
Sample-based Monte Carlo Denoising using a Kernel-Splatting Network

MICHAËL GHARBI, Adobe and MIT CSAIL
TZU-MAO LI,MIT CSAIL
MIIKA AITTALA,MIT CSAIL
JAAKKO LEHTINEN, Aalto University and NVIDIA
FRÉDO DURAND,MIT CSAIL

8spp input ground truth 8192spp
our output

 rMSE = 0.005 (10s)
[Bako 2017]

rMSE = 0.056 (14.6s)

Fig. 1. State-of-the-art pixel-based Monte Carlo denoising algorithms (right) struggle with very noisy inputs rendered with a low sample count (left). Our
method (middle) works with the samples directly, it uses a splatting approach, and is trained using deep learning. This makes it possible to appropriately
handle various components of the illumination (indirect lighting, specular reflection, motion blur, depth of field, etc) more effectively.

Denoising has proven to be useful to efficiently generate high-quality Monte

Carlo renderings. Traditional pixel-based denoisers exploit summary statis-

tics of a pixel’s sample distributions, which discards much of the samples’

information and limits their denoising power. On the other hand, sample-

based techniques tend to be slow and have difficulties handling general

transport scenarios. We present the first convolutional network that can

learn to denoise Monte Carlo renderings directly from the samples. Learn-

ing the mapping between samples and images creates new challenges for

the network architecture design: the order of the samples is arbitrary, and

they should be treated in a permutation invariant manner. To address these

challenges, we develop a novel kernel-predicting architecture that splats indi-
vidual samples onto nearby pixels. Splatting is a natural solution to situations

such as motion blur, depth-of-field and many light transport paths, where it

is easier to predict which pixels a sample contributes to, rather than a gather
approach that needs to figure out, for each pixel, which samples (or nearby

pixels) are relevant. Compared to previous state-of-the-art methods, ours is

robust to the severe noise of low-sample count images (e.g. 8 samples per

pixel) and yields higher-quality results both visually and numerically. Our

approach retains the generality and efficiency of pixel-space methods while

enjoying the expressiveness and accuracy of the more complex sample-based

approaches.

Authors’ addresses: Michaël Gharbi, Adobe and MIT CSAIL, mgharbi@adobe.com;

Tzu-Mao Li, MIT CSAIL, tzumao@mit.edu; Miika Aittala, MIT CSAIL, miika@mit.edu;

Jaakko Lehtinen, Aalto University and NVIDIA, jaakko.lehtinen@aalto.fi; Frédo Durand,

MIT CSAIL, fredo@mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0730-0301/2019/7-ART125 $15.00

https://doi.org/10.1145/3306346.3322954

CCS Concepts: • Computing methodologies → Neural networks; Ray
tracing; Image processing.

Additional Key Words and Phrases: Monte Carlo denoising, deep learning,

data-driven methods, convolutional neural networks

ACM Reference Format:
Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo

Durand. 2019. Sample-basedMonte Carlo Denoising using a Kernel-Splatting

Network. ACM Trans. Graph. 38, 4, Article 125 (July 2019), 12 pages. https:

//doi.org/10.1145/3306346.3322954

1 INTRODUCTION
Because Monte Carlo methods rely on stochastic point samples of

an intricate integrand, they often suffer from noise. This motivates

Monte Carlo denoising techniques, which broadly fall into two

categories. Sample-based techniques keep track of the individual

samples, while pixel-based methods work directly on the rendered

image. Most methods operate in pixel space (e.g. [Bako et al. 2017;

Bitterli et al. 2016]). In addition to the noisy input radiance, they

usually exploit first and second order statistics of auxiliary buffers

(like depth, normal, albedo, etc) [McCool 1999]. We argue that, in

many lighting configurations, simple per-pixel aggregates can under-

represent the complexity of the local light transport phenomena, in

particular because the distribution is often multimodal.

We present a newMonte Carlo denoising technique that leverages

the power of deep learning in the following key manners compared

to previous denoising methods:

• Rather than work on pixel-based representations, our input is

the raw set of Monte Carlo samples, which we argue allows

our method to appropriately handle information of different

nature. In particular, depth of field and motion blur generate

ACM Trans. Graph., Vol. 38, No. 4, Article 125. Publication date: July 2019.

https://doi.org/10.1145/3306346.3322954
https://doi.org/10.1145/3306346.3322954
https://doi.org/10.1145/3306346.3322954

125:2 • Gharbi, et al.

(a) scene

(d) inset 16spp (e) reference (f) [Sen 2012] (g) ours

background

moving
sphere

static background

camera

moving foreground

(b) input 16spp (c) depth histogram

Fig. 2. The distribution of sample features within a given pixel is often
multimodal. Take the example of a motion-blurred sphere, moving in front
of a static background (a). The depth values in the region highlighted have
a bimodal distribution (c). The correct output color for a pixel in this region
is an average of the foreground and background radiance (b), integrated
over the camera’s shutter time. Because the background is static, it should
remain sharp even though it is partially occluded by the moving sphere,
but the foreground should appear blurred along the direction of motion
(e). In this example, the depth of each sample is a good predictor of which
object it belongs to, and therefore a useful cue for a denoiser. Most image-
space denoisers use per-pixel first and second order statistics of the sample
features (like depth). This gives them an erroneous view of the world, which
can lead to overblurring or other artifacts (f). Our model works directly
from the samples and can exploit the richer information they provide (g).

per-pixel sample distributions that tend to be poorly encoded

by low-order statistics (Figure 2), and difficult light transport

phenomena such as specular effects generate outliers (“firefly”

artifacts) that are best handled at the sample level.

• We can handle variable-sized and unordered sets of input sam-

ples, building on recent permutation-invariant ideas [Aittala

and Durand 2018; Zaheer et al. 2017].

• We use a splatting (scatter) approach, rather than a gather,

because we argue it is more natural to assess where a sample

contributes in the image rather than figuring out where all
the contributions to a pixel are coming from. Consider the

example of motion blur, where one can easily splat a sample

along a trajectory, while figuring out all the parts of the scene

that overlap a pixel is harder.

We hypothesize that processing individual samples instead of

summaries has a fundamentally better outlook in complex transport

scenarios. Unfortunately, prior sample-based methods tend to be

costly and have difficulty handling general combination of light-

ing phenomena. This is either due to the curse of dimensionality

[Hachisuka et al. 2008], or because they are derived analytically

with specific effects in mind (e.g. [Lehtinen et al. 2011, 2012]).

To achieve full generality, we use deep learning to construct a

mapping between Monte Carlo samples and final image. We develop

a novel kernel splatting architecture that can take arbitrary num-

ber of input samples and is permutation invariant. Our method is

inspired by recent pixel-based kernel predicting architecture [Bako

et al. 2017]. However, the original pixel-centric architecture, which
gathers from nearby samples, does not treat each sample individu-

ally and hence is not permutation invariant. Therefore, we center

the kernels around the samples and splat the samples onto pixels.

In addition, to facilitate communication between samples, we pool

across the sample dimension to obtain per-pixel features.

We trained our network using a random scene generator and

extensively tested our method on a variety of scenes, including

various lighting phenomena such as distribution effects and diffuse

and specular global illumination. Our method significantly reduces

the error comparing to other methods, especially in the case where

the sample count is low (e.g. 8 or less).

2 RELATED WORK

2.1 Denoising for Monte Carlo Rendering
Zwicker et al. [2015] present a recent survey of denoising techniques

for Monte Carlo rendering. A priori methods characterize the struc-

ture of the integrand to derive analytical sampling rates and filters

(e.g. [Belcour et al. 2013; Durand et al. 2005; Egan et al. 2011, 2009]).

They are often limited to a specific combination of light transport

scenarios (e.g. motion blur, global illumination, etc). In contrast, our

approach falls in the a posteriori class of algorithms, that estimate

smoothness and drive path reuse using auxiliary features to break

the limitation to specific transport scenarios and to remain mini-

mally intrusive with respect to the underlying rendering algorithm.

As opposed to most a posteriori methods, ours works directly with

the samples rather than per-pixel aggregates of the features.

Pixel-space adaptive sampling and reconstruction. A fruitful line

of research adapted well-known image-processing filters [Kalantari

and Sen 2013; Overbeck et al. 2009; Rousselle et al. 2012]. Unlike

typical image-processing, Monte Carlo rendering noise has strong

variations across pixels. These methods often set the parameters

of the filter according to a statistical estimate of the error obtained

from the noisy render buffers. The most successful pixel-space tech-

niques employ auxiliary feature buffers such as depth, normals or

albedo. These extra buffers have been used to drive anisotropic diffu-

sion [McCool 1999] or cross-bilateral filters [Li et al. 2012; Rousselle

et al. 2013]. Another line of work propose several local regression

schemes between feature buffers and final radiance (e.g. [Bauszat

et al. 2011; Bitterli et al. 2016; Moon et al. 2014]), inspired by the

guided filter [He et al. 2010]. Some methods decompose the radiance

contributions into multiple buffers to adapt the pixel filters [Mara

et al. 2017; Mehta et al. 2014; Zimmer et al. 2015]. Our method also

utilizes auxiliary features for filtering. However, instead of work-

ing with per-pixel averages, we operate directly on the individual

samples.

Laplacian Kernel Splatting [Leimkühler et al. 2018] accelerates

large splats by exploiting sparsity in the Laplacian domain. It can be

used for denoising, but in contrast to ourmodel, it requires analytical

expressions for the kernels.

Sample-based reconstruction. Methods that work directly on the

raw radiance samples often first reconstruct the radiance function

using existing samples, then integrate the reconstructed function

ACM Trans. Graph., Vol. 38, No. 4, Article 125. Publication date: July 2019.

Sample-based Monte Carlo Denoising using a Kernel-Splatting Network • 125:3

to generate images. Hachisuka et al. [2008] use the nearest neigh-

bors of each sample for reconstruction, which suffers from the

curse of dimensionality when the integrand dimension is more

than five. Lehtinen et al. [2011; 2012] reproject existing samples us-

ing analytically derived trajectories, which also hinders generality.

Rushmeier and Ward [1994] use variable-width splatting kernels.

The kernel support is determined from simple local statistics. Their

method preserves energy while ours does not. This allows us to

more effectively suppress outliers. Unlike previous sample-based

techniques, we learn splatting kernels from samples to final pixel

color for full generality.

Sen and Darabi [2012]’s method stands between the pixel-based

and sample-based approach. They deal with noise in features by

analyzing their statistical dependency on the random parameters

produced by the renderer (e.g. sub-pixel, lens, time coordinates).

However, they still rely on heuristics based on statistical aggregates,

and therefore cannot handle multi-modal cases like the one in Fig-

ure 2. Delbracio et al. [2014] use 1D color histograms to match pixels

that should be denoised jointly. The histograms capture multi-modal

effects and are invariant to permutations of the samples. However,

their filter still operates on pixels and the histogram parameteriza-

tion needs to be carefully set beforehand to cover the expected dy-

namic range. Bauszat et al. [2015] extend adaptive manifolds [Gastal

and Oliveira 2012] to work directly with individual samples. They

focus on limited global illumination and depth-of-field effects (e.g.

they do not handle motion blur).

Learning for Monte Carlo denoising. Kalantari et al. [2015] pre-
dict the parameters of a fixed-function filter (e.g. cross-bilateral

filter) from pixel-space features using a multilayer neural network.

Chaitanya et al. [2017] use a recurrent autoencoder to denoise under-

sampled videos renderings. They target interactive setting and han-

dle more restricted lighting conditions than our method. Our ap-

proach is similar in its use of 1-sample images, but we pay particular

attention to permutation invariance. Bako et al. [2017] and Vogels et

al. [2018] propose a kernel-predicting convolutional network for off-

line denoising. We adopt the kernel-predicting paradigm with two

key differences: (1) we operate on samples, instead of pixel aggre-

gates, and (2) we enforce permutation invariance through splatting.

We also do not factorize the diffuse vs. specular illumination nor do

we un-premultiply the albedo to obtain a pseudo-irradiance.

2.2 Permutation Invariance in Neural Networks
Independent Monte Carlo samples at a given pixel have no meaning-

ful ordering. A learning method that remains aware of the ordering

may counterproductively attempt to assign meaning to it. Recent

work has demonstrated significant benefits from using models that

are by construction invariant to permutations of the inputs via the

use of symmetric pooling operations such as mean or max [Zaheer

et al. 2017]. Examples of recent applications include e.g. point cloud

processing [Qi et al. 2017] and burst deblurring [Aittala and Durand

2018]. These architectures also naturally accept an arbitrary number

of inputs at test time.

We extend this line of work by an architecture that applies per-

mutation invariance not only on the level of input buffers (e.g. the

ordering of input images), but on the level of samples at individual

pixels – that is, the output of our network remains unchanged if the

samples at any given pixel are shuffled among each other.

3 SAMPLE-BASED DENOISING NETWORK
We cast Monte Carlo denoising as a supervised learning problem.

Given an unordered set of input radiance samples s for pixel (x,y)
with contribution Lxys and associated auxiliary features fxys (spec-
ified in Appendix A) drawn from the entire image, we seek to re-

construct a noise-free, high dynamic range output. Typically, the

samples are light paths that come from a path tracer [Kajiya 1986].

Our goal of supporting per-sample processing and built-in in-

variance to sample ordering, requires a novel network architecture:

standard single-pass feedforward neural networks do not support

varying numbers of inputs, and recurrent networks (RNN) are not

permutation-invariant. Indeed, unordered input sets are fundamen-

tally different from time series. We design a novel network architec-

ture that achieves these goals by tightly integrating multiple steps

of per-sample non-linear processing with spatial information shar-

ing through standard convolutional neural networks on per-pixel

summary statistics (Section 3.1).

We train our model on a large-scale dataset of input/output pairs

rendered by path-tracing many randomly-generated scenes. Our

scenes exhibit a variety of complex light transport. The dataset and

training procedure of the network are described in Section 4.

3.1 Network Architecture Overview
Inspired by earlier work [Bako et al. 2017; Vogels et al. 2018], our

model outputs, for each input sample, a kernel indicating how much

the radiance contribution of the sample should affect the final in-

tensity of nearby pixels, instead of directly predicting the output

intensity.

Our overall strategy is to focus on samples instead of pixels,

and build our architecture around the idea of each sample being

able to answer “how should I contribute to nearby pixels, given all
the other samples around me?” instead of every pixel asking “how

should nearby samples influence me?”. This at first seemingly trivial

difference is in fact crucial; our results show superior performance

for the scattering approach. We study the reasons for this using a

didactic example in Section 3.4.

Therefore, for each sample s at pixel (x,y), we want to generate a
kernel that would let it splats to some other pixels (u,v). The final
image I is reconstructed as:

Iuv =

∑
x ,y,s Kxyuvs Lxys∑

x ,y,s Kxyuvs
, (1)

where the kernelKxyuvs encodes the contribution of the sth sample

in pixel (x,y) to the final intensity of the pixel at (u,v). The main

difference with respect to previous gathering approaches is that

the kernel is associated with the sample at (x,y), instead of the

pixel at (u,v). These kernels are complex, nonlinear functions of

all input samples and features parameterized by a neural network.

The division is required for normalization. Note that we normalize

per-pixel, not per-sample. This formulation is not energy-preserving:

it can selectively suppress outliers, at the cost of some energy loss.

We use 21 × 21 kernels.

ACM Trans. Graph., Vol. 38, No. 4, Article 125. Publication date: July 2019.

125:4 • Gharbi, et al.

fully connected network

sample bu�ers

CONTEXT PROPAGATION MODULE

INFORMATION PROPAGATION KERNEL
PREDICTION RECONSTRUCTIONSAMPLE

EMBEDDING

spla�ing

UNet
(see Fig. 6)

output
input samples

FC FC

FC

kernels

concat
average
to pixels

Fig. 3. We develop a novel kernel splatting architecture that maps unordered samples to an image. To support permutation invariance [Aittala and Durand
2018; Zaheer et al. 2017] and process arbitrary number of samples per pixel, we need to process each sample individually while making them aware of the
neighborhood patterns. To achieve this, we generate sample embeddings E for individual samples and average them into context features C for propagating
information. We repeat this process for the sample embeddings and context features to better exchange information. Finally, we produce a splatting kernel for
each sample, similar to previous kernel-predicting methods [Bako et al. 2017]. This results in an architecture that does not change its outcome based on the
order of samples, and is able to process arbitrary number of samples per pixel.

Our architecture is designed to be perfectly invariant to per-

pixel permutations of the samples. We achieve this by splitting the

per-sample feature extraction and spatial information sharing into

alternating steps via the use of two key concepts: individual sample
embeddings and per-pixel context features.

• The sample embedding is a non-linear feature space associ-

ated with each individual sample that is ultimately responsi-

ble for predicting the scattering kernel to nearby pixels. Im-

portantly, the prediction can be implemented independently

for each sample, independent of the number or ordering of

other samples in the current or nearby pixels.

• The context features inform samples about their neighbor-

hood; they are per-pixel averages of sample embeddings that

can be processed using standard convolutional neural net-

works thanks to their fixed dimensionality, unlike the sample

embeddings.

Figure 3 visualizes our architecture, and Algorithm 1 shows a pseu-

docode representation.

3.2 Sample Embeddings and Context Features
After we get the samples with radiance contribution L and auxiliary

feature vector f , the first sample embeddings are computed from

the individual input samples by a small fully connected network

with parameters θ0E applied to all samples separately:

E0xys = FC(Lxys , fxys ; θ
0

E) ∀x,y, s . (2)

Each sample embedding is a vector (with 128 dimensions in our im-

plementation). Importantly, there is no interaction between samples

here, so the effect of the network is invariant to sample ordering.

Fully connected network to all samples can be efficiently imple-

mented using 1 × 1 convolutions on the input sample buffers.

Algorithm 1 Sample-based kernel-splatting denoising.

notations
Lxys , fxys input samples and auxiliary features

θ network weights

Eixysc sample embeddings

Cixyc context features

Kxyuvs kernels

Iuv output image

W ,H ,Ns ,DE image width, height, #samples, embed dim.

procedure Denoise
E0xys = FC(Lxys , fxys ; θ0E) ▷ Per-sample,W × H × Ns × DE
for i = 0 . . .n − 1 do

Cixy = reduce_means (E
i
xys) ▷ Per-pixel,W × H × DE

Ci+1 = UNet(Ci ; θ iC) ▷ U-Net with skips

Ei+1xys = FC(Eixys ,C
i+1
xy ;θ iE) ▷ Per-sample,W × H × Ns × DE

end for
Kxyuvs = FC(Enxys ,C

n
xy ; θK) ▷ Generate kernel

Iuv =
∑
x ,y,s Kxyuvs Lxys/

∑
x ,y,s Kxyuvs ▷ Splat on image

return I
end procedure

To enable coherent sharing of information between samples both

within and across pixels, the sample embeddings E0 are turned into

per-pixel context features C0
by averaging across the sample axis:

C0

xy = reduce_mean

s
(E0xys). (3)

This has two key properties: first, averaging is permutation-invariant,

that is, the ordering of samples within the pixels has no effect on the

result apart from floating-point inaccuracies; second, the result of

ACM Trans. Graph., Vol. 38, No. 4, Article 125. Publication date: July 2019.

Sample-based Monte Carlo Denoising using a Kernel-Splatting Network • 125:5

training error

gather

gather
(larger network)

splat

(d) splat(c) gather (e) gather (larger network)(a) input

center
outlier

3 o�-center
outliers

splat kernelsgather kernels gather kernels
(large capacity network)

(b) target

A

B

101

100

102

103

104

A B A B A B A B A B

Fig. 4. We illustrate the benefits of our kernel-splatting approach with a controlled experiment in which the goal is: given unfiltered samples from a
high-resolution texture, randomly corrupted by high-energy outliers (a), produce a properly anti-aliased and downsampled image (b). We train simple
kernel-predicting networks to solve the problem on a small corpus of bitmaps with randomly added outliers. We purposefully limit the capacity of the
kernel-predicting networks to have 3 convolution layers with 32 channels each. If there were no outliers, the network should simply predict a large Gaussian
kernel for each pixel, which corresponds to the blur kernel we used to compute the target. However, outliers make the task less straighforward. In the gather
case (c), each pixel needs to decide which of its neighbor is an outlier and consequently, the network needs to be able to predict all possible combinations of
Dirac offsets to discard outliers, while still blurring the image. With a limited capacity, a gather-based network cannot learn the full Dirac basis. In order to
minimize the training loss, it reverts to predicting kernels that are smaller than the allowed support (c) and therefore underblurs the image. A splatting network
with the same capacity (d) does not suffer from this limitation. In the splatting formulation, each sample simply needs to decide whether it is an outlier by
looking at its neighbors. If it is not, the network simply outputs the correct Gaussian kernel (d), bottom. Otherwise, it disables the sample’s contribution by
outputting an all-zeros kernel for this sample. The gather approach can be made to work by increasing the network capacity to 6 layers with 256 features each
(e), over a 30-fold increase in the parameter count. With this capacity the gather network can learn the proper Diracs to exclude the central outlier in patch A,
or the three neighboring outliers in patch B (dark areas inside the kernels of (e), bottom). We show the training loss for the three models on the right.

averaging sample embeddings has a fixed dimensionality regardless

of the (potentially non-uniform) number of samples in the pixels.

Thus, the context features can be processed using standard convo-

lutional neural networks that takes a fixed-dimension input. We

feed the context features C0
through a U-Net CNN [Ronneberger

et al. 2015] that outputs a tensor of new features C1
, with the same

dimensionality:

C1 = UNet(C0
; θ0C). (4)

Upon completion, new sample embeddings E1 are computed using

the new context features C1
in each pixel, again by separately ap-

plying a small fully-connected network to each sample embedding,

taking the context feature from its pixel as an additional input:

E1xys = FC(E0xys ,C
1

xy ; θ
1

E) ∀x,y, s . (5)

The steps of updating sample embeddings, average pooling to

context features, and updating context features are iterated for a

few times (we use 3) before the final kernel prediction. This allows

the samples to build a coherent picture of the image neighborhood

and their own role in it.

3.3 Per-sample splatting kernels
Now that each sample is aware of the neighborhood patterns around

it and the distribution of neighboring samples, it can decide which

pixel to contribute to. That is, each sample uses the context as well

as its own features to splat its radiance onto nearby pixels with

weight:

Kxyuvs = FC(Enxys ,C
n
xy ; θK) ∀x,y, s . (6)

sa
m

pl
e

in
de

x

pixels

gather kernel for c
splat kernel for c

a

a

a
bc c c

b
b

(a) gather (b) invalid gather a�er
permutation of a, b

(c) splat

Fig. 5. Our network produces a fixed-size kernel per sample. In this for-
mulation, gather kernels (a) would effectively couple pairs of samples yet
only depend on the center sample. For instance, if samples a and b were
swapped (b), the gather kernel at c would remain unchanged, thus assign-
ing the wrong weight to a. With this permutation ambiguity, the best the
gather network can do is predict uniform weights along the sample index
dimension, which provides no benefit over a simpler pixel-based method.
Splatting avoids this problem and can fully exploit the per-sample informa-
tion because the kernels are directly associated with individual samples,
while avoiding direct inter-sample interactions (c).

This is also a fully-connected network, applied per-sample. The

coordinates u,v index the neighboring pixels. The reconstruction

of the final image can now proceed as per Equation (1).

3.4 Why scatter and not gather?
We argue that scattering, or splatting, is a more natural operation

for the sample-based setting. As a thought experiment, a defocused

sample only needs to figure out its circle of confusion to splat to

other pixels, while in the gathering formulation a pixel needs to

ACM Trans. Graph., Vol. 38, No. 4, Article 125. Publication date: July 2019.

125:6 • Gharbi, et al.

find all samples whose circle of confusion overlaps with it. Sim-

ilarly, from a sample’s point of view, “am I an outlier given my

neighborhood?” is a simpler question, whereas from the pixel’s per-

spective, “is the sample two pixels to the right an outlier?” is a more

difficult question. Figure 4 presents a 2D experiment simulating

anti-aliasing with outliers, demonstrating the difference between

splatting and gathering. The splatting approach results in much

higher performance than gather for a given network size.

It is also difficult to achieve permutation invariance with a sample-

based gathering approach. Splatting avoids the problem. The optima

of the two formulations are fundamentally different and ours is

superior. The gather approach cannot do better than a pixel-space

model because it predicts conservative kernels that are optimal

for the expected sample values. Our splats can adapt to individual
samples. Figure 5 illustrates this.

3.5 Model and implementation details
All the fully-connected networks we use for per-sample operations

consist of a stack of 3 fully connected layers with 128 features each

(implemented as 1 × 1 convolutions on the sample tensor). The

intermediate embedding operators have DE = 128 output features.

The kernel-prediction module outputs 441 = 21 × 21 weights in

log space, which we exponentiate to enforce non-negativity of the

Kxyuvs .

128128128 128128256128

256 256256 256 256512256
maxpool upsample

duplicated features

skip-connection

concat

512512512 conv + leaky relu

Fig. 6. Details of the UNet architecture we use to propagate the context
featues spatially.

The U-Nets use zero-padded 3 × 3 convolutions, 2 × 2 maxpool-

ing operators for downsampling and bilinear interpolation for up-

sampling. The skip connections are concatenation-based. The ar-

chitecture is illustrated in Figure 6. We use leaky ReLU as activa-

tion functions, with a negative slope 10
−2

for both the U-Nets and

the fully-connected networks. We do not use any weight-sharing

scheme, so each sub-network has its own set of parameters.

Implementing the kernel splatting efficiently in current deep

learning frameworks such as PyTorch [Paszke et al. 2017] is not triv-

ial. We do not want to instantiate the full 5D kernel tensor Kxyuvs
in Equation (1) and (6), nor do we want to run into race conditions

when two samples contribute to the same pixel at the same time. We

implement our kernel-splatting operation in Halide [Ragan-Kelley

et al. 2012] and leverage the compiler to inline the 5D kernel com-

putation and generate efficient gradient code for training [Li et al.

2018]. Effectively, this amounts to transposing the kernels and re-

ordering the loops to make our splats as efficient as gather kernels,

without resorting to atomic adds.

4 DATASET AND TRAINING PROCEDURE
Deep learning models require a large amounts of training data. We

procedurally generated a large dataset of around 300,000 renderings

with resolution 128 × 128. We also rendered a validation set of

around 1,000 images following the same procedure, in order to

monitor the training progress. We describe the scene generation

process in Section 4.1.

For each training example, we render a reference image at a high

sample count (4096 samples per pixel) for which we only keep the

per-pixel radiance (averaged over samples); this is our denoising

target. We also render a low sample count input buffer (e.g. 4–32

samples per pixel), but this time we maintain extra information

about the individual sample, stored as auxiliary feature buffers. This

is the input of our model. We give a detailed description of the

features in Appendix A. A few of our training scenes are shown in

Figure 7.

4.1 Scene generation procedure
For our model to generalize, it is important that our training data be

diverse and covers a variety of complex light transport situations.We

developed a random scene generator that produces a combination

of outdoor and indoor scenes. Our indoor scenes were adapted from

the SunCG dataset [Song et al. 2017].

Geometry. To add geometric diversity, we randomly insert extra

objects from the ShapeNet database [Chang et al. 2015] and apply

random geometric transformation (scale, rotation, translation).

For the outdoor scenes, we populate the scene by sampling candi-

date positions on the ground plane using Poisson disc sampling with

randomized radius, within and slightly beyond the camera frustum.

Out of these candidates, we keep up to 50 positions to insert an

object, randomizing its altitude, and object-space transform. For

indoor scenes, we select at random a room from the SunCG dataset,

keeping its furniture. We also add random objects within the room’s

bounding box. We always reject object locations that are too close to

the camera to minimize the number of occluded (all black) images.

Camera and distributed effects. We randomize several camera

parameters including the camera’s field of view, its depth-of-field

settings (focusing distance, aperture), and its shutter speed. For

indoor scenes, we select the camera positions uniformly at random

among the pre-computed positions given in the SunCG data. We

then randomize the camera’s up vector.

We activate motion blur and depth-of-field effects, each with 50%

probability. When motion blur is activated, we add a random linear

translation motion to 50% of the scene objects.

Materials and Textures. We randomize materials per-object, choos-

ing between the various material models offered by PBRT v2 (metal,

glass, mirror, plastic, etc). We slightly bias the distribution towards

diffuse materials (20% of the random choices). We randomly assign

textures and bump maps, with various UV scaling parameters. We

used the Describable Textures Dataset [Cimpoi et al. 2014] as the

source of our textures.

Lighting. We downloaded 111 HDR images from the HDRI Haven

website [Zaal 2016] and used them as environment maps to light our

ACM Trans. Graph., Vol. 38, No. 4, Article 125. Publication date: July 2019.

Sample-based Monte Carlo Denoising using a Kernel-Splatting Network • 125:7

Fig. 7. A selection of the random indoor and outdoor scenes we generate
for training.

outdoor scenes, and some of our indoor scenes. For indoor scenes,

we also randomly add 1 to 5 point or area light sources.

Rejection sampling. Despite our careful parameterization of the

scene generator, sometime the scene is too simple, or renders to

pure black (e.g. the lights or the camera are occluded). We remove

those pathological scenes from our dataset.

4.2 Rendering the input and target data
All our training, validation and testing data is generated with the

PBRT v2 renderer [Pharr and Humphreys 2010]. We use PBRT’s

default perspective camera model and the default path surface inte-

grator. We instrument the pathtracer to save, for each sample, its

radiance and a 74-d vector of features (Appendix A). We fix the path

length to 5 bounces and disable the Russian roulette termination

criterion. We also disable the volume integrator for our experiments.

To avoid discrepancies between the noisy input and the ground

truth rendering, we fix the scaling of ray differentials used by PBRT

for mip-mapping to be independent of the sample count. While

more modern, faster renderers are available, we chose PBRT to facil-

itate the comparison to previous works that are implemented atop

the public PBRT code ([Kalantari et al. 2015; Rousselle et al. 2012,

2013; Sen and Darabi 2012]). We use PBRT’s default low-discrepancy

sampler [Kollig and Keller 2002] to obtain the samples. The ground-

truth images are produced using the same parameters, although at

a higher sample count. For these, the pixel values are obtained from

the samples with a box filter. The set of samples used for the ground-

truth is generated from different random seeds and are independent

from those of the noisy input. This is important to avoid correlation

between the input and target so that, e.g. the network does not learn

to copy outliers. To maximize diversity, we randomize the output

resolution of the output images and render a single random 128×128

crop for each synthetic scene we generate. Varying the resolution

allows us to cover a wide range of spatial frequency content in the

output, without changing the scene geometry or textures.

4.3 Training details
Our network is trained to minimize the expected L2 loss between
our tonemapped output and the tonemapped ground-truth:

EI∼D

(
| |τ (I) − τ

(
Igt

)
| |2
)
, (7)

where τ (x) = x
1+x is the tonemapping operator, D the training

dataset and Igt the ground truth corresponding to our reconstruction
I . At train time, we randomly select a number of samples per-pixel.

Our models are trained with sample counts between 2 and 8. Note

that although our loss favors a specific tone-mapper, our model

outputs linear, high dynamic range radiance. We found that the key

property for stable training is that the loss limits the influence of

overly bright samples.We also experimentedwith the relative L2 and
SMAPE [Vogels et al. 2018] loss functions; both gave qualitatively

similar results.

The weights for the convolutional layers are initialized according

to He et al.’s recommendation [2015] and the biases to 0. We opti-

mize the network parameters using the ADAM solver [Kingma and

Ba 2015]. We found that a batch size of 1 fully utilizes the GPU while

larger batches make the training I/O-bound (each batch contains all

the samples of a 128 × 128 image). We set the learning rate to 10
−4

and leave the remaining parameters of the ADAM optimizer to the

values recommended by the authors. Our model is implemented in

PyTorch [Paszke et al. 2017]. All the models we present were trained

on a NVIDIA Titan X (Pascal) GPU until the loss on a held-out vali-

dation set stopped improving (typically 3–4 days). Because we work

with samples instead of pixel inputs, storage and I/O bandwidth can

become the bottleneck in training our model.

5 RESULTS
Weassembled a dataset of 55 test scenes for evaluation and converted

them to the format expected by our renderer. The scenes were

collected from publicly available sources [Bitterli 2016; Pharr and

Humphreys 2010; Pharr et al. 2016]. Like our training set, these

scenes were rendered using PBRT v2. In addition to previously

published techniques, we compare our model to several baselines in

an ablation study that highlights the benefits of both our per-sample

prediction, and our splatting kernels (Section 5.2).

Throughout this section we evaluate a denoiser’s performance

quantitatively using twometrics: relativeMean Squared Error (rMSE)

and structural dissimilarity [Wang et al. 2004], DSSIM = 1 − SSIM.

We refer the reader to the supplemental material for full-resolution

images and more details on the quantitative evaluation.

5.1 Comparison to previous work
We compare our technique to a state-of-the-art pixel-based deep

denoiser [Bako et al. 2017] as well as previous methods that do not

use deep learning [Bitterli et al. 2016; Kalantari et al. 2015; Rousselle

et al. 2012, 2013; Sen and Darabi 2012]. We use the original, publicly

available implementations for all the methods (with minor code

changes to make them compile with a modern GCC version).

All the methods use a combination of color, albedo, normal and

depth buffers as auxiliary features. Except for Bitterli et al. [2016] and

Bako et al.[2017], the denoisers in our comparison compute features

directly within PBRT, so wemade no attempt to alter them. For these

two methods, we transform our features (averaged per pixel) so they

match the method’s expected format and normalization, including

the specular/diffuse separation, albedo un-premultiplication and log

transform for Bako et al [2017].

ACM Trans. Graph., Vol. 38, No. 4, Article 125. Publication date: July 2019.

125:8 • Gharbi, et al.

input 4spp ours ref. 8192spp[Bako 2017]

Fig. 8. Previous work, like Bako et al. [2017], assume an easy-to-compute,
noise-free albedo buffer is available. In many cases involving distributed
effects (e.g. motion blur, depth-of-field), this assumption does not hold and
computing a clean albedo requires many rays to be cast. In contrast, our
method does not decouple irradiance and albedo and, because it has access
to the individual samples, can denoise the moving or defocused object
properly.

The noisy inputs of our dataset tend to have a very high dy-

namic range, which causes numerical instability in Bitterli [2016].

We remedy this by separating the radiance into a diffuse and a

specular component. We compress the dynamic range of the spec-

ular term with a log-transform and denoise the two components

independently before re-combining them. This modification has

been previously reported to improve the quality of this algorithm’s

output [Bako et al. 2017].

We fine-tuned Bako et al’s deep learning model on our data, since

the authors report their model is expected to generalize poorly when

used with a different renderer than that it was trained with. We

report the test error for both the fine-tuned and unaltered version.

Visual comparisons can be seen in Figure 10. We provide more

comparisons with varying number of samples in supplementary

material. We summarize our quantitative evaluation in Table 1,

testing the methods with various level of noise by changing the

number of samples.

Bako et al. [2017] make the strong assumption that one can

quickly compute a perfectly clean albedo buffer to feed as input to

the network. This assumption is violated when, for example, dealing

with distributed effects like depth-of-field or motion blur. Because

[Bako et al. 2017] divide by the albedo to denoise the irradiance on

diffuse surfaces, their method breaks in this case (Figure 8). This is

particularly striking at low sample counts. It also explains why our

PixelGather ablation (see below) performs better numerically.

5.2 Model ablation
We study the benefits of treating samples individually and kernel

splatting by selectively de-activating them on our architecture, lead-

ing to four choices: PixelGather, PixelScatter, Gather, and Ours.
• PixelGather. We reduce the sample features to mean and vari-

ance and treat this as a one sample per pixel input, and feed

into our architecture. This model is closest to Bako et al.’s

method [2017], but normalizes for architectural difference

and does not use the albedo un-premultiplication.

input 32spp

per-pixel splatper-pixel, gather

reference 8192 spp

per sample, gather ours (per-sample, splat)

rMSE = 10.7

rMSE = 0.023 rMSE = 0.044

rMSE = 0.024rMSE = 0.026

Fig. 9. We show that both treating sample individually and kernel splatting
are necessary for good denoising. We compare to three other baselines by
switching to gather and collapsing samples to pixel statistics. For example,
our sample-based model can more easily separate the radiance contribution
from high-energy, sharp specular light paths from softer global illumination
components (bottom right). All the other baselines produce artifacts that
are dominated by the outlier samples, producing similar artifacts with low-
frequency noise. In this hard scenario, all of the methods fail to reproduce
the extremely undersampled caustics caused by the mirror onto the ground
(see the reference). Our model falls back gracefully and produces a much
cleaner image, even though its rMSE is slightly higher.

• PixelSplat. We reduce to one sample per-pixel like PixelGather,
but we replace the gather kernels by our new splatting oper-

ation.

• Gather. We treat each individual sample independently, but

filter them with gather kernels [Bako et al. 2017].

ACM Trans. Graph., Vol. 38, No. 4, Article 125. Publication date: July 2019.

Sample-based Monte Carlo Denoising using a Kernel-Splatting Network • 125:9

Table 1. Error comparison on the test set with several standard metrics for 4 to 128 sample-per-pixel inputs respectively. Our model was trained on 2–8spp
inputs. We report both the vanilla and finetuned (f.t.) version of Bako et al.’s method [2017]. All the metrics are computed so that a lower value is better. We
provide the full analysis and additional metrics in the supplemental material.

input ours Bako [2017] Bako (f.t.) Bitterli [2016] Kalantari [2015] Rousselle [2012] Sen [2012]

4spp rMSE 17.3054 0.0482 1.0867 0.4932 1.0847 1.5814 2.0416 1.0352

DSSIM 0.4648 0.0685 0.1294 0.1173 0.1014 0.0869 0.1575 0.1009

8spp rMSE 7.4732 0.0382 8.1238 0.8471 0.9149 1.6684 2.0721 0.5670

DSSIM 0.3995 0.0599 0.1190 0.0940 0.0818 0.0708 0.1175 0.0987

16spp rMSE 11.0416 0.0315 21.3297 0.2934 0.9488 1.8151 2.0481 0.3348

DSSIM 0.3373 0.0542 0.1128 0.0762 0.0700 0.0600 0.0898 0.0986

32spp rMSE 16.5478 0.0274 31.4400 0.1427 1.1344 1.7398 1.6447 0.2731

DSSIM 0.2775 0.0510 0.1106 0.0619 0.0630 0.0516 0.0685 0.1005

64spp rMSE 12.0608 0.0261 0.1359 0.1553 0.8747 1.6228 1.6974 —

DSSIM 0.2223 0.0494 0.0407 0.0536 0.0566 0.0393 0.0547 —

128spp rMSE 1.7717 0.0254 0.0757 0.1229 0.9039 1.7394 1.8176 —

DSSIM 0.1750 0.0488 0.0353 0.0432 0.0565 0.0414 0.0466 —

Table 2. We studied the importance of the per-sample computation and the
splatting kernel (as opposed to gather) by selectively turning off these com-
ponents. Both improve the reconstruction error. PixelGather outperforms
Bako [2017]. This is because at low sample counts, the albedo channel is
noisy and the albedo un-premultiplication reduces image quality.

ours Gather PixelGather PixelSplat

4spp rMSE 0.0482 0.0573 0.0823 0.0589

DSSIM 0.0685 0.0744 0.0741 0.0752

8spp rMSE 0.0382 0.0512 0.0882 0.0620

DSSIM 0.0599 0.0635 0.0628 0.0639

16spp rMSE 0.0315 0.0579 0.0539 0.0505

DSSIM 0.0542 0.0556 0.0542 0.0553

32spp rMSE 0.0274 0.0634 0.0431 0.0466

DSSIM 0.0510 0.0506 0.0479 0.0490

64spp rMSE 0.0261 0.0742 0.0417 0.0568

DSSIM 0.0494 0.0475 0.0431 0.0446

128spp rMSE 0.0254 0.0722 0.0398 0.0532

DSSIM 0.0488 0.0455 0.0394 0.0413

Our sample-based splatting network outperforms these alterna-

tives on our test set (see Table 2). Figure 9 compares these alterna-

tives on a modified Cornell box scene with difficult specular light

transport, where the input image is severely contaminated by noise

and outliers. This example shows that both the individual treatment

of the samples and the splatting kernels are required to resolve the

image details and filter out the outliers.

5.3 Performance
Our technique is most beneficial at low-sample counts since its

complexity grows linearly with the number of samples (the fully

connected networks operate per-sample). In practice, for the high

sample count examples, we stream the samples between the GPU

and the main RAM or disk to bound the memory usage. This stream-

ing operation applies to the per-sample processing steps (Equa-

tions (2), (5) and (6)). We report the runtime of several denoisers

including ours, for a few different sample counts in Table 3 below.

The denoisers were evaluated on the same machine (running an 8-

core Intel i7-6900K CPU@ 3.20GHz, and an NVIDIA Titan Xp GPU).

We used the reference implementation provided by the authors for

this benchmark.

Table 3. Runtime cost of several denoisers (in seconds) to process a 1024 ×
1024 image. Our model’s performance scales linearly with the number of
samples. The runtime of pixel-based methods is constant; we report it in the
last column only. The algorithm of Sen et al. [2012] did not terminate for the
two highest sample counts. All the other denoisers remain significantly faster
than what it would take to pathtrace additional samples to convergence.
The PBRT timings are averaged over several renderings of the sanmiguel
scene (see supplemental).

spp 4 8 16 32 64 128

PBRT rendering 15.4 30.6 61.3 121.4 245.1 491.8

ours 6.0 10.1 18.9 35.9 67.0 156.5

Bako [2017] 14.6

Bitterli [2016] 21.9

Kalantari [2015] 10.4

Rousselle [2012] 13.3

Sen [2012] 281.2 638.1 1603.1 4847.8 — —

5.4 Discussions and Limitations
Performance. Instead of focusing on pure performance, our work

is motivated by the fundamental question of how much information

ACM Trans. Graph., Vol. 38, No. 4, Article 125. Publication date: July 2019.

125:10 • Gharbi, et al.

can be extracted from very few samples, where denoising is more

challenging.

For simpler PBRT scenes used for research, our denoiser can use

close to 25% of the total rendering time (Table 3). With more complex

materials, geometry and lighting, production scenes typically take

much longer to render — Bako et al. [2017] report over 100 core

hours to render a single 1920 × 1080 images with 128 samples per

pixel. Since scene complexity does not affect the denoiser’s runtime,

our technique would be most useful in such settings, e.g. to quickly

produce clean previews at low sample rates.

Still, the linear performance scaling of our algorithm as we add

more samples can become an issue. In particular, at much higher

sample counts algorithmic changes would likely lead to a more

efficient solution. For example, in spirit of the histograms of Delbra-

cio et al. [2014], models then could learn to pre-aggregate similar

samples to be denoised together would be more scalable. Storing

the radiance and features for all the samples can also become cum-

bersome at high sample counts. A recurrent formulation may be an

option to avoid storing all the samples when computing the context

features. Such a model would make progressive rendering easier but

would suffer from the lack of permutation invariance with respect

to the samples.

Video denoising. We argue that temporal consistency in video

denoising is an issue orthogonal to maximally exploiting the in-

formation from the samples. Techniques like [Bonneel et al. 2015;

Chaitanya et al. 2017; Schied et al. 2017; Vogels et al. 2018] could be

applied to our model to enforce temporal consistency, and concep-

tually our kernel-splatting model can be easily extended to splat in

the temporal dimension. We nonetheless show an example video

output in the supplemental material, in which each frame (with a

different random seed) is processed independently by our model.

Sample decomposition. While we treat each sample individually,

our samples are still aggregates of information over path length,

BRDF layers, and next event estimations. Previous works have

shown that further decomposing these information can help the

denoising process (e.g. [Mehta et al. 2014; Ward et al. 1988; Zimmer

et al. 2015]). Our aggregation of radiance over the path vertices

means that enabling Russian roulette and generalizing to arbitrary

path lengths is feasible with our current model, although some of

the auxiliary features would need to be adapted or disabled since

we currently store some of the features at each vertex of a depth-5

path (Appendix A).

6 CONCLUSION
We propose a new convolutional neural network for denoising

Monte Carlo renderings. The key innovations that explain the suc-

cess of our method are the use of samples rather than pixel statistics

and splatting rather than gathering. For this, we introduce a new

kernel-splatting architecture that is invariant to input permutations

and accepts arbitrary numbers of samples. We show that our ap-

proach is robust to severe, heavy-tailed noise in low sample count

settings and excels at rendering scenes with distributed effects such

as depth-of-field, achieving significantly-reduced error on our ex-

tensive tests.

A EXTRACTING SAMPLE FEATURES
To properly disambiguate samples from their neighbors, we need

to associate them with features that describe the properties of light

paths. Our network consumes two kinds of features: global, shared
by all samples, and local, specific to each.

Our global features are the lens aperture radius, the camera’s

field of view, and the lens focusing distance. These quantities are

useful to, e.g. determine the circle-of-confusion of each sample for

defocusing effects.

Sample coordinates. For proper anti-aliasing, depth-of-field and

motion blur effects, we record each sample’s (x,y,u,v, t) coordi-
nates, all in the range [0, 1]. (x,y) are the sub-pixel sample position.

(u,v) are coordinates of the ray’s intersection with the camera lens.

They lie in the unit disk. t ∈ [0, 1] is a time coordinate indicating

the moment the sample was taken relative to the camera’s shutter

duration.

Radiance. The radiance samples computed by a renderer typically

have a high dynamic range (covering several orders of magnitude),

in part because of low-probability, high-energy paths like specular

bounces. This high dynamic range is challenging for the stochastic

optimization of the network’s weights. We therefore compress the

sample’s radiance using a log-transform before feeding it to the

kernel-predicting network. Note that while the kernel predictor

consumes log-radiance, the splatting weights still act on the linear
radiance.

We follow previous work [Bako et al. 2017; Chaitanya et al. 2017],

and futher decompose the log-radiance features into a diffuse and a

specular component. Here again, this decomposition only affects

the kernel prediction. In particular, unlike [Bako et al. 2017], we do

not use separate networks to reconstruct the diffuse and specular

components.

Geometry andmaterials. To capture the scene geometry and guide

the denoiser, we attach to each sample the depth and normals at

the first diffuse bounce. We also keep track of the texture hit at the

first diffuse bounce with an RGB albedo channel. We also record 5

boolean features to characterize the material interactions at each

vertex of the light path (reflection, transmission, diffuse, glossy,

specular). Since we fix the path length to 5, this gives 25 features.

Lighting information. We also encode light sampling information.

First, with a binary visibility term for the first bounce and second,

with a pair of angles encoding the sampled light’s direction in the

camera’s spherical coordinates, for each path vertex (1 + 2 × 5 =

11 numbers). Finally, we store the conditional log-probabilities of

sampling this light direction according to the BRDF, and the direct

light sampling algorithm, which accounts for 4 numbers per path

vertex. Overall, the samples are represented as 74 floating point

numbers. Together with the 3 global features, these constitute the

input of the kernel-predicting network.

ACKNOWLEDGMENTS
We thank the anonymous SIGGRAPH reviewers for their valuable

feedback. This work was partially funded by the Toyota Research

Institute.

ACM Trans. Graph., Vol. 38, No. 4, Article 125. Publication date: July 2019.

Sample-based Monte Carlo Denoising using a Kernel-Splatting Network • 125:11

reference 8192spp reference 8192sppinput finetuned [Bako2017] ours

8spp

4spp

4spp

4spp

16spp

32spp

Fig. 10. We compare to previous deep learning denoising method [Bako et al. 2017] on a benchmark containing a variety of lighting scenarios, including
distribution effects and diffuse and specular global illumination. Bako et al.’s method is usually used with a higher sample count, and when this number goes
down, the method fails to distinguish between noise and features, and either oversmoothes or undersmoothes. In contrast, our method is able to reconstruct
crisp images, due to the increased differentiation afforded by samples and our splatting approach. We choose the number of samples to match the complexity
of the scenes. The supplementary material contains more results with different numbers of input samples. In general we found that 8 samples per pixel gives
consistently good results.

ACM Trans. Graph., Vol. 38, No. 4, Article 125. Publication date: July 2019.

125:12 • Gharbi, et al.

REFERENCES
Miika Aittala and Frédo Durand. 2018. Burst image deblurring using permutation

invariant convolutional neural networks. ECCV (2018).

Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan Novák, Alex Harvill,

Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convolu-

tional networks for denoising Monte Carlo renderings. ACM SIGGRAPH (2017).

Pablo Bauszat, Martin Eisemann, S John, and M Magnor. 2015. Sample-based manifold

filtering for interactive global illumination and depth of field. Computer Graphics
Forum (2015).

Pablo Bauszat, Martin Eisemann, and Marcus Magnor. 2011. Guided Image Filtering

for Interactive High-quality Global Illumination. Computer Graphics Forum (Proc.
EGSR) (2011).

Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Fredo Durand. 2013.

5D covariance tracing for efficient defocus and motion blur. ACM TOG (2013).

Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources.

Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitiàn, David

Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly Weighted

First-order Regression for Denoising Monte Carlo Renderings. Computer Graphics
Forum (Proc. EGSR) (2016).

Nicolas Bonneel, James Tompkin, Kalyan Sunkavalli, Deqing Sun, Sylvain Paris, and

Hanspeter Pfister. 2015. Blind Video Temporal Consistency. ACM SIGGRAPH Asia
(2015).

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,

Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruc-

tion of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder.

ACM SIGGRAPH (2017).

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,

Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,

and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. CoRR
(2015).

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. 2014. Describing Textures

in the Wild. CVPR (2014).

Mauricio Delbracio, Pablo Musé, Antoni Buades, Julien Chauvier, Nicholas Phelps, and

Jean-Michel Morel. 2014. Boosting Monte Carlo rendering by ray histogram fusion.

ACM TOG (2014).

Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X Sillion. 2005.

A frequency analysis of light transport. ACM SIGGRAPH (2005).

Kevin Egan, Florian Hecht, Frédo Durand, and Ravi Ramamoorthi. 2011. Frequency

analysis and sheared filtering for shadow light fields of complex occluders. ACM
TOG (2011).

Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Frédo Durand, and Ravi Ramamoorthi.

2009. Frequency analysis and sheared reconstruction for rendering motion blur.

ACM SIGGRAPH (2009).

Eduardo SL Gastal and Manuel M Oliveira. 2012. Adaptive manifolds for real-time

high-dimensional filtering. ACM SIGGRAPH (2012).

Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Kevin Dale, Greg

Humphreys, Matthias Zwicker, and Henrik Wann Jensen. 2008. Multidimensional

adaptive sampling and reconstruction for ray tracing. ACM SIGGRAPH (2008).

Kaiming He, Jian Sun, and Xiaoou Tang. 2010. Guided image filtering. ECCV (2010).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep into

Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. ICCV
(2015).

James T. Kajiya. 1986. The Rendering Equation. ACM SIGGRAPH (1986).

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A Machine Learning

Approach for Filtering Monte Carlo Noise. ACM SIGGRAPH (2015).

Nima Khademi Kalantari and Pradeep Sen. 2013. Removing the noise in Monte Carlo

rendering with general image denoising algorithms. Computer Graphics Forum (Proc.
EG) (2013).

Diederick P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization.

International Conference on Learning Representations (2015).
Thomas Kollig and Alexander Keller. 2002. Efficient multidimensional sampling. Com-

puter Graphics Forum (Proc. EG) (2002).
Jaakko Lehtinen, Timo Aila, Jiawen Chen, Samuli Laine, and Frédo Durand. 2011. Tem-

poral light field reconstruction for rendering distribution effects. ACM SIGGRAPH
(2011).

Jaakko Lehtinen, Timo Aila, Samuli Laine, and Frédo Durand. 2012. Reconstructing the

indirect light field for global illumination. ACM SIGGRAPH (2012).

Thomas Leimkühler, Hans-Peter Seidel, and Tobias Ritschel. 2018. Laplacian kernel

splatting for efficient depth-of-field and motion blur synthesis or reconstruction.

ACM SIGGRAPH (2018).

Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-

Kelley. 2018. Differentiable programming for image processing and deep learning

in Halide. ACM SIGGRAPH (2018).

Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-based optimization for

adaptive sampling and reconstruction. ACM SIGGRAPH Asia (2012).

Michael Mara, Morgan McGuire, Benedikt Bitterli, and Wojciech Jarosz. 2017. An

Efficient Denoising Algorithm for Global Illumination. High Performance Graphics
(2017).

Michael D McCool. 1999. Anisotropic diffusion for Monte Carlo noise reduction. ACM
TOG (1999).

Soham Uday Mehta, JiaXian Yao, Ravi Ramamoorthi, and Fredo Durand. 2014. Factored

Axis-aligned Filtering for Rendering Multiple Distribution Effects. ACM SIGGRAPH
(2014).

Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive rendering based on

weighted local regression. ACM TOG (2014).

Ryan S Overbeck, Craig Donner, and Ravi Ramamoorthi. 2009. Adaptive wavelet

rendering. ACM SIGGRAPH Asia (2009).
Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-

matic differentiation in PyTorch. (2017).

Matt Pharr and Greg Humphreys. 2010. Physically based rendering: from theory to
implementation.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From
theory to implementation.

Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2017. PointNet:

Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR (2017).

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amaras-

inghe, and Frédo Durand. 2012. Decoupling Algorithms from Schedules for Easy

Optimization of Image Processing Pipelines. ACM SIGGRAPH (2012).

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional

networks for biomedical image segmentation. International Conference on Medical
Image Computing and Computer-Assisted Intervention (2015).

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive rendering with

non-local means filtering. ACM SIGGRAPH Asia (2012).
Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. 2013. Robust denoising using

feature and color information. Computer Graphics Forum (Proc. PG) (2013).
Holly E. Rushmeier and Gregory J. Ward. 1994. Energy Preserving Non-linear Filters.

ACM SIGGRAPH (1994).

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla

Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, andMarco

Salvi. 2017. Spatiotemporal Variance-guided Filtering: Real-time Reconstruction for

Path-traced Global Illumination. High Performance Graphics (2017).
Pradeep Sen and Soheil Darabi. 2012. On filtering the noise from the random parameters

in Monte Carlo rendering. ACM TOG (2012).

Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas

Funkhouser. 2017. Semantic Scene Completion from a Single Depth Image. CVPR
(2017).

Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill, David

Adler, Mark Meyer, and Jan Novák. 2018. Denoising with kernel prediction and

asymmetric loss functions. ACM SIGGRAPH (2018).

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality

assessment: from error visibility to structural similarity. IEEE TIP (2004).

Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. 1988. A Ray Tracing

Solution for Diffuse Interreflection. ACM SIGGRAPH (1988).

Greg Zaal. 2016. HDRI Haven. https://hdrihaven.com.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R

Salakhutdinov, and Alexander J Smola. 2017. Deep sets. NIPS (2017).
Henning Zimmer, Fabrice Rousselle, Wenzel Jakob, Oliver Wang, David Adler, Wojciech

Jarosz, Olga Sorkine-Hornung, and Alexander Sorkine-Hornung. 2015. Path-space

Motion Estimation and Decomposition for Robust Animation Filtering. Computer
Graphics Forum (Proc. EGSR) (2015).

M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi, F. Rousselle, P. Sen, C.

Soler, and S.-E. Yoon. 2015. Recent Advances in Adaptive Sampling and Reconstruc-

tion for Monte Carlo Rendering. Computer Graphics Forum (Proc. EG) (2015).

ACM Trans. Graph., Vol. 38, No. 4, Article 125. Publication date: July 2019.

https://benedikt-bitterli.me/resources
https://hdrihaven.com

	Abstract
	1 Introduction
	2 Related Work
	2.1 Denoising for Monte Carlo Rendering
	2.2 Permutation Invariance in Neural Networks

	3 Sample-based denoising network
	3.1 Network Architecture Overview
	3.2 Sample Embeddings and Context Features
	3.3 Per-sample splatting kernels
	3.4 Why scatter and not gather?
	3.5 Model and implementation details

	4 Dataset and training procedure
	4.1 Scene generation procedure
	4.2 Rendering the input and target data
	4.3 Training details

	5 Results
	5.1 Comparison to previous work
	5.2 Model ablation
	5.3 Performance
	5.4 Discussions and Limitations

	6 Conclusion
	A Extracting sample features
	Acknowledgments
	References

