-ID mobile app.
EVALUATION
Different Materials, Lighting Conditions, Thicknesses
Surface: To see how the filament’s color and different light-
ing affect the detection of surface parameters, we printed six
instances of the key cover with eight different colors of Ulti-
maker PLA filaments (total of 48 instances) and using a dim-
mable LED lamp varied the light in the room from 0 – 500
lux (measured with lux meter Tacklife LM01). We picked
the filament colors to be the primary and secondary colors of
the RYB model, as well as white and black filament. We se-
lected the light intensities to represent different low-light

Figure 11. Detection accuracies vs. parameter spacing between pairs of instances for the four slicing parameters
(bottom line angle & width, as well as infill angle & width). All plots have the same y-range.

Figure 12. Sliced infill patterns vs. detected infill patterns.

Figure 13. System overview.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 375 Page 8

conditions. For slicing, we used surface parameters distrib-
uted evenly along bottom line angle and width within the al-
lowed range from Table 1. The results are shown in Figure
14. All colors worked well for lighting conditions above 250
lux. This shows that our approach works well in classrooms
(recommended light level: 250 lux) [32] and offices/labora-
tories (recommended light level: 500 lux). The results also
show that the camera needs more light to resolve the lines for
lighter colors (i.e., white and yellow) than for darker colors.
Since we used white filament for our parameter spacing eval-
uation, the results in Table 1 work even for worst-case sce-
narios. This also means that for other filament colors, an even
smaller surface area would suffice for correct detection since
the surface details can be better resolved.

Infill: We were able to detect the patterns for all of the afore-
mentioned filament colors except for black due to its opaque
nature. Further, the brighter the light, the thicker the object
base may be: 145 lumens suffice for a base of 1mm (sug-
gested thickness in Cura), 380 lumens suffice for 1.75 mm.
Different 3D Printers
Since G-ID takes as input universal units like millimeters
(width) and degrees (angle), our method extends to FDM
printers other than the one we used for the experiments. To
confirm this, we fabricated six test prints on the 3D printers
Prusa i3 MK3S and Creality CR-10S Pro in addition to the
Ultimaker 3 that we used for our experiments, and inspected
the traces laid down with a microscope. The line widths of
the prints had an average deviation of 9.6𝜇m (Prusa) and
10.7𝜇m (Creality) from the Ultimaker 3 prints. The line an-
gles had an average deviation of 0.5° (Prusa) and 0.25° (Cre-
ality). These deviations are insignificant for our detection
method since the spacing values chosen for the parameters
are much larger than these values. To verify this, we used our
mobile app to take pictures of these samples and ran our al-
gorithm, which correctly detected the unique identifiers.
Camera Distance and Angle
Distance: If the phone is held too far away from the object,
the camera cannot detect the detailed grooves on the surface.
To determine how far the camera can be held from the object,
we took pictures with smartphones of different camera reso-
lutions. We found that the iPhone 5s (8MP) can resolve the
slicing parameter features up to 26cm, Pixel 2 (12.2MP) up
to 36cm, and OnePlus 6 (16MP) up to 40cm. Taking into ac-
count the cameras’ field of view, this means that users can fit
in an object with one dimension as large as 29cm, 45cm, and

52cm, respectively. G-ID guides users into the correct cam-
era distance by varying the size of the object outline dis-
played on the user’s phone for alignment.

Angle: Since our image registration technique uses affine
transformation, it is not able to fully remove the perspective
distortion if the camera angle varies strongly. However, since
our app guides users to align the object, the distortion is neg-
ligible. To show our algorithm can robustly read bottom sur-
face parameters on a variety of shapes, we created a virtual
dataset similar to [28]. We downloaded the first 600 models
from the Thingi10K database [57] that have a rotationally
non-symmetric base of appropriate size, sliced them with a
random set of slicing settings, and rendered the G-codes us-
ing 3D editor Blender. We placed the virtual camera at points
located on a spherical cap above the object base, with 8
evenly sampled azimuthal angles for each of the 5 polar an-
gles. The percentage of shapes read correctly for each polar
angle value θ is given in Table 2. The spacing values chosen
for the parameters act as a buffer to prevent false readings.
The objects for which detection failed at small angles had
rather rounded bases, which makes alignment challenging.

θ 4° 6° 8° 10° 12°
Accuracy 98.50% 94.50% 86.67% 75.00% 64.50%

Table 2: Polar angle θ vs. the percentage of identified objects.

APPLICATION SCENARIOS
Below, we outline three further example scenarios in addi-
tion to the two previously explained applications.

Finding Optimal Print Settings: G-ID can be used to identify
which slicing parameters a particular 3D print was created
with. In Figure 15, a maker is trying to find the best angle for
optimizing mechanical strength, and prints the model multi-
ple times with varying settings. Rather than carefully writing
down which settings were used for which one, the maker can
retrieve a particular setting from a print simply by taking a
picture of it. It is unlikely that they users estimate these set-
tings by eye correctly as seeing tiny differences is not trivial.

User Identification: G-ID can be used to create identifiable
objects that belong to a specific user cheaply and rapidly as
it doesn’t require the user to embed, e.g., an RFID/NFC tag
in a separate step. For instance, in toys-to-life video games,
physical character figurines that carry a G-ID label can be
used to load a player’s identity/score. When users insert their
figurine into the G-ID reader, it communicates the user’s ID
to the game to display their name and score (Figure 16).

Figure 14. Different filament colors vs. minimum illuminance
required to correctly detect the traces on the bottom surface.

Figure 15. Identifying particular print settings with G-ID: (a)
exploring different slicing parameters and (b) printing them, (c)
retrieving the best settings using G-ID.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 375 Page 9

Labeling a Commercial 3D Print for Anti-Counterfeiting:
Online 3D printing services such as 3D Hubs [21] or makexyz
[29] ensure to refund customers if they can show a 3D model
was not printed according to the user’s specifications. By
slicing a model using certain settings and storing this infor-
mation, they can verify that a returned object was indeed fab-
ricated by them before a refund is approved. Let us assume a
3D model is leaked and frauds attempt to print a copy them-
selves and then return that to get a refund (although they
never bought it in the first place). Businesses can use G-ID
to cross-verify the print setting used to create the original.
DISCUSSION & LIMITATIONS
Next, we discuss limitations and future work for labeling and
identifying objects by their slicing parameters.
Other Slicing Parameters
In this work, we focused on surface and infill parameters,
which offer a large number of unique identifiable features.
Other slicing parameters, such as those that create geometry
that is removed after fabrication (e.g., those related to sup-
port material or build plate adhesion) are less suitable.

However, for special materials, such as wood filaments, the
shade of the object’s color can be altered by varying the
speed and temperature, which could be used to create differ-
ences among instances: the hotter/slower the extruder, the
more the wood particles burn and the darker the resulting
surface (Figure 17). However, since the changes affect the
objects appearance, we do not consider them for our work.

Rotational Symmetry of Outlines
Since we use the outline of objects to extract the orientation
of features, objects whose bases are rotationally symmetric
are less suitable for our approach. Thus, the number of iden-
tifiable angles is reduced for certain shapes, e.g., for a square
base, the range narrows down from 0°-180° to 0°-90°.
Non-Flat Side Surfaces
When a camera’s optical axis is parallel to the object’s axis
of rotation on the build plate, the layer traces on a curved
surface appear as straight, parallel lines and the features can
be extracted similarly using Fourier transforms. For that, we
instruct the user to take a picture from the correct viewpoint

(as shown in Figure 18) by generating a silhouette guide of
the object taking into account the camera’s focal length.
Applicability Beyond FDM Printing
FDM and SLA printing have been the most accessible con-
sumer techniques for the last decade. Although SLA
achieves better resolutions, individual layers on objects can
still be distinct (Figure 19). As for DLP printing, the pro-
jected pattern creates rectangular voxels that cause the edges
to look stepped; different voxel sizes thus lead to different
appearances [13]. Most printing methods use infill, so the
general idea of varying infill still applies. We thus think our
method will stay relevant. Even if printing imperfections be-
come smaller in the future, there are two factors to consider:
As 3D printers improve in resolution, camera resolution im-
proves over time (see Samsung’s latest 108MP sensor [43]).
Computer vision gets better too: Neural networks can now
pick up details beyond what the human eye or traditional im-
age processing can detect, e.g., they have been used to iden-
tify tiny defects in solar cells [6] or dents in cars [56].

CONCLUSION & FUTURE WORK
We presented G-ID, a method that utilizes the subtle patterns
left by the 3D printing process to identify objects and that
provides both a labeling and identification interface for cre-
ating and detecting surface and infill parameters using only
a commodity camera. We reported on the code capacity ena-
bled by an off-the-shelf slicer. In the future, this can be scaled
up by building a custom slicer for creating unique print paths
that go beyond what current slicers offer, e.g., spatial pattern
tiling could expand the number of encodings (2 different tiles
would give more than 2042=41,616 combinations). Also, our
current implementation uses optimization-based image reg-
istration, which takes a few seconds. In the future, we can
enable continuous detection for faster image capturing using
optimization-free contour matching methods [9, 10].
ACKNOWLEDGMENTS
We thank Alexandre Kaspar, Liane Makatura, Danielle Pace,
and Jack Forman for the fruitful discussions. This work was
supported in part by NSF Award IIS-1716413. Sriram Subra-
manian is grateful for the ERC Advanced Grant (#787413)
and the RAEng Chairs in Emerging Technology Program.

Figure 18. (a) Model’s axis of rotation is orthogonal to the im-
age plane of the virtual camera, (b) rendered target outline for
the user to align model, (c) image has parallel traces.

Figure 17. The hotter the nozzle, the darker the print’s finish.

Figure 16. (a) Toys-to-life figurines are used to identify the
player and display their info in the video game.

Figure 19. Formlabs SLA print captured by a phone camera.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 375 Page 10

REFERENCES
[1] Marc Alexa, Kristian Hildebrand, and Sylvain

Lefebvre. 2017. Optimal discrete slicing. ACM Trans.
Graph. 36, 1. https://doi.org/10.1145/2999536

[2] Daniel G. Aliaga and Mikhail J. Atallah. 2009. Genu-
inity signatures: Designing signatures for verifying 3D
object genuinity. Computer Graphics Forum 28, 2:
437–446. https://doi.org/10.1111/j.1467-
8659.2009.01383.x

[3] Vahid Babaei, Kiril Vidimče, Michael Foshey, Alexan-
dre Kaspar, Piotr Didyk, and Wojciech Matusik. 2017.
Color contoning for 3D printing. ACM Trans. Graph.
36, 4: 124:1–124:15.
https://doi.org/10.1145/3072959.3073605

[4] Patrick Baudisch and Stefanie Mueller. 2017. Personal
fabrication. Foundations and Trends in Human-Com-
puter Interaction 10, 3-4: 165–293.
https://doi.org/10.1561/1100000055

[5] Fei Chen, Yuxi Luo, Nektarios Georgios Tsoutsos,
Michail Maniatakos, Khaled Shahin, and Nikhil Gupta.
2018. Embedding tracking codes in additive manufac-
tured parts for product authentication. Advanced Engi-
neering Materials 0, 0: 1800495.
https://doi.org/10.1002/adem.201800495

[6] Haiyong Chen, Yue Pang, Qidi Hu, and Kun Liu.
2018b. Solar Cell Surface Defect Inspection Based on
Multispectral Convolutional Neural Network. Journal
of Intelligent Manufacturing (12 2018), 1–16.

[7] Hung-Kuo Chu, Chia-Sheng Chang, Ruen-Rone Lee,
and Niloy J. Mitra. 2013. Halftone QR codes. ACM
Trans. Graph. 32, 6: 217:1–217:8.
https://doi.org/10.1145/2508363.2508408

[8] Adam Dachowicz, Siva Chaitanya Chaduvula, Mikhail
Atallah, and Jitesh H. Panchal. 2017. Microstructure-
based counterfeit detection in metal part manufactur-
ing. JOM 69, 11: 2390–2396.
https://doi.org/10.1007/s11837-017-2502-8

[9] Csaba Domokos and Zoltan Kato. 2010. Parametric es-
timation of affine deformations of planar shapes. Pat-
tern Recogn. 43, 3 (March 2010), 569-578.
http://dx.doi.org/10.1016/j.patcog.2009.08.013

[10] Csaba Domokos and Zoltan Kato. 2012. Simultaneous
affine registration of multiple shapes. In 21st Interna-
tional Conference on Pattern Recognition (ICPR).
IEEE Computer Society, Los Alamitos, CA, 9–12

[11] M. Fiala. 2005. ARTag, a fiducial marker system using
digital techniques. In 2005 IEEE computer society con-
ference on computer vision and pattern recognition
(cvpr’05), 590–596 vol. 2.
https://doi.org/10.1109/CVPR.2005.74

[12] Paul Filiatrault. 2009. Does colour-coded labelling re-
duce the risk of medication errors? Canadian Journal

of Hospital Pharmacy 62, 2: 154–155.
https://doi.org/10.4212/cjhp.v62i2.446

[13] Formlabs. SLA vs. DLP. https://formlabs.com/blog/3d-
printing-technology-comparison-sla-dlp/

[14] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and
Srinivas Devadas. 2002. Silicon physical random func-
tions. In Proceedings of the 9th ACM conference on
computer and communications security (CCS ’02),
148–160. https://doi.org/10.1145/586110.586132

[15] Tony Hall and Liam Bannon. 2005. Designing ubiqui-
tous computing to enhance children’s interaction in
museums. In Proceedings of the 2005 conference on
interaction design and children (IDC ’05), 62–69.
https://doi.org/10.1145/1109540.1109549

[16] Chris Harrison, Robert Xiao, and Scott Hudson. 2012.
Acoustic barcodes: Passive, durable and inexpensive
notched identification tags. In Proceedings of the 25th
annual ACM symposium on user interface software
and technology (UIST ’12), 563–568.
https://doi.org/10.1145/2380116.2380187

[17] Liang He, Gierad Laput, Eric Brockmeyer, and Jon E.
Froehlich. 2017. SqueezaPulse: Adding interactive in-
put to fabricated objects using corrugated tubes and air
pulses. In Proceedings of the eleventh international
conference on tangible, embedded, and embodied in-
teraction (TEI ’17), 341–350.
https://doi.org/10.1145/3024969.3024976

[18] J. Hou, D. Kim, and H. Lee. 2017. Blind 3D mesh wa-
termarking for 3D printed model by analyzing layering
artifact. IEEE Transactions on Information Forensics
and Security 12, 11: 2712–2725.
https://doi.org/10.1109/TIFS.2017.2718482

[19] Jong-Uk Hou, Do-Gon Kim, Sunghee Choi, and
Heung-Kyu Lee. 2015. 3D print-scan resilient water-
marking using a histogram-based circular shift coding
structure. In Proceedings of the 3rd ACM workshop on
information hiding and multimedia security,115–121.
https://doi.org/10.1145/2756601.2756607

[20] Meng-Ju Hsieh, Rong-Hao Liang, Da-Yuan Huang,
Jheng-You Ke, and Bing-Yu Chen. 2018. RFIBricks:
Interactive building blocks based on RFID. In Pro-
ceedings of the 2018 CHI conference on human factors
in computing systems (CHI ’18), 189:1–189:10.
https://doi.org/10.1145/3173574.3173763

[21] 3D Hubs. https://www.3dhubs.com/
[22] Z. C. Kennedy, D. E. Stephenson, J. F. Christ, T. R.

Pope, B. W. Arey, C. A. Barrett, and M. G. Warner.
2017. Enhanced anti-counterfeiting measures for addi-
tive manufacturing: Coupling lanthanide nanomaterial
chemical signatures with blockchain technology. J.
Mater. Chem. C 5, 37: 9570–9578.
https://doi.org/10.1039/C7TC03348F

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 375 Page 11

[23] Ryosuke Kikuchi, Sora Yoshikawa, Pradeep Kumar
Jayaraman, Jianmin Zheng, and Takashi Maekawa.
2018. Embedding QR codes onto b-spline surfaces for
3D printing. Computer-Aided Design 102: 215–223.
https://doi.org/10.1016/j.cad.2018.04.025

[24] Yuki Kubo, Kana Eguchi, Ryosuke Aoki, Shigekuni
Kondo, Shozo Azuma, and Takuya Indo. 2019. Fa-
bAuth: Printed objects identification using resonant
properties of their inner structures. In Extended Ab-
stracts of the 2019 CHI conference on human factors
in computing systems (CHI EA ’19), LBW2215:1–
LBW2215:6.
https://doi.org/10.1145/3290607.3313005

[25] Dingzeyu Li, David I. W. Levin, Wojciech Matusik,
and Changxi Zheng. 2016. Acoustic voxels: Computa-
tional optimization of modular acoustic filters. ACM
Trans. Graph. 35, 4: 88:1–88:12.
https://doi.org/10.1145/2897824.2925960

[26] Dingzeyu Li, Avinash S. Nair, Shree K. Nayar, and
Changxi Zheng. 2017. AirCode: Unobtrusive physical
tags for digital fabrication. In Proceedings of the 30th
annual ACM symposium on user interface software
and technology (UIST ’17), 449–460.
https://doi.org/10.1145/3126594.3126635

[27] Zhengxiong Li, Aditya Singh Rathore, Chen Song,
Sheng Wei, Yanzhi Wang, and Wenyao Xu. 2018.
PrinTracker: Fingerprinting 3D printers using com-
modity scanners. In Proceedings of the 2018 ACM sig-
sac conference on computer and communications secu-
rity (CCS ’18), 1306–1323.
https://doi.org/10.1145/3243734.3243735

[28] Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and
Changxi Zheng. 2019. LayerCode: Optical barcodes
for 3D printed shapes. ACM Trans. Graph. 38, 4:
112:1–112:14.
https://doi.org/10.1145/3306346.3322960

[29] Makexyz, LLC. https://www.makexyz.com/
[30] Kasper Marstal, Floris F. Berendsen, Marius Staring,

and Stefan Klein. 2016. SimpleElastix: A user-
friendly, multi-lingual library for medical image regis-
tration. 2016 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW): 574–
582.

[31] A. Mittal. 2017. Generating visually appealing QR
codes using colour image embedding. The Imaging
Science Journal 65, 1: 1–13.
https://doi.org/10.1080/13682199.2016.1241941

[32] National Optical Astronomy Observatory (NOAO).
Recommended light levels (illuminance) for outdoor
and indoor venues. Association of Universities for Re-
search in Astronomy. Retrieved from
https://www.noao.edu/education/QLT-
kit/ACTIVITY_Documents/Safety/LightLevels_outdo
or indoor.pdf

[33] Nintendo Amiibo. Retrieved from https://www.nin-
tendo.com/amiibo/

[34] NiteCore Tini. Retrieved from https://flashlight.ni-
tecore.com/product/tini

[35] Fei Peng, Jing Yang, Zi-Xing Lin, and Min Long.
2019. Source identification of 3D printed objects based
on inherent equipment distortion. Computers & Secu-
rity 82: 173–183.
https://doi.org/http://doi.org/10.1016/j.cose.2018.12.01
5

[36] Siyuan Qiao, Xiaoxin Fang, Bin Sheng, Wen Wu, and
Enhua Wu. 2015. Structure-aware QR code abstrac-
tion. Vis. Comput. 31, 6-8: 1123–1133.
https://doi.org/10.1007/s00371-015-1107-x.

[37] Tim Reiner, Nathan Carr, Radomír Měch, Ondřej
Št’ava, Carsten Dachsbacher, and Gavin Miller. 2014.
Dual-color mixing for fused deposition modeling print-
ers. Comput. Graph. Forum 33, 2: 479–486.
https://doi.org/10.1111/cgf.12319

[38] M. S. Rzeszotarski, F. L. Royer, and G. C. Gilmore.
1983. Introduction to two-dimensional Fourier analy-
sis. Behavior Research Methods & Instrumentation 15,
2: 308–318. https://doi.org/10.3758/BF03203566

[39] Martin Schmitz, Martin Herbers, Niloofar Dezfuli, Se-
bastian Günther, and Max Mühlhäuser. 2018. Off-line
sensing: Memorizing interactions in passive 3D-
printed objects. In Proceedings of the 2018 chi confer-
ence on human factors in computing systems (CHI
’18), 182:1–182:8.
https://doi.org/10.1145/3173574.3173756

[40] Ruchir Y Shah, Prajesh N Prajapati, and Y K Agrawal.
2010. Anticounterfeit packaging technologies. Journal
of Advanced Pharmaceutical Technology & Research
1, 4: 368–373. https://doi.org/10.4103/0110-
5558.76434

[41] Lei Shi, Idan Zelzer, Catherine Feng, and Shiri Azen-
kot. 2016. Tickers and talker: An accessible labeling
toolkit for 3D printed models. In Proceedings of the
2016 chi conference on human factors in computing
systems (CHI ’16), 4896–4907.
https://doi.org/10.1145/2858036.2858507

[42] Piyarat Silapasuphakornwong, Masahiro Suzuki, Hiro-
shi Unno, Hideyuki Torii, Kazutake Uehira, and
Youichi Takashima. 2016. Nondestructive readout of
copyright information embedded in objects fabricated
with 3-d printers. In Digital-forensics and watermark-
ing, 232–238.

[43] Samsung ISOCELL Bright HMX. https://www.sam-
sung.com/semiconductor/image-sensor/mobile-image-
sensor/S5KHMX/

[44] Chen Song, Zhengxiong Li, Wenyao Xu, Chi Zhou,
Zhanpeng Jin, and Kui Ren. 2018. My smartphone rec-
ognizes genuine QR codes!: Practical unclonable qr

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 375 Page 12

code via 3D printing. Proc. ACM Interact. Mob. Wear-
able Ubiquitous Technol. 2, 2: 83:1–83:20.
https://doi.org/10.1145/3214286

[45] Hai-Chuan Song and Sylvain Lefebvre. 2017. Colored
fused filament fabrication. CoRR abs/1709.09689. Re-
trieved from http://arxiv.org/abs/1709.09689

[46] Andrew Spielberg, Alanson Sample, Scott E. Hudson,
Jennifer Mankoff, and James McCann. 2016. RapID:
A framework for fabricating low-latency interactive
objects with RFID tags. In Proceedings of the 2016 chi
conference on human factors in computing systems
(CHI ’16), 5897–5908.
https://doi.org/10.1145/2858036.2858243

[47] Carlos Tejada, Osamu Fujimoto, Zhiyuan Li, and Dan-
iel Ashbrook. 2018. Blowhole: Blowing-activated tags
for interactive 3D-printed models. In Proceedings of
graphics interface 2018 (GI 2018), 131–137.
https://doi.org/10.20380/GI2018.18

[48] Thingiverse. https://www.thingiverse.com/
[49] Rachel Thomas. 2017. Fourier transforms of images.

Plus. Retrieved from https://plus.maths.org/con-
tent/fourier-transforms-images

[50] Kazutake Uehira, Masahiro Suzuki, Piyarat Silapasu-
phakornwong, Hideyuki Torii, and Youichi Ta-
kashima. 2017. Copyright protection for 3D printing
by embedding information inside 3D-printed objects.
In Digital forensics and watermarking, 370–378.

[51] Ultimaker. 2019. CuraEngine. GitHub. Retrieved from
https://github.com/Ultimaker/CuraEngine

[52] Ingrid Verbauwhede and Roel Maes. 2011. Physically
unclonable functions: Manufacturing variability as an

unclonable device identifier. In Proceedings of the 21st
edition of the great lakes symposium on great lakes
symposium on VLSI (GLSVLSI ’11), 455–460.
https://doi.org/10.1145/1973009.1973111

[53] Karl D. D. Willis and Andrew D. Wilson. 2013. Infra-
Structs: Fabricating information inside physical objects
for imaging in the terahertz region. ACM Trans.
Graph. 32, 4: 138:1–138:10.
https://doi.org/10.1145/2461912.2461936

[54] Zhe Yang, Yuting Bao, Chuhao Luo, Xingya Zhao,
Siyu Zhu, Chunyi Peng, Yunxin Liu, and Xinbing
Wang. 2016. ARTcode: Preserve art and code in any
image. In Proceedings of the 2016 ACM international
joint conference on pervasive and ubiquitous compu-
ting (UbiComp ’16), 904–915.
https://doi.org/10.1145/2971648.2971733

[55] Nikoleta Yiannoutsou, Ioanna Papadimitriou, Vassilis
Komis, and Nikolaos Avouris. 2009. “Playing with”
museum exhibits: Designing educational games medi-
ated by mobile technology. In Proceedings of the 8th
international conference on interaction design and
children (IDC ’09), 230–233.
https://doi.org/10.1145/1551788.1551837

[56] Qinbang Zhou, Renwen Chen, Huang Bin, Chuan Liu,
Jie Yu, and Xiaoqing Yu. 2019. An Automatic Surface
Defect Inspection System for Automobiles Using Ma-
chine Vision Methods. Sensors 19 (02 2019), 644.

[57] Qingnan Zhou and Alec Jacobson. 2016. Thingi10K:
A Dataset of 10,000 3D-Printing Models. arXiv pre-
print arXiv:1605.04797 (2016).

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 375 Page 13

