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Abstract

1t is often desirable to detect whether a surface has been
touched, even when the changes made to that surface are
too subtle to see in a pair of before and after images. To
address this challenge, we introduce a new imaging tech-
nique that combines computational photography and laser
speckle imaging. Without requiring controlled laboratory
conditions, our method is able to detect surface changes
that would be indistinguishable in regular photographs. It
is also mobile and does not need to be present at the time
of contact with the surface, making it well suited for appli-
cations where the surface of interest cannot be constantly
monitored.

Our approach takes advantage of the fact that tiny sur-
face deformations cause phase changes in reflected coher-
ent light which alter the speckle pattern visible under laser
illumination. We take before and after images of the sur-
face under laser light and can detect subtle contact by cor-
relating the speckle patterns in these images. A key chal-
lenge we address is that speckle imaging is very sensitive to
the location of the camera, so removing and reintroducing
the camera requires high-accuracy viewpoint alignment. To
this end, we use a combination of computational rephotog-
raphy and correlation analysis of the speckle pattern as a
function of camera translation. Our technique provides a
reliable way of detecting subtle surface contact at a level
that was previously only possible under laboratory condi-
tions. With our system, the detection of these subtle surface
changes can now be brought into the wild.

1. Introduction

Many scenarios, including law enforcement and security,
require detecting whether physical objects have been tam-
pered with, e.g., [5]. Often, the contact is subtle and cannot
be detected with the naked eye or by comparing pairs of
before and after photographs (e.g., Fig. 1(d) and (e)). We
propose a new technique to detect surface changes for cases
where traditional imaging is insufficient. We make use of
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the speckle generated by laser illumination and exploit the
fact that the precise speckle pattern observed from a given
viewpoint depends on the phase of the light wavefront and,
therefore, is sensitive to tiny perturbations of the imaged
surface (Fig. 1(a-c)).

We focus on the situation where surface tampering is
subtle, where only the phase, and not the intensity of the
light reaching the camera might be altered. To address
this problem, we leverage laser speckle imaging (Fig. 1).
A laser speckle image encodes phase information, because
speckle originates from the constructive and destructive in-
terferences of waves reflected at different points of the sur-
face (Fig. 2(a)) [12]. Phase differences come from the vari-
ation in travel distance, which is affected by tiny changes in
the surface geometry. If the surface profile is altered by an
amount as small as the laser wavelength, the speckle pattern
is modified (Fig. 2(b)).

Our work is inspired by the use of speckle patterns for
the measurement of fluid velocity [17, 9, 4], transparent ob-
ject movement [2 1], motion sensing [22], and paper authen-
tication [5]. Most prior work, however, deals with displace-
ment parallel to the image plane and requires rigid and con-
trolled laboratory settings. In contrast, we seek to detect
out-of-plane modifications to the geometry that arise natu-
rally from surface contact. Moreover, we want the ability to
take a reference image of the surface, remove the imaging
setup from the scene, and return later to take a new image
that will reveal whether the surface was touched or not.

This latter requirement is especially difficult because
speckle patterns are extremely sensitive to the position of
the camera. As our experiments show, before and after pho-
tographs of a surface typically need to be taken from within
about half a millimeter for our verification method to suc-
ceed. While this tolerance is straightforward to achieve in
laboratory settings, using carefully calibrated static cam-
eras, for most practical applications of surface verification,
the camera and laser often cannot remain fixed in front of
the surface. To achieve high-precision viewpoint alignment,
we use a combination of computational rephotography, a
technique to guide camera to the desired viewpoint based on
relative pose estimation [2], and a new analysis of speckle
correlation.
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Figure 1: We detect subtle surface changes that cannot be seen in traditional photography. Top left: our proposed prototype combines an
SLR with a consumer pico laser projector. (a),(b) Images of a wall illuminated by the laser projector. The granular pattern (bottom left),
called speckle, is caused by interference patterns of reflected coherent light. Between (a) and (b), the wall was touched gently. The speckle
similarity map we compute in (c) reveals where the wall was touched. (d)—(f): Without the laser projector, the before and after images (d)

and (e) reveal no difference, as shown in the similarity map (f).

Our paper makes the following contributions:

e We present a speckle imaging system that is portable
and can be moved in practice. After taking a reference
image, the user can remove all equipment from the
scene, and return later to take a fest image. We display
a visualization allowing the user to decide whether the
surface has been tampered with.

e We present a new method achieving viewpoint align-
ment within 0.5 mm using a combination of computa-
tional rephotography and speckle correlation analysis.
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Figure 2: Touching the surface causes deformation of its micro-
structure, which affects the wavefront of the scattered laser. The
surface height before touching the surface (a) is different than af-
terwards (b). This affects the relative position of x1, x2, x3, and
changes the resulting speckle image.

1.1. Related Work

Paper authentication The methods closest to our tech-
nique are those developed for speckle-based paper authen-
tication [16, 19, 5, 20, 6, 18], in which the roughness pat-
tern for individual pieces of paper, and their corresponding
speckle, are used as an identifying signature. In one repre-
sentative method, the paper must be permanently fixed to an
elaborate mechanical plate that fits in a magnetic mount, to
ensure accurate viewpoint reproduction [18] (p. 92). Other
methods require the object to be moved and placed against
a scanner. In contrast, we achieve viewpoint alignment us-
ing re-photography and speckle correlation, which allevi-
ates the need for contact or mechanical mounts, and allows
us to even handle large, immovable objects, such as a wall,
the floor, and a statue.

Out-of-plane deformation Speckle interferometry can
be used to measure out-of-plane deformation (i.e., along the
camera optical axis), but current methods require a refer-
ence laser under highly calibrated settings, for example, us-
ing a beam splitter [7]. We also seek to detect out-of-plane
deformations, but with a simpler setup. Our approach can
forgo the reference laser because detecting tampering does
not require precisely measuring the amount of deformation.

In-plane motion sensing Speckle patterns can enable the
use of traditional computer vision techniques to track ob-
jects such as white walls, transparent surfaces, or fluids that
would otherwise be featureless. For very small translations
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Figure 3: Speckle images vary over different viewpoints. The bot-
tom row shows the image captured at each viewpoint.

parallel to the image plane, the speckle pattern is simply
translated [21]. The applications include in-plane deforma-
tion measurement [15], flow visualization [17, 9, 4], and
motion sensing [22]. In contrast, our work deals with out-
of-plane displacement and camera positioning.

Phase retrieval Since laser speckle depends on the ge-
ometry at the scale of the laser wavelength (for us, around
1um) it may be possible to infer surface geometry from the
observed pattern. This inverse problem has been explored,
but the phase retrieval this requires is still an open problem
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Forensics Skin contact usually leaves traces of body flu-
ids that can be detected using fluorescent fingerprint powder
and UV light, or other chemical methods. These approaches
are limited to bare-skin contact and non-porous surfaces.

1.2. Overview

Our main imaging setup relies on a standard digital SLR
and a consumer micro laser projector (Fig. 1). We currently
use a second camera for rephotography, mounted rigidly to
the imaging system (Fig. 12). In principle, a single camera
could be used for both rephotography and speckle imaging,
but we found that using a second camera helped us sidestep
low-level software issues. The two cameras and projector
are rigidly mounted on actuators to enable precise displace-
ments during the final phase of viewpoint alignment. In our
prototype, the setup is placed on a cart for easier portability.

The user first takes a reference speckle image where the
surface is illuminated by the laser projector. The user then
leaves with the camera-projector setup. The surface might
then be tampered with or not, and the goal is to determine
whether tampering has occurred. Later, the user comes back
and needs to take a new speckle image from the same lo-
cation to detect if the surface was touched. We first use
vision-based rephotography [2, 1] to guide the camera to a

roughly accurate viewpoint within 3 mm. For flat surfaces
where vision-based pose estimation is degenerate, we use
structured light and the visual alignment of a checkerboard
pattern instead. In both cases, we then perform a novel cor-
relation analysis between the current laser speckle image
and the reference. The correlation depends on the distance
between the viewpoints and lets us provide feedback to the
user to help them move even closer to the desired viewpoint.

We display the results of tampering detection by running
normalized cross correlation between the reference and the
final test speckle image (Fig. 1c).

2. Speckle Image Formation and its Variability

We review the equations of speckle image formation
[11, 12] in order to analyze how the speckle pattern varies
with camera translation and aperture choice. Detailed
derivations are provided in the supplementary material. The
one dimensional speckle image I(y) caused by a surface
with surface height h(z) is

I(y) = Hf (-2)es (L)
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where

is the input function, x and y are the coordinates on the
object and image plane respectively, Ay is the incident
wave amplitude, z; and zo are distances from the lens to
the object and to the sensor respectively, and A is the in-
cident wavelength. We use ® to denote convolution and
g(w) = F{P} is the Fourier transform of the aperture func-
tion P(u).

Eq. (1) decomposes speckle formation into three steps:
(1) the input 42e7%"(*) js modulated by a quadratic phase

z1
¢’*257 and an attenuation %; (2) it passes through a low-
pass filter g(w) determined by the aperture; (3) the speckle
image intensity is the squared amplitude of the field. The
low-pass filter (2) comes from the fact that the field at the
lens is the Fourier transform of the surface field and it gets
clipped by the aperture. This model demonstrates locality:
the modification of the surface h(x) at a point 2 only affects
the image near —Z2x because a finite aperture causes g to
fall off rapidly, which is important for our application.

2.1. Speckle variation with camera movement

Camera in-plane translation When the camera moves
by ¢ in the lens plane, we simply need to replace the aper-
ture in Eq. (1) by P(u —d). As the camera moves, the aper-
ture selects different windows over the field. If the transla-
tion is larger than the aperture, the windows don’t overlap
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Figure 4: Laser speckle captured with larger apertures has more
high frequency components but lower contrast.

(Fig. 3). Furthermore, these windows are generally uncor-
related because, in practical applications, the surface height
h(x) is randomly distributed, and the corresponding speckle
images are also uncorrelated. For our surface tampering de-
tection, we need the speckle from untouched regions to be
highly correlated in the before/after pair, and the captured
windows of the field must be very close.

To understand the effect of camera translation, we ana-
lyze the case where the camera remains static and the sur-
face is translated by —d. The input f in Eq. (1) is translated,
but the quadratic phase term % in f(z) in Eq. (1) makes
the system not shift-invariant and the speckle is altered.

Depth translation With the camera in focus, Eq. (1)
shows that changing the lens-object distance z; causes
speckle magnification and alteration. Fortunately, this alter-
ation is not as strong as that associated 2vvith in-plane trans-
1 Z1Y

lation. The quadratic phase term ¢’ 27 is less affected by
depth z; than by in-plane translation y. Hence, the required
precision for viewpoint alignment is looser along depth and
can be achieved with vision-based rephotography alone.

Aperture size Speckle images taken at different apertures
can be derived by evaluating Eq. (1) with appropriate P(u).
From Eq. (1), the aperture is equivalent to a low-pass filter,
and larger apertures correspond to filters with larger band-
width. This is equivalent to the well-known reduced diffrac-
tion with large apertures. As shown in Fig. 4, images with
smaller apertures have lower frequency speckle.

However, increasing aperture size reduces speckle con-
trast, which leads to a tradeoff, since contrast is needed to
identify tampering. In our work, we use a 100 mm lens and
found that apertures between f/6.7 and f/16 work well.

3. Rephotography and Similarity Map Compu-
tation

As shown in Fig. 5, the reference and test images be-
come decorrelated when the viewpoints differ by more than

1 mm, which sets tight accuracy goals for camera align-
ment. To our knowledge, no computational rephotography
[2] technique can achieve such accuracy. We propose a two-
stage method: first, we adopt vision-based rephotography to
get within a few mm, and second, we introduce a speckle-
based correlation analysis for finer accuracy.

3.1. Vision-based computational rephotography

For the first stage, we use two rephotography techniques
for different types of scenes. For general 3D scenes with
distinctive image features, we use a solution similar to Bae
et al. [2] and rely on these features to estimate the relative
camera pose. For flat scenes, where pose estimation is de-
generate, we project structured light onto the surface and
rely on the user to visually match the observed projected
pattern. We found that both of these techniques have simi-
lar accuracy, and can typically guide the camera back to the
reference viewpoint to within a translation of 3mm and a
rotation of 0.5 degrees (Table 1).

Image-based feature matching and pose estimation
Our feature-based approach builds on previous methods for
feature detection and camera pose estimation, namely the
parallel tracking and mapping (PTAM) library [14]. PTAM
builds a 3D map where feature points are characterized
by 2D image patches. It uses a combination of tracking,
RANSAC and bundle adjustment to continuously refine the
map and compute the pose of the current camera .

Prior to taking the reference image, we use PTAM to
build up a sparse 3D map of feature points from a set of
uncalibrated wide-angle photos surrounding the object. We
then record the camera pose, turn on the laser projector, and
take the reference speckle image.

When we return to take the test image, the current cam-
era pose is estimated by PTAM using the earlier map. We
display a 3D visualization of the current displacement from
the reference pose, and manually adjust the camera view-
point until the pose returns to the reference viewpoint. This
method works well when the scene has enough features and
depth range. It typically takes us a few minutes to reach the
viewpoint with 3 mm accuracy.

Structured light for flat scenes Flat scenes, such as
walls, present a special challenge for viewpoint alignment
since small camera rotations and translations are ambigu-
ous for flat surfaces. This ambiguity limits viewpoint align-
ment, which is why we propose to project structured light
onto the surface to help resolve the ambiguity. In practice,
we use the laser projector to project a checkerboard pattern
onto the scene and capture an image of this pattern from the
reference viewpoint At test time, matching the appearance
of the projected checkerboard lets us resolve the translation-
rotation ambiguity. Because the camera and the projector
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Figure 5: Top: Sensitivity of speckle correlation to viewpoint
change, as measured using our system under different aperture
sizes.

are not co-located, the resulting parallax deforms the ob-
served pattern when the system is moved. However, when
the system translates in a direction parallel to the flat sur-
face, the observed pattern is invariant. In order to resolve
these remaining two degrees of freedom, we use a single
2D feature on the surface, e.g., a door knob. We use the
same projector for speckle imaging so only one is needed
for the whole system. Note that the geometric relation be-
tween the camera and the projector is fixed, so there is no
transform between taking the reference pattern and taking
the test pattern. The alignment is currently based on visual
matching and manual displacement.

3.2. Speckle-based viewpoint alignment

In the second stage of viewpoint alignment, we focus
on refining the in-plane camera translation by analyzing the
correlation between the current speckle image and the refer-
ence one. This provides users with feedback as to whether
they are getting closer or farther from the reference view-
point. As described in Section 2.1, speckle correlation is
less sensitive to depth change, so the first stage of view-
point alignment provides sufficient accuracy for this degree
of freedom.

Within the uncertainty range given by the first stage, we
sample along the camera plane (perpendicular to the optical
axis). For each sampled image we display its normalized
cross correlation (NCC) with the reference speckle image
as feedback to the user. As shown in Fig. 5, NCC reaches
its maximum when the viewpoints are the same. Hence,
by maximizing the NCC, we can determine the desired po-
sition. In our work we sample every 0.5 mm in the range
[-5 mm, 5 mm]. When computing the NCC, we first crop a
patch in the sampled image and then search for the patch in
the reference image that results in the maximum NCC with
our sampled patch. The NCC value is displayed as feed-
back to the user. This helps the user resolve any misalign-
ment between two speckle images due to the small rotation
uncertainty given by the first stage.

After determining the camera translation, the user cor-
rects the camera rotation by matching 2D features from the

experiment translation, translation, rotation

P horizontal (mm)  vertical (mm) (arcmin)
Statue (F) 2.5 0.2 23
Cup (F) 2.1 0.3 20
Cylinder (F) 1.3 0.5 17
Door (s) 1.2 0.1 12
Wall (s) 1.1 0.2 13
Drawer (s) 1.7 0.1 18

Table 1: Accuracy of vision-based rephotography, measured by
the amount of viewpoint change required by the second stage
of our viewpoint alignment . Experiments marked (F) used the
feature-based PTAM method, while those marked (S) used our
structured light technique.

current frame with the reference frame.

3.3. Similarity Map Computation

Once the correct viewpoint has been reached, we take
the test speckle image. We carefully align this image to our
reference image before analyzing their differences.

To match the speckle images we randomly sample image
patches, match those patches, and fit a warp to the resulting
patch correspondences. As Eq. ( 1) shows, touching the sur-
face only affects the speckle image near the touched area,
so local comparisons are sufficient for matching. First, we
sample several hundred patches from the reference image,
then for each patch we use normalized cross correlation to
find the corresponding best-matching patch in the test im-
age. Given these correspondences, we use RANSAC to re-
cover a 3 x 3 homography relating the two speckle images,
while ignoring potential outliers due to tampering.

We then compute the similarity map S relating the target
image I;,, and the warped reference image Iyef,w,

S(’L,j) = NCC(W(ivj)Itara W(iaj)jref,w) , (3)

where NCC' computes the normalized cross correlation,
and W (4, j) is a windowing function centered at (i, j). For
our results we used a window size of 21 x 21 pixels.

4. Hardware

Our prototype is shown in Fig. 6. We use the Micro-
vision PicoP®)as a laser projector and the Canon EOS 5D
Mark II®R) for capturing the speckle image. For camera reg-
istration, we use a motorized labjack to adjust the vertical
position of the camera, two motorized translation stages to
adjust the depth and horizontal position, and a motorized ro-
tation stage to adjust camera rotation. The precision of the
labjack and translation stage is 0.01 mm, and the rotation
stage has a measurement precision of 1 degree but a higher
precision for actuation. We put the whole system on a cart
for mobility.
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Figure 6: System prototype. Our system consists of a controller
with 4 degrees of freedom. The SLR and the laser projector are
fixed on the controller.

5. Results

We performed a number of tests to evaluate surface tam-
pering detection and viewpoint alignment using our system.

First, we tested the sensitivity of our similarity map
(Eq. ( 3)) to demonstrate it’s ability to detect subtle surface
changes resulting from small forces. To study this sensitiv-
ity independent of issues with viewpoint alignment, we kept
the camera fixed on a tripod while photographing the refer-
ence (before surface deformation) and test (after) images.
In the experiment of Fig. 7a, we placed a quarter (5.67 g)
on a heavy cardboard box. The similarity map of the test to
reference images clearly reveals the effect of the quarter’s
weight on the box. Only the boundary of the quarter is visi-
ble because the coin is thicker at the periphery and does not
touch the surface in the center. To avoid extra forces on the
box we taped the coin to a string, lowered it slowly onto the
box, and removed it by lifting the string.

The experiment of Fig. 7b reveals the effect of touch-
ing a sheet rock wall with a rubber square using the light-
est force we could measure with a hand-held pressure scale
apparatus. The mark from the 20.7 gf/cm? pressure (gf =
gram-force) is clearly visible in the normalized correlation
similarity map.

Fig. 8 shows the results of our system detecting finger-
pressure marks on surfaces of different shapes, colors, and
materials.

The remaining figures demonstrate the reliability of our
viewpoint alignment schemes for surface tampering detec-
tion. Fig. 10 shows the effectiveness of the structured light
method for viewpoint alignment with flat scenes. The sur-
face tampering detection reveals light finger touches to a
wooden door, a wall, and a steel filing cabinet.

Figs. 11 and 12 show the results of using our vision-
based rephotography to reveal light finger marks on 3D sur-
faces.

The average time for two-stage camera alignment in both
cases is around 5 minutes. Typically, both of the first-stage
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(a) Quarter on a card box (b) Rubber on a sheet rock

Figure 7: Our technique can detect tiny surface variations due to
light pressure. (a) We put a US quarter dollar coin (weight 5.67 g)
onto a box, then removed it. The similarity map relating the before
and after speckle images reveals the outline of the coin. (b) We
attach a piece of incompressible rubber to a sensitive scale. We
press lightly against the wall with the rubber, and zero the scale
while touching. The readout from the scale shows that the force
is 27 g. Since the surface area of the rubber is 1cm X 1.3 cm,
the pressure is 20.7 gf/cm®. The similarity map relating speckle
images before and after touching the wall shows that the touched
area can be identified.

rephotography options, feature-based PTAM and our struc-
tured light technique, allow us to bring the camera back to
within 3 mm, as shown in Table 1.

Comparison with UV light and fingerprint powder We
compare our work against a leading forensic technique for
fingerprinting that uses fluorescent powder. When a human
touches an object, some fluids from the finger are trans-
ferred to the object’s surface. Later, the surface can be
brushed with a fluorescent powder that is adhesive to fluid.
A Shining a UV light on the brushed surface will then reveal
the pattern of fluid left by the finger.

As shown in Fig. 9, our method and the fingerprint pow-
der technique have different limitations. Our approach does
not work on transparent objects because there is no reflected
laser light, whereas fingerprint powder works well. Porous
surfaces, on the other hand, present the opposite scenario
because fluids do not stick to them well, and, moreover, the
powder tends to stick even in the absence of fluid. In con-
trast, our method works well for such surfaces. Fig. 9 also
shows that the fingerprint powder fails to reveal the touch of
a gloved hand, while the speckle change is clearly visible.

Fingerprint powder does not require a reference image
and is often able to recover the detailed groove pattern of
a fingerprint. However, unlike our technique which does
not require any contact with the scene, fingerprint powder
is potentially destructive to the surface being examined.

5.1. Limitations

We showed that our system works well for a variety
of common materials. However, we have found that our
system struggles with the following three types of materi-
als. (1) Volumetric materials, such as carpets, sweaters, and
scarves. For these materials, the surface is not well defined,



Figure 8: Surface tampering detection on different materials using
our system. From top to bottom: a glossy textbook cover with a
textured design (we drew an XD on it with the fleshly part of a
finger), a stone statue (drew a smile), a brushed aluminum camera
(drew a backslash), a black plastic camera charger (drew a cross),
and a cement floor (stood on the ground wearing shoes). Speckle
is still observable for black objects provided that the exposure time
is long enough. Our technique also works well for walls and boxes
(Figs. 7a)

and our camera cannot observe speckle. (2) Reflective and
transparent materials, such as mirrors, shiny metals or glass.
(3) Materials that absorb light at the bandwidth of our laser,
such as cyan material for a red laser, or black materials for
all bandwidths. In general, diffuse and moderately-glossy
surfaces that are not too dark work best.

6. Discussion

In this work, we presented a technique that can non-
invasively detect otherwise-invisible surface tampering by
comparing laser speckle images. Using a combination of
vision-based rephotography, structured light, and speckle
correlation analysis, we can guide the user within the re-
quired viewpoint accuracy of 0.5 mm, typically within five
minutes. Our method allows for small surface changes to
be detected under very general conditions
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Figure 9: We compare our technique to a forensic fingerprinting
technique that uses fluorescent powder. We brush fingerprint pow-
der on the object to detect the latent fingerprint. Our method strug-
gles with transparent objects, while fingerprint powder often fails
on porous surfaces. Bottom 2 rows: In the top row we use a bare
finger to touch the surface, while in the bottom row we touch the
surface with a gloved finger. Fingerprint powder does not work in
the latter case, while our technique works in both cases.
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