

Laser Speckle Photography for Surface Tampering Detection

YiChang Shih Abe Davis Frédo Durand William T. Freeman

Samuel W. Hasinoff,

Before image

Before image

Before image

After image

Before image

After image

Goal: detect the touched region

Security certification

Safe box Footprint

Challenging problem

• The difference are minor and invisible

A lab wall (rock sheet)

Touched by hand

Difference between before and after images (scale to [0 1]), cannot see anything

Related work: paper authentication

- Certify whether the document is original [Pappu et al 2002][Buchanan et al 2005]
- Use the micro-structure as signatures

Photographed by electronic microscope

Ingenia Techology

Related work: forensic technology

- Rely on bio footprint, eg. blood, perspiration
- Laborious works

Foot print

Luminol (blood)

Fingerprint powder

Problem statement

• Input: before and after images

Output: the region that has been touched

Automatic, fast, work on various materials

Key idea: laser speckle

Coherent light causes interference pattern

Laser speckle

The coherent light causes granular patterns

Without coherent light

With coherent light (laser speckle)

Tampering detection

Before touch the surface

After touch the surface, the interference patterns are changed

Hardware overview

- Camera
- Laser scanner
- Controller

Issues that need to be concerned

Compute the similarity map

Camera settings

Viewpoint alignment

Identifying the tampered regions

- The speckle changes are local
- We use normalized cross correlation (NCC)

Camera settings

- Aperture cannot be too large or too small
- f/6.7 works best experimentally

Aperture too large: low contrast

Too **small**: no high-frequency, lost locality

Viewpoint registration

Challenge: speckle is very sensitive to viewpoint change
Scattered laser field

Very tight accuracy goal

Require the distance between the two

viewpoints < 1mm

Our approach: two-step alignment

- Step 1: vision-based alignment
 - tolerance ~10 mm

- Step 2: speckle-based alignment
 - tolerance < 1mm

Coarse alignment by scene features

- Based on parallel tracking and mapping (PTAM)
- Feedbacks to guide user control
- A few minutes to reach the viewpoint with 3mm

accuracy

User interface

Fine alignment by speckles

Utilize the speckle sensitivity to viewpoint

Densely sample between [-5mm, 5mm]

Accurate to 0.5mm

Results

Touched by hand

Output: the touched region

Light-weight objects

A quarter on a card box (5.67g)

A card box

A quarter (5.67g)

Output: the detected tampered region

More materials

Plastic case

Indoor scene

Touched by a finger

Curved surface

Objects to detect

The detected tampering

Textured surface

Objects to detect

The detected tampering

Comparisons to forensic techniques

Touched by a finger

Shiny surface

Rough surface

Objects to detect Our speckle-based method

Fingerprint powder

With gloves

Our speckle-based method

Fingerprint powder

Using the system

• See the video!

Demo at CVPR12

Take a reference laser speckle image

Touch the surface

Take an "after" laser speckle image correlation reveals

Normalized the tampered area

Conclusion: seeing invisibles

- Seeing the invincible difference between two images
- Key idea: using laser speckle images
- Viewpoint alignment with high accuracy

A lab wall

Touched by hand

Output: the touched region

Acknowledgements

 We thank MicroVision for donation of equipment, and acknowledge gifts from Microsoft Research and Texas Instruments, and funding from NSF CGV No.1111415.

Conclusion: seeing invisibles

- Seeing the invisible difference between two images
- Key idea: using laser speckle images
- Viewpoint alignment with high accuracy

A lab wall

Touched by hand

0.8 0.6 0.4 0.2

Output: the touched region