
1. Discussion
We discuss the design of our video editing system; in

particular, the motivation behind designing the video mesh
data structure, and why we chose particular components.
We then describe the user interactions needed to create each
of the examples.

1.1. System design

The primary motivation for the design of the video mesh
is the desire for a flexible, user-assisted system for manipu-
lating video in 3D. Our system is designed to let users work
on a single frame at a time (c.f . Video Cubes [4]) and have
their edits automatically propagate to nearby frames while
maintaining control over the process. Keeping frames in-
dependent also dramatically simplifies our implementation
of undo, which is critical in an interactive editing setting.
At places, our system relies on a number of existing al-
gorithms. Our choice of these off-the-shelf components is
driven primarily by the ability to provide a simple user in-
terface for controlling their output.

For motion analysis, we prefer point tracking to opti-
cal flow because dense motion fields are difficult to inter-
pret and edit. In contrast, point tracking gives users only a
handful of controls to manipulate. Our current implemen-
tation is based on RealVIZ MatchMover [3], which pro-
vides an automatic point tracking algorithm which is also
user-controllable: users can place hard constraints and the
algorithm optimizes for a smooth path satisfying the con-
straints. For depth estimation, our system uses structure-
from-motion [1] to recover sparse depth estimates instead
of stereo disparity maps, which, like optical flow, can be
difficult to edit. In our system, depth inference is weak-
est on scenes with independently moving articulated bodies
(for example, the Copier sequence). We let the user correct
any misregistrations by constraining the shared vertices and
camera path. Finally, for decomposing textures, we find that
the default settings for published matting algorithms [2, 5]
have difficulties with the large number of hard edges found
in real scenes (for instance, the Colonnade and Copier ex-
amples). We address this issue by providing a spatially
varying hardness weight along each spline, going from hard
binary masking to soft matting.

1.2. User interaction

This section discusses the user interactions used to cre-
ate each of the examples in the companion video. The work-
flow typically begins with first estimating motion and topol-
ogy with the tracking and spline tools. The next step is com-
puting the depth using one of our depth recovery operators,
which yields a rough but complete video mesh upon which
the various effects can be directly applied. We stress that
the editing process is iterative: the user is free at any point

to go back and correct any mistakes. For instance, if we
discover, after drawing splines and computing depth, that
a vertex has drifted, the user can simply drag the vertex to
the correct location. Our system automatically updates the
mesh in the background. The ratio of time spent between
the various tools is scene dependent. We found that the ma-
jority of user time was spent tracking points and manipulat-
ing splines. Once the basic topology is complete, estimat-
ing depth and creating the various effects took only a small
fraction of the time.

The Soda sequence in the companion video demonstrates
the basic interactions used to create a video mesh. An ex-
pert user first spent roughly 5 minutes tracking points. With
the actor’s highly textured shirt, the process was mostly au-
tomatic and the majority of the user’s time was spent cor-
recting tracks near occlusion boundaries and adding a few
extra vertices to ensure a uniform density of points. In the
next step, the user spent approximately 10 minutes labeling
the occlusion boundaries with splines. Although temporally
propagating splines is mostly automatic in this sequence
with smooth motion, the video does contain a number of
changes in topology which necessitated user intervention.
As shown in the video, in the next step, the user pulls on a
few vertices in the mesh to turn the actor into a paper cutout.
Finally, to complete the video mesh, the user spent another
5 minutes adjusting various matting parameters to ensure a
consistent boundary in the video. Once the video mesh is
complete, we could change the camera’s position, aperture,
and focus plane as shown in the video by mapping them to
various mouse gestures. To create the smoke effect, we im-
ported 10 copies of a precomputed smoke simulation video
and scaled and positioned the layers in 3D.

The Colonnade sequence turned out to be our most chal-
lenging example. Even though the actor’s motion was sim-
ple, it proved problematic for the point tracker because his
pants and face had virtually no texture. Moreover, due
to the change in mesh topology each time the actor’s legs
crossed during his walk cycle, the automatic spline propa-
gation had to be restarted approximately every 20 frames.
Overall, the user spent about 20 minutes tracking 42 points
on the actor and 25 minutes adjusting splines. Like the pre-
vious example, once the mesh is complete, creating the ef-
fects was straightforward and demonstrated in real time in
the companion video. Selecting the actor in space-time is
trivial because he forms a single connected component in
the video mesh. In our interface, once a component is se-
lected for copying, the user can interactively drag and drop
to choose the destination, optionally applying a temporal
offset to decorrelate the movement, or a flip to let the video
play backward. We also found that snapping the lowest
pixel of object to the triangle under the cursor to be a use-
ful tool. Similar to copy/paste, our interface lets the user
point and click to place a light source for relighting. The



companion video demonstrates space-time copy-paste, in-
teractive post-exposure camera control, and relighting.

The Copier sequence was our most fully automated se-
quence. We first automatically tracked points in the se-
quence, manually adding only a handful of points. Next,
the user lassoed the points on the lid of the copier on one
frame, exporting the set of tracks to Boujou for structure-
from-motion estimation. The process was repeated for the
chassis of the copier. After recovering two sets of 3D points
and camera paths, we register them together by enforcing
the camera paths to be the same. Tracking and 3D esti-
mation only took about 5 minutes. Since the topology is
relatively simple, the user only spent 5 minutes cutting the
copier out of the background. Most of the time was spent
converting spline control points from “smooth” to “corner”
to respect the sharp geometry. Finally, less than one minute
was spent enforcing lines in the mesh which correspond to
straight segments in the scene: the user clicks on two ver-
tices to create a segment that lasts through the entire se-
quence. Like the Colonnade sequence, once we had a com-
plete video mesh, we composited multiple copies of the ac-
tor onto the glass of the copier by transforming a compo-
nent of another video mesh in space and time. In this case,
we keyframed the character’s transparency so he smoothly
comes into view. The companion video demonstrates inter-
active viewpoint control while the video plays.

In contrast to the Colonnade sequence where the camera
was also stationary, our system worked well on the Notre
Dame sequence despite its complex geometry. Automatic
tracking was accurate on the boat since it had a smooth tra-
jectory and a moderately textured surface. Modeling the
geometry was straightforward: splines separated the scene
components over which the facades were applied. The only
difficulty we encountered was due to the relatively large z-
range compared to image resolution, where a small error in
the placement of a modeling facade may result in a large
distortion in depth. Overall, the video mesh took the au-
thors roughly 20 minutes to create: about 10 minutes for
tracking and rotoscoping the boat and 10 minutes for depth
modeling. The companion video shows the quality of the
recovered depth map and shows a large viewpoint change
by moving the camera onto the boat as it sails down river.

2. Tiled Texture

Figure 1 illustrates how our tiled texture allocator works
when an initially flat video mesh is fully cut by a boundary
spline.

Tile x Tile y

0
B

1
B

2
B

3
B

4
B

5
B

6
B

7
B

8
B

9
B

0
F

1
F

2
F

3
F

4
F

5
F

6
F

7
F

8
F

9
F

Input mesh and spline Tiled textures after cutting

z = 0

z = 1

z = 2

z = 3

Cut

0 1 2 3 4
56789

Tile x Tile y

Alloc
tiles

Alloc
tiles

Alloc
tiles

Alloc
tiles

Background mesh

0
B

1
B

2
B

3
B

4
B

5
B

6
B

7
B

8
B

9
B

Foreground mesh

0
B

1
B

2
B

3
B

4
B

5
B

6
B

7
B

8
B

9
B

Figure 1. Left: An initially flat video mesh falls into two over-
lapping texture tiles x and y. Cutting the mesh with the spline
results in a foreground and background mesh. Note how vertices
in the interior are disconnected. Right: Texture allocation after
cutting. Our implementation allocates space for the background
mesh first, in the direction of the spline. Triangles 0B and 1B
overlap the tile boundary and are assigned to both tiles. After allo-
cating 0B . . . 6B , because the interior edges are disconnected, 7B
through 9B are assigned to a new tile. We then allocate 0F , which
also needs a new tile since they do not share any edges with the
triangles at levels z = 0 and z = 1.

References
[1] 2d3. boujou 4.1, 2008. http://www.2d3.com/.
[2] A. Levin, D. Lischinski, and Y. Weiss. A Closed Form Solu-

tion to Natural Image Matting. CVPR 2006.
[3] RealVIZ Corporation. RealVIZ MatchMover. http://

sfx.realviz.com/products/mpro/index.php,
2007.

[4] J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F. Co-
hen. Interactive video cutout. SIGGRAPH 2005.

[5] J. Wang and M. Cohen. Optimized color sampling for robust
matting. In CVPR 2007.

http://www.2d3.com/
http://sfx.realviz.com/products/mpro/index.php
http://sfx.realviz.com/products/mpro/index.php

