
The Video Mesh: A Data Structure
for Image-based Three-dimensional Video Editing

Jiawen Chen
MIT CSAIL

Sylvain Paris
Adobe Systems, Inc.

Jue Wang
Adobe Systems, Inc.

Wojciech Matusik
MIT CSAIL∗

Michael Cohen
Microsoft Research

Frédo Durand
MIT CSAIL

Abstract

This paper introduces the video mesh, a data structure
for representing video as 2.5D “paper cutouts.” The video
mesh allows interactive editing of moving objects and mod-
eling of depth, which enables 3D effects and post-exposure
camera control. The video mesh sparsely encodes optical
flow as well as depth, and handles occlusion using local
layering and alpha mattes. Motion is described by a sparse
set of points tracked over time. Each point also stores a
depth value. The video mesh is a triangulation over this
point set and per-pixel information is obtained by interpo-
lation. The user rotoscopes occluding contours and we in-
troduce an algorithm to cut the video mesh along them. Ob-
ject boundaries are refined with per-pixel alpha values. The
video mesh is at its core a set of texture mapped triangles,
we leverage graphics hardware to enable interactive edit-
ing and rendering of a variety of effects. We demonstrate
the effectiveness of our representation with special effects
such as 3D viewpoint changes, object insertion, depth-of-
field manipulation, and 2D to 3D video conversion.

1. Introduction
We introduce the video mesh, a new representation that

encodes the motion, layering, and 3D structure of a video
sequence in a unified data structure. The video mesh can be
viewed as a 2.5D “paper cutout” model of the world. For
each frame of a video sequence, the video mesh is com-
posed of a triangle mesh together with texture and alpha
(transparency). Depth information is encoded with a per-
vertex z coordinate, while motion is handled by linking ver-
tices in time (for example, based on feature tracking). The
mesh can be cut along occlusion boundaries and alpha mat-
tes enable the fine treatment of partial occlusion. It supports
a more general model of visibility than traditional layer-
based methods [37] and can handle self-occlusions within
an object such as the actor arm’s in front of his body in

∗The majority of the work was done while an employee at Adobe.

our companion video. The per-vertex storage of depth and
the rich occlusion representation make it possible to extend
image-based modeling into the time dimension. Finally, the
video mesh is based on texture-mapped triangles to enable
fast processing on graphics hardware.

We leverage a number of existing computational pho-
tography techniques to provide user-assisted tools for the
creation of a video mesh from an input video. Feature
tracking provides motion information. Rotoscoping [2] and
matting (e.g., [6, 18, 36]) enable fine handling of occlusion.
A combination of structure-from-motion [11] and interac-
tive image-based modeling [14,23] permit a semi-automatic
method for estimating depth. The video mesh enables a va-
riety of video editing tasks such as changing the 3D view-
point, occlusion-aware compositing, 3D object manipula-
tion, depth-of-field manipulation, conversion of video from
2D to 3D, and relighting. This paper makes the following
contributions:
• The video mesh, a sparse data structure for representing
motion and depth in video that models the world as “paper
cutouts.”
• Algorithms for constructing video meshes and manipu-
lating their topology. In particular, we introduce a robust
mesh cutting algorithm that can handle arbitrarily complex
occlusions in general video sequences.
• Video-based modeling tools for augmenting the structure
of a video mesh, enabling a variety of novel special effects.

1.1. Related work

Mesh-based video processing Meshes have long been
used in video processing for tracking, motion compensa-
tion, animation, and compression. The Particle Video sys-
tem [26], uses a triangle mesh to regularize the motion of
tracked features. Video compression algorithms [5] use
meshes to sparsely encode motion. These methods are de-
signed for motion compensation and handle visibility by re-
sampling and remeshing along occlusion boundaries. They
typically do not support self-occlusions. In contrast, our
work focuses on using meshes as the central data struc-
ture used for editing. In order to handle arbitrary video se-

1



quences, we need a general representation that can encode
the complex occlusion relationships in a video. The video
mesh decouples the complexity of visibility from that of the
mesh by encoding it with a locally dense alpha map. It has
the added benefit of handling partial coverage and sub-pixel
effects.
Motion description Motion in video can be described by
its dense optical flow, e.g. [13]. We have opted for a sparser
treatment of motion based on feature tracking, e.g. [21,28].
We find feature tracking more robust and easier to correct
by a user. Feature tracking is also much cheaper to compute
and per-vertex data is easier to process on GPUs.
Video representations The video mesh builds upon and
extends layer-based video representations [1, 37], video
cube segmentation [35], and video cutouts [20]. Commer-
cial packages use stacks of layers to represent and compos-
ite objects. However, these layers remain flat and cannot
handle self-occlusions within a layer such as when an ac-
tor’s arm occludes his body. Similarly, although the video
cube and video cutout systems provide a simple method for
extracting objects in space-time, to handle self-occlusions,
they must cut the object at an arbitrary location. The
video mesh leverages user-assisted rotoscoping [2] and mat-
ting [6,18,36] to extract general scene components without
arbitrary cuts.

Background collection and mosaicing can be used to cre-
ate compound representations, e.g., [15,32]. Recently, Rav-
Acha et al. [25] introduced Unwrap Mosaics to represent
object texture and occlusions without 3D geometry. High
accuracy is achieved through a sophisticated optimization
scheme that runs for several hours. In comparison, the video
mesh outputs coarse results with little precomputation and
provides tools that let the user interactively refine the re-
sult. Unwrap Mosaics are also limited to objects with a
disc topology whereas the video mesh handles more gen-
eral scenes.
Image-based modeling and rendering We take advan-
tage of existing image-based modeling techniques to spec-
ify depth information at vertices of the video mesh. In par-
ticular, we adapt a number of single-view modeling tools
to video [14, 23, 39]. We are also inspired by the Video
Trace technique [34] which uses video as an input to inter-
actively model static objects. We show how structure-from-
motion [11] can be applied selectively to sub-parts of the
video to handle piecewise-rigid motion which are common
with everyday objects. We also present a simple method
that propagates depth constraints in space.
Stereo video Recent multi-view algorithms are able to au-
tomatically recover depth in complex scenes from video se-
quences [27]. However, these techniques require camera
motion and may have difficulties with non-Lambertian ma-
terials and moving objects. Zhang et al. demonstrate how
to perform a number of video special effects [38] using

depth maps estimated using multi-view stereo. Recent work
by Guttman et al. [10] provides an interface to recovering
video depth maps from user scribbles. The video mesh is
complementary to these methods. We can use depth maps
to initialize the 3D geometry and our modeling tools to ad-
dress challenging cases such as scenes with moving objects.

By representing the scene as 2.5D paper cutouts, video
meshes enable the conversion of video into stereoscopic 3D
by re-rendering the mesh from two viewpoints. A number
of commercial packages are available for processing con-
tent filmed in with a stereo setup [24, 33]. These prod-
ucts extend traditional digital post-processing to handle 3D
video with features such as correcting small misalignments
in the stereo rig, disparity map estimation, and inpaint-
ing. The video mesh representation would enable a broader
range of effects while relying mostly on the same user input
for its construction. Recent work by Koppal et al. [17], de-
scribes a pre-visualization system for 3D movies that helps
cinematographers plan their final shot from draft footage.
In comparison, our approach aims to edit the video directly.

2. The video mesh data structure

We begin by describing the properties of the video mesh
data structure and illustrate how it represents motion and
depth in the simple case of a smoothly moving scene with
no occlusions. In this simplest form, it is similar to mor-
phing techniques that rely on triangular meshes and tex-
ture mapping [9]. We then augment the structure to han-
dle occlusions, and in particular self-occlusions that cannot
be represented by layers without artificial cuts. Our gen-
eral occlusion representation simplifies a number of editing
tasks. For efficient image data storage and management, we
describe a tile-based representation for texture and trans-
parency. Finally, we show how a video mesh is rendered.

2.1. A triangular mesh

Vertices The video mesh encodes depth and motion infor-
mation at a sparse set of vertices, which are typically ob-
tained from feature tracking. Vertices are linked through
time to form tracks. A vertex stores its position in the orig-
inal video, which is used to reference textures that store the
pixel values and alpha. The current position of a vertex can
be modified for editing purposes (e.g. to perform motion
magnification [21]), and we store it in a separate field. Ver-
tices also have a continuous depth value which can be edited
using a number of tools, described in Section 3.2. Depth in-
formation is encoded with respect to a camera matrix that is
specified per frame.
Faces We use a Delaunay triangulation over each frame to
define the faces of the video mesh. Each triangle is texture-
mapped using the pixel values from the original video, with
texture coordinates defined by the original position of its



vertices. The textures can be edited to enable various video
painting and compositing effects. Each face references a list
of texture tiles to enable the treatment of multiple layers.

The triangulations of consecutive frames are mostly in-
dependent. While it is desirable that the topology be as
similar as possible between frames to generate a continu-
ous motion field, this is not a strict requirement. We only
require vertices, not faces, to be linked in time. The user
can force edges to appear in the triangulation by adding line
constraints. For instance, we can ensure that a building is
accurately represented by the video mesh by aligning the
triangulation with its contours.
Motion For illustration, consider a simple manipulation
such as motion magnification [21]. One starts by track-
ing features over time. For this example, we assume that
all tracks last the entire video sequence and that there is no
occlusion. Each frame is then triangulated to create faces.
The velocity of a vertex can be accessed by querying its
successor and predecessor and taking the difference. A sim-
ple scaling of displacement [21] yields the new position of
each vertex. The final image for a given frame is obtained
by rendering each triangle with the vertices at the new lo-
cation but with texture coordinates at the original position,
indexing the original frames. This is essentially equivalent
to triangulation-based morphing [9].

2.2. Occlusion

Real-world scenes have occlusions, which are always the
most challenging aspect of motion treatment. Furthermore,
vertex tracks can appear or disappear over time because of,
for instance, occlusion or loss of contrast. The video mesh
handles these cases by introducing virtual vertices and du-
plicating triangles to store information for both foreground
and background parts.

Consider first the case of vertices that appear or disap-
pear over time. Since we rely on the predecessor and suc-
cessor to extract motion information, we introduce temporal
virtual vertices at both ends of a vertex track. Like normal
vertices, they store a position, which is usually extrapolated
from adjacent frames but can also be fine-tuned by the user.

Real scenes also contain spatial occlusion boundaries. In
mesh-based interpolation approaches, a triangle that over-
laps two scene objects with different motions yields arti-
facts when motion is interpolated. While these artifacts can
be reduced by refining the triangulation to closely follow
edges, e.g., [5], this solution can significantly increase geo-
metric complexity and does not handle soft boundaries. In-
stead, we take an approach inspired by work in mesh-based
physical simulation [22]. At occlusion boundaries, where a
triangle partially overlaps both foreground and background
layers, we duplicate the face into foreground and back-
ground copies, and add spatial virtual vertices to complete
the topology. To resolve per-pixel coverage, we compute a

FOREGROUND

frame and mesh

BACKGROUND

alpha matte

color mapcolor map

alpha matte

node type and depth
virtual (z = 1)

virtual
(z = 1)

virtual
(z = 2)

node type and depth

tracked
(z = 1) tracked

(z = 2)

tracked (z = 2)

Figure 1. Occlusion boundaries are handled by duplicating faces.
Each boundary triangle stores a matte and color map. Duplicated
vertices are either tracked, i.e., they follow scene points, or virtual
if their position is inferred from their neighbors.

local alpha matte to disambiguate the texture (see Figure 1).
Similar to temporal virtual vertices, their spatial counter-
parts store position information that is extrapolated from
their neighbors. We extrapolate a motion vector at these
points and create temporal virtual vertices in the adjacent
past and future frames to represent this motion. Topolog-
ically, the foreground and background copies of the video
mesh are locally disconnected: information cannot directly
propagate across the boundary.

When an occlusion boundary does not form a closed
loop, it ends at a singularity called a cusp. The triangle
at the cusp is duplicated like any other boundary triangle
and the alpha handles fine-scale occlusion. We describe the
topological construction of cuts and cusps in Section 3.1.

The notion of occlusion in the video mesh is purely local
and enables self-occlusion within a layer, just like how a
3D polygonal mesh can exhibit self-occlusion. Occlusion
boundaries do not need to form closed contours.

2.3. Tile-based texture storage

At occlusion boundaries, the video mesh is composed
of several overlapping triangles and a position in the image
plane can be assigned several color and depth values, typ-
ically one for the foreground and one for the background.
While simple solutions such as the replication of the entire
frame are possible, we present a tile-based approach that
strikes a balance between storage overhead and flexibility.

Replicating the entire video frame for each layer would
be wasteful since few faces are duplicated and in practice,
we would run out of memory for all but the shortest video
sequences. Another possibility would be generic mesh pa-
rameterization [12], but the generated atlas would likely in-
troduce distortions since these methods have no knowledge
of the characteristics of the video mesh, such as its rectan-
gular domain and preferred viewpoint.
Tiled texture We describe a tile-based storage scheme
which trades off memory for rendering efficiency—in par-
ticular, it does not require any mesh reparameterization.



The image plane is divided into large blocks (e.g., 128 ×
128). Each block contains a list of texture tiles that form a
stack. Each face is assigned its natural texture coordinates;
that is, with (u, v) coordinates equal to the (x, y) image po-
sition in the input video. If there is already data stored at
this location (for instance, when adding a foreground trian-
gle and its background copy already occupies the space in
the tile), we move up in the stack until we find a tile with
free space. If a face spans multiple blocks, we push onto
each stack using the same strategy: a new tile is created
within a stack if there is no space in the existing tiles.

To guarantee correct texture filtering, each face is allo-
cated a one-pixel-wide margin so that bilinear filtering can
be used. If a face is stored next to its neighbor, then this
margin is already present. Boundary pixels are only nec-
essary when two adjacent faces are stored in different tiles.
Finally, tile borders overlap by two-pixels in screen space to
ensure correct bilinear filtering for faces that span multiple
tiles.

The advantages of a tile-based approach is that overlap-
ping faces require only a new tile instead of duplicating the
entire frame. Similarly, local modifications of the video
mesh such as adding a new boundary impact only a few
tiles, not the whole texture. Finally, the use of canonical
coordinates also enable data to be stored without distortion
relative to the input video.

2.4. Rendering

The video mesh is, at its core, a collection of texture-
mapped triangles and is easy to render using modern graph-
ics hardware. We handle transparency by rendering the
scene back-to-front using alpha blending, which is suffi-
cient when faces do not intersect. We handle faces that span
several tiles with a dedicated shader that renders them once
per tile, clipping the face at the tile boundary. To achieve
interactive rendering performance, tiles are cached in tex-
ture memory as large atlases (e.g., 4096× 4096), with tiles
stored as subregions. Caching also enables efficient ren-
dering when we access data across multiple frames, such
as when we perform space-time copy-paste operations. Fi-
nally, when the user is idle, we prefetch nearby frames in the
background into the cache to enable playback after seeking
to a random frame.

3. Video mesh operations

The video mesh supports a number of creation and edit-
ing operators. This section presents the operations common
to most applications, while we defer application-specific al-
gorithms to Section 4.

3.1. Cutting the mesh along occlusions

The video mesh data structure supports a rich model of
occlusion as well as interactive creation and manipulation.
For this, we need the ability to cut the mesh along user-
provided occlusion boundaries. We use splines to specify
occlusions [2], and once cut, the boundary can be refined
using image matting [6,18,36]. In this section, we focus on
the topological cutting operation of a video mesh given a set
of splines. A boundary spline has the following properties:
1. It specifies an occlusion boundary and intersects another
spline only at T-junctions.
2. It is directed, which locally separates the image plane
into foreground and background.
3. It can be open or closed. A closed spline forms a loop
that defines an object detached from its background. An
open spline indicates that two layers merge at an endpoint
called a cusp.
Ordering constraints In order to create a video mesh
whose topology reflects the occlusion relations in the scene,
the initial flat mesh is cut front-to-back. We organize the
boundary splines into a directed graph where nodes corre-
spond to splines and a directed edge between two splines
indicates that one is in front of another. We need this or-
dering only at T-junctions, where a spline a ends in contact
with another spline b. If a terminates on the foreground side
of b, we add an edge a→ b, otherwise we add b→ a. Since
the splines represent the occlusions in the underlying scene
geometry, the graph is guaranteed to be acyclic. Hence, a
topological sort on the graph produces a front-to-back par-
tial ordering from which we can create layers in order of
increasing depth. For each spline, we walk from one end to
the other and cut each crossed face according to how it is
traversed by the spline. If a spline forms a T-junction with
itself, we start with the open end; and if the two ends form
T-junctions, we start at the middle of the spline (Fig. 5).
This ensures that self T-junctions are processed top-down.
Four configurations To cut a mesh along splines, we dis-
tinguish the four possible configurations:
1. If a face is fully cut by a spline, that is, the spline does
not end inside, we duplicate the face into foreground and
background copies. Foreground vertices on the background
side of the spline are declared virtual. We attach the fore-
ground face to the uncut and previously duplicated faces on
the foreground side. We do the same for the background
copy (Fig. 2).
2. If a face contains a T-junction, we first cut the mesh using
the spline in front as in case 1. Then we process the back
spline in the same way, but ensure that at the T-junction, we
duplicate the background copy (Fig. 3). Since T-junctions
are formed by an object in front of an occlusion boundary,
the back spline is always on the background side and this
strategy ensures that the topology is compatible with the
underlying scene.



3. If a face is cut by a cusp (i.e., by a spline ending inside it),
we cut the face like in case 1. However, the vertex opposite
the cut edge is not duplicated; instead, it is shared between
the two copies (Fig. 4).
4. In all the other cases where the face is cut by two splines
that do not form a T-junction or by more than two splines,
we subdivide the face until we reach one of the three cases
above.

a) flat mesh and boundary b) cut video mesh with matted layers

Figure 2. Cutting the mesh with a boundary spline. The cut faces
are duplicated. The foreground copies are attached to the adjacent
foreground copies and uncut faces. A similar rule applies to the
background copies. Blue vertices are real (tracked), white vertices
are virtual.

(c) video mesh
topology

(a) frame (b) video mesh
and splines

Figure 3. Cutting the mesh with two splines forming a T-junction.
We first cut according to the non-ending spline, then according to
the ending spline.

(a) cusp seen in image plane
with a spline ending (b) video mesh topology

Figure 4. Cutting the mesh with a cusp. This case is similar to the
normal cut (Fig. 2) except that the vertex opposite to the cut edge
is shared between the two copies.

Motion estimation Cutting the mesh generates spatial vir-
tual vertices without successors or predecessors in time. We
estimate their motion by diffusion from their neighbors. For
each triangle with two tracked vertices and a virtual ver-
tex, we compute the translation, rotation, and scaling of the
edges with the two tracked vertices. We apply the same
transformation to the virtual vertex to obtain its motion es-
timate. If the motion of a virtual vertex can be evaluated

(a) simple self T-junction (b) double self T-junction

Figure 5. If a spline forms a T-junction with itself (a), we start
from the open end (shown with a star) and process the faces in
order toward the T-junction. If a spline forms two T-junctions with
itself (b), we start in between the two T-junctions and process the
faces bidirectionally.

from several faces, we find a least-squares approximation to
its motion vector. We use this motion vector to create tem-
poral virtual vertices in the previous and next frame. This
process is iterated as a breadth-first search until the motion
of all virtual vertices are computed.
Boundary propagation Once we have motion estimates
for all spatial virtual vertices in a frame, we can use the
video mesh to advect data. In particular, we can advect the
control points of the boundary spline to the next (or pre-
vious) frame. Hence, once the user specifies the occlusion
boundaries at a single keyframe, as long as the topology of
occlusion boundaries does not change, we have enough in-
formation to build a video mesh over all frames. We detect
topology changes when two splines cross and ask the user
to adjust the splines accordingly. In practice, the user needs
to edit 5 to 10% of the frames, which is comparable to the
technique of Agarwala et al. [2].

3.2. Depth estimation

After cutting the video mesh, it is already possi-
ble to infer a pseudo-depth value based on the fore-
ground/background labeling of the splines. However, for a
number of video processing tasks, continuous depth values
enable more sophisticated effects. As a proof of concept,
we provide simple depth-modeling tools that work well for
two common scenarios. For more challenging scenes, the
video mesh can support the dense depth maps generated
from more advanced techniques such as multi-view stereo.
Static camera: image-based modeling For scenes that
feature a static camera with moving foreground objects, we
provide tools inspired from the still photograph case [14,23]
to model a coarse geometric model of the background. The
ground tool lets the user define the ground plane from the
horizon line. The vertical object tool enables the creation
of vertical walls and standing characters by indicating
their contact point with the ground. The focal length
tool retrieves the camera field of view from two parallel
or orthogonal lines on the ground. This proxy geometry
is sufficient to handle complex architectural scenes as
demonstrated in the supplemental video.



Moving camera: user-assisted structure-from-motion
For scenes with a moving camera, we build on structure-
from-motion [11] to simultaneously recover a camera path
as well as the 3D position of scene points. In general,
there might be several objects moving independently.
The user can indicate rigid objects by selecting regions
delineated by the splines. We recover their depth and
motion independently using structure-from-motion and
register them in a global coordinate system by aligning to
the camera path which does not change. We let the user
correct misalignments by specifying constraints, typically
by pinning a vertex to a given position.

Even with a coarse video mesh, these tools allow a user
to create a model that is reasonably close to the true 3D
geometry. In addition, after recovering the camera path,
adding vertices is easy by clicking on the same point in only
2 frames. The structure-from-motion solver recovers its 3D
position by minimizing reprojection error over all the cam-
eras.

3.3. Inpainting

We triangulate the geometry and inpaint the texture in
hidden parts of the scene in order to render 3D effects such
as changing the viewpoint without revealing holes.
Geometry For closed holes that typically occur when an
object occludes the background, we list the mesh edges at
the border of the hole and fill in the mesh using constrained
Delaunay triangulation with the border edges as constraints.

When a boundary is occluded, which happens when an
object partially occludes another, we observe the splines de-
lineating the object. An occluded border generates two T-
junctions which we detect. We add an edge between the
corresponding triangles and use the same strategy as above
with Delaunay triangulation.
Texture For large holes that are typical of missing static
backgrounds, we use background collection [30]. After in-
filling the geometry of the hole, we use the motion defined
by the mesh to search forward and backward in the video
for unoccluded pixels. Background collection is effective
when there is moderate camera or object motion and can
significantly reduce the number of missing pixels. We fill
the remaining pixels by isotropically diffusing data from the
edge of the hole.

When the missing region is textured and temporally sta-
ble, such as on the shirt of an actor in Soda sequence of our
video, we modify Efros and Leung texture synthesis [8] to
search only in the same connected component as the hole
within the same frame. This strategy ensures that only se-
mantically similar patches are copied and works well for
smoothly varying dynamic objects. Finally, for architec-
tural scenes where textures are more regular and boundaries
are straight lines (Figure 7), we proceed as Khan et al. [16]
and mirror the neighboring data to fill in the missing re-

gions. Although these tools are simple, they achieve satis-
fying results in our examples since the regions where they
are applied are not the main focus of the scene. If more
accuracy is needed, one can use dedicated mesh repair [19]
and inpainting [3, 4] algorithms.

(a) original viewpoint (b) new viewpoint

Figure 6. Left: original frame. Right: camera moved forward and
left toward the riverbank.

(a) focus on foreground (b) focus on background

Figure 7. Compositing and depth of field manipulation. We repli-
cated the character from the original video, composited multiple
copies with perspective, and added defocus blur.

(a) wide field of view,
camera close to the subject

(b) narrow field of view,
camera far from the subject

Figure 8. Vertigo effect enabled by the 3D information in the video
mesh. We zoom in and at the same time pull the camera back.

4. Results
We illustrate the use of the video mesh on a few practical

applications. These examples exploit the video mesh’s ac-
curate scene topology and associated depth information to
create a variety of 3D effects. The results are available in
the companion video.
Depth of field manipulation We can apply effects that
depend on depth such as enhancing a camera’s depth of
field. To approximate a large aperture camera with a shal-
low depth of field, we construct a video mesh with 3D in-
formation and render it from different viewpoints uniformly
sampled over a synthetic aperture, keeping a single plane in
focus. Since the new viewpoints may reveal holes, we use
our inpainting operator to fill both the geometry and texture.
For manipulating defocus blur, inpainting does not need to
be accurate. This approach supports an arbitrary location



for the focal plane and an arbitrary aperture. In the Soda
and Colonnade sequences, we demonstrate the rack focus
effect which is commonly used in movies: the focus plane
sweeps the scene to draw the viewer’s attention to subjects
at various distances (Fig. 7). This effect can be previewed in
real time by sampling 128 points over the aperture. A high-
quality version with 1024 samples renders at about 2 Hz.
Object insertion and manipulation The video mesh sup-
ports an intuitive copy-and-paste operation for object inser-
tion and manipulation. The user delineates a target object
with splines, which is cut out to form its own connected
component. The object can then be replicated or moved
anywhere in space and time by copying the corresponding
faces and applying a transformation. The depth structure of
the video mesh enables occlusions between the newly added
objects and the existing scene while per-pixel transparency
makes it possible to render antialiased edges. This is shown
in the Colonnade sequence where the copied characters are
occluded by the pillars and each other. The user can also
specify that the new object should be in contact with the
scene geometry. In this case, the depth of the object is au-
tomatically provided according to the location in the im-
age. We further develop this idea by exploiting the motion
description provided by the video mesh to ensure that the
copied objects consistently move as the camera viewpoint
changes. This feature is shown in the Copier sequence of
the companion video. When we duplicate an animated ob-
ject several times, we offset the copies in time to prevent
unrealistically synchronized movements.

We also use transparency to render volumetric effects.
In the Soda sequence, we insert a simulation of volumet-
ric smoke. To approximate the proper attenuation and oc-
clusion that depends on the geometry, we render 10 offset
layers of 2D semi-transparent animated smoke.
Change of 3D viewpoint With our modeling tools
(Sec. 3.2) we can generate proxy geometry that enables 3D
viewpoint changes. We demonstrate this effect in the com-
panion video and in Figure 6. In the Colonnade and Notre-
Dame sequences, we can fly the camera through the scene
even though the input viewpoint was static. In the Copier
sequence, we apply a large modification to the camera path
to get a better look at the copier glass. Compared to exist-
ing techniques such as Video Trace [34], the video mesh can
handle moving scenes as shown with the copier. The scene
geometry also allows for change of focal length, which in
combination with change of position, enables the vertigo ef-
fect, a.k.a. dolly zoom, in which the focal length increases
while the camera moves backward so that the object of in-
terest keeps a constant size (Fig. 8).
Relighting and participating media We use the 3D ge-
ometry encoded in the video mesh for relighting. In the
companion video, we transform the daylight Colonnade se-
quence into a night scene. We use the original pixel value

as the diffuse material color, and let the user click to posi-
tion light sources. We render the scene using raytracing to
simulate shadows and volumetric fog.
Stereo 3D With a complete video mesh, we can output
stereo 3D by rendering the video mesh twice from different
viewpoints. We rendered a subset of the results described
above in red/cyan anaglyphic stereo; the red channel con-
tains the red channel from the “left eye” image, and the
green and blue channels contain the green and blue chan-
nels from the “right eye” image. The results were rendered
with both cameras parallel to the original view direction,
displaced by half the average human interocular distance.
Performance and user effort We implemented our pro-
totype in DirectX 10 and ran our experiments on an Intel
Core i7 920 at 2.66 GHz with 8 MB of cache and a NVIDIA
GeForce GTX 280 with 1 GB of video memory. At a res-
olution of 640 × 360, total memory usage varies between
1 GB to 4 GB depending on the sequence, which is typ-
ical for video editing applications. To handle long video
sequences, we use a multi-level virtual memory hierarchy
over the GPU, main memory, and disk with background
prefetching to seamlessly access and edit the data. With
the exception of offline raytracing for the fog simulation,
and high-quality depth of field effects that require rendering
each frame 1024 times, all editing and rendering operations
are interactive (> 15 Hz). In our experiments, the level of
user effort depends mostly on how easy it is to track motion
and how much the scene topology varies in time. Most of
the time was spent constructing the video mesh, with both
point tracking and rotoscoping taking between 5-25 min-
utes each. Once constructed, creating the effects themselves
were interactive, as can be seen in the supplemental video.
We refer the reader to the supplemental material for a more
detailed discussion on the workflow used to produce our ex-
amples.

5. Discussion
Although our approach gives users a flexible way of edit-

ing a large class of videos, it is not without limitations.
The primary limitation stems from the fact that the video
mesh is a coarse model of the scene: high-frequency mo-
tion, complex geometry, and thin features would be difficult
to accurately represent without excessive tesselation. For
instance, the video mesh has trouble representing a field of
grass blowing in the wind, although we believe that other
techniques would also have difficulties. For the same rea-
son, the video mesh cannot represent finely detailed geome-
try such as a bas-relief on a wall. In this case, the bas-relief
would appear as a texture on a smooth surface, which may
be sufficient in a number of cases, but not if the bas-relief is
the main object of interest. A natural extension would be to
augment the video mesh with a displacement map to handle
high-frequency geometry. Other possibilities for handling



complex geometry are to use an alternative representation,
such as billboards, imposters, or consider a unified repre-
sentation of geometry and matting [31]. To edit these rep-
resentations, we would like to investigate more advanced
interactive modeling techniques, in the spirit of those used
to model architecture from photographs [7, 29]. Integrating
these approaches into our system is a promising direction
for future research.
Conclusion We have presented the video mesh, a data
structure to represent video sequences and whose creation
is assisted by the user. The required effort to build a video
mesh is comparable to rotoscoping but the benefits are
higher since the video mesh offers a rich model of occlusion
and enables complex effects such as depth-aware composit-
ing and relighting. Furthermore, the video mesh naturally
exploits graphics hardware capabilities to provide interac-
tive feedback to users. We believe that video meshes can be
broadly used as a data structure for video editing.

References
[1] Adobe Systems, Inc. After Effects CS4, 2008.
[2] A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M.

Seitz. Keyframe-based tracking for rotoscoping and anima-
tion. ACM Transactions on Graphics, 23(3):584–591, 2004.

[3] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-
man. PatchMatch: A randomized correspondence algorithm
for structural image editing. SIGGRAPH 2009.

[4] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image
inpainting. In SIGGRAPH 2000.

[5] N. Cammas, S. Pateux, and L. Morin. Video coding using
non-manifold mesh. In Proceedings of the 13th European
Signal Processing Conference, 2005.

[6] Y.-Y. Chuang, A. Agarwala, B. Curless, D. Salesin, and
R. Szeliski. Video matting of complex scenes. ACM Trans-
actions on Graphics, 21(3):243–248, 2002.

[7] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and ren-
dering architecture from photographs. In SIGGRAPH 1996.

[8] A. A. Efros and T. K. Leung. Texture synthesis by non-
parametric sampling. In ICCV 1999.

[9] J. Gomes, L. Darsa, B. Costa, and L. Velho. Warping and
morphing of graphical objects. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1998.

[10] M. Guttman, L. Wolf, and D. Cohen-Or. Semi-automatic
stereo extraction from video footage. In ICCV 2009.

[11] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, June 2000.

[12] K. Hormann, B. Lévy, and A. Sheffer. Mesh parameteri-
zation: Theory and practice. In ACM SIGGRAPH Course
Notes. ACM, 2007.

[13] B. K. P. Horn and B. G. Schunck. Determining optical flow.
Artificial Intelligence, 17(1-3):185–203, 1981.

[14] Y. Horry, K. Anjyo, and K. Arai. Tour into the picture: Using
a spidery mesh interface to make animation from a single
image. In SIGGRAPH 1997.

[15] M. Irani, P. Anandan, and S. Hsu. Mosaic based represen-
tations of video sequences and their applications. In ICCV,
1995.

[16] E. A. Khan, E. Reinhard, R. Fleming, and H. Buelthoff.
Image-based material editing. SIGGRAPH 2006.

[17] S. Koppal, C. L. Zitnick, M. Cohen, S. B. Kang, B. Ressler,
and A. Colburn. A viewer-centric editor for stereoscopic cin-
ema. IEEE CG&A.

[18] A. Levin, D. Lischinski, and Y. Weiss. A Closed Form Solu-
tion to Natural Image Matting. CVPR 2006.

[19] B. Lévy. Dual domain extrapolation. SIGGRAPH 2003.
[20] Y. Li, J. Sun, and H.-Y. Shum. Video object cut and paste.

SIGGRAPH 2005.
[21] C. Liu, A. Torralba, W. T. Freeman, F. Durand, and E. H.

Adelson. Motion magnification. SIGGRAPH 2005.
[22] N. Molino, Z. Bao, and R. Fedkiw. A virtual node algorithm

for changing mesh topology during simulation. ACM Trans-
actions on Graphics, 23(3):385–392, 2004.

[23] B. M. Oh, M. Chen, J. Dorsey, and F. Durand. Image-based
modeling and photo editing. In SIGGRAPH 2001.

[24] Quantel Ltd. Pablo. http://goo.gl/M7d4, 2010.
[25] A. Rav-Acha, P. Kohli, C. Rother, and A. Fitzgibbon. Un-

wrap mosaics: a new representation for video editing. ACM
Transactions on Graphics, 27(3):17:1–17:11, 2008.

[26] P. Sand and S. Teller. Particle video: Long-range motion
estimation using point trajectories. In CVPR 2006.

[27] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and
R. Szeliski. A comparison and evaluation of multi-view
stereo reconstruction algorithms. In CVPR 2006.

[28] J. Shi and C. Tomasi. Good features to track. CVPR 1994.
[29] S. N. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and

M. Pollefeys. Interactive 3D architectural modeling from un-
ordered photo collections. SIGGRAPH Asia 2008.

[30] R. Szeliski. Video mosaics for virtual environments. IEEE
CG&A 1996.

[31] R. Szeliski and P. Golland. Stereo matching with trans-
parency and matting. IJCV 1999.

[32] R. S. Szeliski. Video-based rendering. In Vision, Modeling,
and Visualization, page 447, 2004.

[33] The Foundry Visionmongers Ltd. Ocula. http://www.
thefoundry.co.uk/products/ocula/, 2009.

[34] A. van den Hengel, A. Dick, T. Thormählen, B. Ward, and
P. H. S. Torr. VideoTrace: rapid interactive scene modelling
from video. SIGGRAPH 2007.

[35] J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F.
Cohen. Interactive video cutout. SIGGRAPH 2005.

[36] J. Wang and M. Cohen. Optimized color sampling for robust
matting. In CVPR 2007.

[37] J. Y. A. Wang and E. H. Adelson. Representing moving im-
ages with layers. IEEE Trans. on Image Proc., 1994.

[38] G. Zhang, Z. Dong, J. Jia, L. Wan, T. Wong, and H. Bao.
Refilming with depth-inferred videos. IEEE Transactions on
Visualization and Computer Graphics, 15(5):828–840, 2009.

[39] L. Zhang, G. Dugas-Phocion, J.-S. Samson, and S. M. Seitz.
Single view modeling of free-form scenes. In CVPR 2001.

http://goo.gl/M7d4
http://www.thefoundry.co.uk/products/ocula/
http://www.thefoundry.co.uk/products/ocula/

