Laser Speckle Photography for Surface Tampering Detection YiChang Shih Abe Davis Frédo Durand William T. Freeman Samuel W. Hasinoff, Before image Before image Before image After image Before image After image **Goal**: detect the touched region ## Security certification Safe box Footprint ## Challenging problem • The difference are minor and invisible A lab wall (rock sheet) Touched by hand Difference between before and after images (scale to [0 1]), cannot see anything ### Related work: paper authentication - Certify whether the document is original [Pappu et al 2002][Buchanan et al 2005] - Use the micro-structure as signatures Photographed by electronic microscope Ingenia Techology ### Related work: forensic technology - Rely on bio footprint, eg. blood, perspiration - Laborious works Foot print Luminol (blood) Fingerprint powder #### Problem statement • Input: before and after images Output: the region that has been touched Automatic, fast, work on various materials ## Key idea: laser speckle Coherent light causes interference pattern ### Laser speckle The coherent light causes granular patterns Without coherent light With coherent light (laser speckle) #### Tampering detection **Before** touch the surface **After** touch the surface, the interference patterns are changed #### Hardware overview - Camera - Laser scanner - Controller #### Issues that need to be concerned Compute the similarity map Camera settings Viewpoint alignment ### Identifying the tampered regions - The speckle changes are local - We use normalized cross correlation (NCC) #### Camera settings - Aperture cannot be too large or too small - f/6.7 works best experimentally Aperture too large: low contrast Too **small**: no high-frequency, lost locality ### Viewpoint registration Challenge: speckle is very sensitive to viewpoint change Scattered laser field ### Very tight accuracy goal Require the distance between the two viewpoints < 1mm ### Our approach: two-step alignment - Step 1: vision-based alignment - tolerance ~10 mm - Step 2: speckle-based alignment - tolerance < 1mm #### Coarse alignment by scene features - Based on parallel tracking and mapping (PTAM) - Feedbacks to guide user control - A few minutes to reach the viewpoint with 3mm accuracy User interface ## Fine alignment by speckles Utilize the speckle sensitivity to viewpoint Densely sample between [-5mm, 5mm] Accurate to 0.5mm #### Results Touched by hand Output: the touched region ## Light-weight objects A quarter on a card box (5.67g) A card box A quarter (5.67g) Output: the detected tampered region #### More materials Plastic case #### Indoor scene Touched by a finger #### Curved surface Objects to detect The detected tampering #### Textured surface Objects to detect The detected tampering #### Comparisons to forensic techniques Touched by a finger Shiny surface Rough surface Objects to detect Our speckle-based method Fingerprint powder ## With gloves Our speckle-based method Fingerprint powder # Using the system • See the video! #### Demo at CVPR12 Take a reference laser speckle image Touch the surface Take an "after" laser speckle image correlation reveals Normalized the tampered area ### Conclusion: seeing invisibles - Seeing the invincible difference between two images - Key idea: using laser speckle images - Viewpoint alignment with high accuracy A lab wall Touched by hand Output: the touched region ### Acknowledgements We thank MicroVision for donation of equipment, and acknowledge gifts from Microsoft Research and Texas Instruments, and funding from NSF CGV No.1111415. #### Conclusion: seeing invisibles - Seeing the invisible difference between two images - Key idea: using laser speckle images - Viewpoint alignment with high accuracy A lab wall Touched by hand 0.8 0.6 0.4 0.2 Output: the touched region