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Abstract

Stochastic techniques for rendering indirect illumination suffer
from noise due to the variance in the integrand. In this paper, we de-
scribe a general reconstruction technique that exploits anisotropy in
the light field and permits efficient reuse of input samples between
pixels or world-space locations, multiplying the effective sampling
rate by a large factor. Our technique introduces visibility-aware
anisotropic reconstruction to indirect illumination, ambient occlu-
sion and glossy reflections. It operates on point samples without
knowledge of the scene, and can thus be seen as an advanced im-
age filter. Our results show dramatic improvement in image quality
while using very sparse input samplings.

Keywords: light field, reconstruction, indirect illumination, ambi-
ent occlusion, defocus, motion blur
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1 Introduction

When generating digital images by simulating light transport, each
pixel is computed as an integral of a multidimensional radiance
function whose dimensions range over image xy, the lens (depth
of field), time (motion blur), incident angle (indirect illumination
and glossy reflection), and light source (area lighting). Such inte-
grals are typically computed using Monte Carlo sampling. Eval-
uating the indirect illumination entails sampling the radiance over
the hemisphere at each visible point, and is notoriously prone to
noise due to the high variance of the integrand caused by visibil-
ity, texture, and illumination. We seek to generate high-quality im-
ages featuring glossy reflections and indirect illumination by intel-
ligently reusing the samples drawn by a stochastic renderer at only
a few samples per pixel.

We cast the problem as that of reconstructing an indirect light
field at shading points, based on samples recorded during an ini-
tial coarse sampling step. The reconstructed light field is then used
in a standard BRDF sampling step to generate the final image. We
assume proper importance sampling is applied, but require no con-
trol over how the samples are generated. Throughout the paper, we
assume direct illumination is computed using other techniques.

We build on recent work that has provided a solid understanding of
the local anisotropies exhibited by the temporal light field [Durand
et al. 2005; Ramamoorthi et al. 2007; Egan et al. 2009; Soler et al.
2009; Egan et al. 2011b]. But while previous sampling schemes
and anisotropic reconstruction filters can capture the essence of the
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Figure 1: We demonstrate that even very noisy and sparse sam-
plings can contain surprisingly much information about light trans-
port and visibility in the scene. In this example, diffuse indirect
illumination was reconstructed from 8 input samples per pixel.

integrand better than naive point sampling in situations such as mo-
tion blur, depth of field, and area lighting, the case for general indi-
rect illumination remains unsolved due to complex visibility, highly
irregular input sampling, and glossy materials.

We contribute a method for adapting to the sampling rate of non-
uniform, sparse, uncontrolled input in both space and angle, a
spatio-angular anisotropic reconstruction method for filtering radi-
ance from the sparse samples, and a robust method for reasoning
about occlusion based on only the input rays. In contrast to a large
body of previous work aiming to reduce noise in global illumina-
tion, we do not utilize the scene geometry in the reconstruction pass.
This gives us the crucial advantage that performance is only weakly
dependent on the scene. In this sense, our algorithm can be seen as
an advanced image filter.

Our algorithm produces megapixel images with glossy reflection,
global illumination, and ambient occlusion in a few minutes. The
results are of dramatically higher quality than was possible using
earlier reconstruction methods, and comparable to using hundreds
of paths per pixel (Figure 1) both visually and in terms of PSNR.

1.1 Related Work

Anisotropic reconstruction Image synthesis involves integrat-
ing a high-dimensional function across the image and auxiliary di-
mensions (time, lens, incident angle, etc.). A body of recent work
concentrates on anisotropy, i.e., the fact that the signal often varies
slowly along certain non-axis-aligned subspaces. Fourier analysis
elegantly reveals that the signal is locally effectively of a lower di-
mension1 in these cases [Durand et al. 2005; Egan et al. 2009]. This
means that samples drawn at one pixel tell us something about the
integrand at other pixels as well, which enables reconstruction of
better images from the same samples.

The recent trend in anisotropic reconstruction can be traced back
to the Multidimensional Adaptive Sampling and Reconstruction
(MDAS) algorithm of Hachisuka et al. [2008]. While numerous
earlier techniques had addressed the generation of samples accord-
ing to the expected variance in the integrand (importance sampling
and adaptive sampling methods), Hachisuka et al. concentrated on

1For example, the 4D integrand over the image and the lens that cor-
responds to a diffuse fronto-parallel planar object that is out of focus is
actually only two-dimensional.
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reconstruction. The authors measure the local anisotropy from the
samples using a structure tensor, and use it for locally warping the
distance metric used for reconstructing the integrand using a high-
dimensional k-nearest-neighbor search (k-NN). This can yield sig-
nificant benefits, but unfortunately, noise and texture may confuse
the anisotropy estimator.

Egan et al. [2009] analyzed the anisotropy in the spacetime inte-
grand of motion blur from first principles through Fourier analysis,
and used predictions of the local spectra for driving adaptive sam-
pling. A sheared filter that allows sharing of samples between pixels
was then adapted to the predicted spectra. Similar analysis and al-
gorithms were presented for soft shadows and directional occlusion
by the same authors [Egan et al. 2011b; Egan et al. 2011a]. While
the analysis is successful in driving adaptive sampling, the sheared
reconstruction filter is less efficient when the direction of anisotropy
changes, either continuously or discontinuously, across the image.
This issue is evident, e.g., in occlusion discontinuities, and force a
fallback to QMC sampling. These issues are addressed by Lehti-
nen et al. [2011], whose algorithm accounts for both the individual
anisotropy information of each sample and discontinuities due to
visibility, producing high-quality results for simultaneous motion
blur, depth of field, and area lighting. The goal of the present work
is to extend this approach to the more challenging and unstructured
case of indirect illumination.

Sample-based algorithms Several techniques, e.g., anisotropic
diffusion [McCool 1999] or a (cascade of) cross-bilateral filter(s)
[Dammertz et al. 2010], post-process the samples or pixels gener-
ated in an initial rendering pass to reduce noise. Sen and Darabi
[2012] improve the quality of cross-bilateral filters by computing
the weights adaptively for each pixel based on apparent dependen-
cies between domain variables, scene features, and sample colors.
While their method can, for example, detect that samples in some
pixels are heavily affected by time, it does not know the magnitude
or direction of the motion. Overbeck et al. [2009] and Rousselle et
al. [2011] describe methods that maintain a basis-representation of
the image and adaptively request more samples from the renderer
to the areas that exhibit high variance.

Shading reuse Several algorithms reuse shading results, radi-
ance or irradiance, while determining visibility with the actual
scene [Ward et al. 1988; Bala et al. 1999; Bekaert et al. 2002;
Gassenbauer et al. 2009]. Sampling is often adaptive and driven
by an error heuristic. In contrast, we do not adapt the sampling but
instead post-process the samples given to us by a separate renderer,
run no light- or scene-dependent preprocessing stages, and do not
require the scene to be resident in the reconstruction phase. This
makes our algorithm much less intrusive for the original renderer.

Geometric resampling Our method for reasoning about occlu-
sion based on samples from the initial sampling has also connec-
tions to ray tracing point-based geometry [Schaufler and Wann
Jensen 2000; Christensen 2008; Ritschel et al. 2009]. These al-
gorithms convert the scene to a point-based representation as a pre-
process, and then compute the solution using that representation.
In contrast, we obtain a sparse set of path segments from a renderer
(which uses whatever representation internally), treat the segments
as samples of the indirect light field, and upsample the solution ac-
counting for angular effects of gloss.

Photons and VPLs Some methods generate a cloud of point
lights (called photons or virtual point lights or VPLs) that repre-
sents the entire indirect light field [Wann Jensen 1996; Keller 1997;
Walter et al. 2005]. They can be seen as a resampling of the in-
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Figure 2: Input data consists of primary and secondary hit points
with corresponding surface normals, the radiance along the sec-
ondary rays, and an angular bandwidth estimate of the reflectance
function at the secondary hits.

tegrand to a form more amenable to final gathering. The original
scene is still necessary for visibility determination.

2 Reconstruction of Indirect Light Field

We seek to render high-quality global illumination while only trac-
ing a small number of rays across the hemisphere at each visible
point. We reuse these rays across many pixels to reconstruct, at
each visible point, an upsampled version of the incoming light field.
The reuse is facilitated by the anisotropy exhibited by the incident
light field [Durand et al. 2005]: provided we can quantify visibility
and angular effects, radiance leaving a point along a ray provides
information about radiance carried by other, nearby rays. For the
entire paper, we disregard direct illumination, and assume it to be
computed separately.

Algorithm overview In a first pass, we use a standard path tracer,
but only draw few samples per pixel, typically 4–16. We store the
rays cast from the visible points into a spatial hierarchy, indexed by
their hit point (Section 2.1). Each ray is a sample of the indirect
light field.

After this, we compute, for each input sample, a spatial radius of
influence that determines how far it will contribute to light field re-
constructions, adapting to the density of input samples in both space
and angle (Section 2.2). We describe a modified k-NN technique
that adapts to the density while accounting for tradeoffs between
space and angle as determined by BRDF gloss. Furthermore, we
need to treat visibility carefully to avoid the “fattening” of small
features and silhouettes when performing reconstruction. We intro-
duce an important step that shrinks the samples if they violate the
visibility of input rays (Section 2.3).

In the second pass, we evaluate the shading equation at each visi-
ble point using a high-sampling-rate reconstruction of the incoming
hemisphere. The key operation is a reconstruction of the 4D in-
coming light field along a given ray. For this, we find all input rays
whose spatial radius overlaps the ray and group them into apparent
surfaces using a visibility heuristic (Section 2.3.2). This handles
two dimensions of the light field. We then reconstruct radiance
from the remaining samples closest in angle in order to handle the
remaining two dimensions (Section 2.4).

2.1 Input and Output

The radiance L from point p towards the camera c is computed by

L(p→ c) =
1

π

∫
Lin(p← ω) fr(p, ω → ωc) cos θ dω, (1)
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where Lin(p← ω) is the light field incident to p from direction ω,
fr(p, ω → ωc) is the reflectance function (we disregard trans-
mittance for simplicity), and the integral is taken over the positive
hemisphere around the normal of p.

The first pass computes and stores samples of Lin(p← ω) using a
path tracer. Each input sample si corresponds to a secondary ray,
and consists of the tuple

s : {x, y, u, v, t, ω} 7→ {L,o,h,no,nh,vo,vh, κ},

where L is radiance, o and h are the origin and hit point of the sec-
ondary ray, no,h and vo,h are their corresponding normals and mo-
tion vectors. The numbers {x, y, u, v, t, ω} are the image, lens, and
time coordinates, and the incident direction in which L(o ← ω)
was sampled. To support angular variation of outgoing illumination
on glossy surfaces, we also store a measure of the angular band-
width determined from the outgoing slice of the BRDF at the hit
point. We use an unnormalized spherical von Mises-Fisher distri-
bution

Ai(ω) = exp(κi (ωi · ω)− κi) (2)

and store κ, its concentration parameter. In particular, κ = 0 for
a diffuse surface and increases with gloss (Section 2.5). Together,
the input consists of an irregular set of ray segments that coarsely
samples the indirect light field (Figure 2).

Given the samples recorded in the first pass, the second pass evalu-
ates

Lout(p→ c) ≈

1

π

1

N

N∑
j=1

RECONSTRUCT(p, ωj) fr(p, ωj → ωc) cos θ (3)

for each primary hit in the input samples, with N � 1. The
total number of reconstruction rays per pixel is thus N × n,
where n is the number of primary hits per pixel. The function
RECONSTRUCT(p, ω) performs the upsampling of the incident
light field based on the input samples.

Assumptions We assume that proper importance sampling is ap-
plied in the input stage. This guarantees that the distribution of rays
generated during the final image reconstruction is similar to that in
the input. Because we cannot hope to recover features not present
in the input, we make the assumption that the input samples faith-
fully represent the true indirect light field, i.e., that they capture its
frequency content. As the density of the input samples is a com-
plex function of the scene, its materials, and the sampler used in
the original renderer, we do not reason about it a priori, but instead
discover the local sampling rate by a modified k-nearest-neighbors
search (Section 2.2). We discuss possible noise in the radiance val-
ues L in Section 4.

We employ a standard light field parameterization, where rays are
encoded by their intersections with two planes: an st plane, and an
uv plane at unit distance from the former. We use the variant where
uv coordinates are measured relative to the st coordinates [Chai
et al. 2000; Durand et al. 2005] and essentially form a linearized
angle. As we seek to reconstruct rays within arbitrary locations and
directions in the scene, we internally store the ray segments using
their 3D hit point, and dynamically reparameterize the light field
around our reconstruction rays [Isaksen et al. 2000].
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Figure 3: Shapes of reconstruction filters in a local parameteriza-
tion around the samples (shown in blue). We use the known angular
bandwidth to drive a modified k-nearest-neighbors search, where
each sample finds the kth sample that falls within acceptable an-
gular limits. This results in spatially narrow samples on diffuse
surfaces (left), and wide samples on glossy surfaces (right).

2.2 Sampling Rate

The spatial and angular distribution of the input samples is deter-
mined by the scene geometry and the reflectance functions of the
primary hits, as the input renderer performs importance sampling
according to them. In order to perform meaningful reconstructions,
we have to adapt to this sampling rate in both space and angle. As
our input carries information about the angular variation in form
of the bandwidth estimate, it remains to balance the known angu-
lar support with the spatial support. Specifically, for diffuse sur-
faces, where outgoing radiance does not vary over angle, the radi-
ance of the input sample can be reused for any reconstruction ray
that passes near the sample in space, no matter how far in angle,
provided visibility is accounted for. For glossy surfaces, where ra-
diance varies over angle, we might need to go further in space to
find an input sample whose direction better matches that of the re-
construction ray.

Along the lines of previous point-based rendering algorithms, we
treat the input samples as circular disks (splats) in 3D on their in-
dividual tangent planes. We determine their size by analyzing the
local sample density. To set the spatial supportwi for sample si, we
search for its kth nearest neighbor in space around its secondary hit
point hi, but only considering samples sj whose direction ωj falls
close enough to ωi. The angle threshold is determined from κi by
requiring Ai(ωj) ≥ 0.5.

To illustrate the effect, first consider an almost diffuse surface. As
the radiance varies slowly over outgoing direction, Ai is almost
constant in angle (angular bandwidth is low and consequently κ is
small), and the search simplifies to a regular k-NN in space. Con-
sequently, the spatial support will be small (Figure 3, left). On
a more glossy surface, the angular bandwidth is higher, causing
the k-NN search to disregard spatially close-by samples in favor of
those closer in angle. Consequently, the support will be wider in
space (Figure 3, right).

We use a metric that penalizes movement in the direction of the
normal to encourage the search for support to favor samples lying
on locally flat regions. Specifically, we use a Mahalanobis distance
that squashes the distance along the normal of each splat by a factor
of α (we use α = 3). This is implemented simply as computing the
Euclidean length of (p− q) + (α− 1)((p− q) · n)n, where n is
the normal.

2.3 Visibility

In addition to spatial filtering, the circular splats are used for resolv-
ing visibility. When performing reconstruction, we need to gather
all input samples whose spatial support is intersected by the recon-
struction ray, reminiscent of previous point-based rendering algo-
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Figure 4: We need to shrink some samples so that the representa-
tion remains faithful to the original sampling. This is a closeup of
ambient occlusion in SAN MIGUEL, shown fully in Figure 8.

rithms [Schaufler and Wann Jensen 2000]. To accelerate this, we
organize the secondary hit points {hi} into a motion bounding vol-
ume hierarchy [Glassner 1988] using the streaming algorithm of
Kontkanen et al. [2011]. During reconstruction, the hierarchy is
used in a standard fashion by walking the BVH and intersecting the
reconstruction ray with the splats in the intersected leaf nodes.

2.3.1 Ensuring Consistent Visibility

In order for our reconstructions to be accurate, the visibility func-
tion induced by the splats should resemble true occlusion in the
scene. However, the preceding k-NN procedure does not guarantee
consistency with the original sampling. Small geometric features
(e.g. leaves of a plant) might only be hit by few input samples, and
when these get enlarged by the k-NN procedure, some rays present
in the input might erroneously intersect them.

To force the representation to be consistent with the input, we ob-
serve that the input rays carry exact information about point-wise
visibility in the scene: we know, with certainty, that a ray from oi

terminated at hi without being blocked in between. Inspired by
this, we retrace all the input rays using the BVH and shrink splats
that intersect rays they should not. Finally, the bounding boxes
of the BVH nodes are recomputed to accommodate the new sizes.
This concludes the preprocessing of the input samples.

The resulting splats faithfully represent the visibility as determined
by the original secondary rays, while adapting to their local density
and causing no spurious occlusions, cf. Figure 4.

2.3.2 Resolving Occlusion

Treating the splats as simple opaque occluders leads to unaccept-
able results, and more sophisticated techniques are required for de-
termining which splats are part of the same surface [Zwicker et al.
2001] to allow filtering between samples.

When reconstructing the radiance for a reconstruction ray, we first
traverse the BVH and collect all input samples whose spatial sup-
port overlaps the reconstruction ray. Once these have been found,
the samples are sorted according to distance from the ray origin,
and then grouped into apparent surfaces. The grouping proceeds
greedily by adding the next sample to the open surface as long as
it does not conflict with any of the samples already in the surface
in terms of visibility. When a visibility conflict is detected (see be-
low), a new surface is started. Note that the operation is entirely
local: it does not make use of samples whose supports are not in-
tersected by the reconstruction ray.

To detect visibility conflicts, we generalize the heuristic of Lehti-
nen et al. [2011] that detects crossings of trajectories in the light
field for defocus and motion blur. A geometric interpretation of
their test is that two samples belong to different surfaces if an event
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Figure 5: Determining visibility consistency for a reconstruction
ray (purple). Left: The event line drawn through the hit points of
samples 1 and 2 intersects the local st plane (white circle) outside
the region of space where both samples face forward. Consequently
their mutual visibility is determined to be consistent and the sam-
ples belong to the same apparent surface. Right: The event line
intersects the lens in the positive half-space of both samples. The
samples are determined to belong to different surfaces.

line, defined as the line that goes through the scene points corre-
sponding to the samples, intersects the lens. However, when recon-
structing the incident light field on the surfaces, the concept of lens
is meaningless. In addition, our rays originate from and terminate
at arbitrary 3D points in the scene.

Our visibility heuristic works by considering the positive halfs-
paces, i.e., points x where (x − h) · nh > 0, defined by the hit
point and normal of each input sample. Visibility conflicts are de-
tected by computing the intersection of the st plane and the event
line formed by connecting the two endpoints hi and hj . If the in-
tersection point lies within the positive halfspaces of both samples,
a conflict is declared, cf. Figure 5.

This approach detects a conflict when two surfaces that are on top
of each other, but allows blending of samples that come from the
same locally flat, convex, or concave surface.

2.4 4D Reconstruction

Once the visibility heuristic has been evaluated and the samples
grouped into apparent surfaces, the samples in the nearest apparent
surface are input rays whose hit points are determined to be visible
from the origin of the reconstruction ray. It now remains to recon-
struct the radiance based on their locations and directions. This
requires adapting to the anisotropy and bandwidth of the light field
around the reconstruction ray.

Consider a situation where a reconstruction ray intersects the spatial
supports of three samples (Figure 6, left). In a local two-plane pa-
rameterization stuv constructed around the reconstruction ray, the
reconstruction ray corresponds to a point at the origin (Figure 6,
middle), and each input ray corresponds to a single point. For each
input sample, the set of all rays that intersect the spatial support
forms a set with planar boundaries (Figure 6, middle). Clearly, the
reconstruction ray belongs to this set.

For a diffuse surface, where angular bandwidth is zero, reconstruc-
tion is simple: we evaluate a spatial filter (tent in our implementa-
tion) at the intersection of the reconstruction ray and the splat, and
take a weighted average among all samples. In a local coordinate
system centered at each sample (Figure 3, left), this corresponds to
a separable 4D filter that is the product of a tent in space and a con-
stant in angle (corresponding to the zero angular bandwidth), and
reparameterization to the stuv coordinates around the reconstruc-
tion ray shears this filter into the anisotropic shape shown (Figure 6,
middle).
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Figure 6: 4D reconstruction from visible samples. Left: The reconstruction ray (purple) intersects three samples. Middle: If the samples lie
on a diffuse surface, their angular bandwidth is zero. The samples are filtered by evaluating a spatial tent filter at the intersection of the ray
with the splat. Right: Glossy surface (see text).

Radiance leaving glossy surfaces varies over outgoing angle, and
we need to account for it by reusing samples whose direction is sim-
ilar to that of our reconstruction ray. The non-zero angular band-
width of glossy samples leads to a wider spatial support as a result
of the bandwidth-aware k-NN search. In a local coordinate sys-
tem oriented with each sample, this is visible as a narrower angular
filter that is wider in space (Figure 3, right). When this filter is
transformed into the stuv coordinate system, we obtain anisotropic
shapes oriented similarly to the diffuse filters (Figure 6, right). We
perform reconstruction by evaluating the transformed filters at the
stuv origin, and picking the sample whose filter has the largest
magnitude. This can be seen as an anisotropic nearest neighbor
filter.

We use nearest neighbor for glossy surfaces to mitigate the effects
of the highly non-uniform angular distribution of our input samples.
Using a linear angular filter noticeably shifts the reconstruction to-
wards the denser sampling, which is visible in the final image as
shifting highlights: angular shifting results in spatial shifts after
propagation. This is not necessary for diffuse reflectance where
outgoing angle plays no role.

Discussion Our filtering scheme accounts for both spatial and
angular bandwidth of the outgoing light field at the input samples.
The spatial and angular dimensions are balanced by the k-NN al-
gorithm used for determining the spatial supports for the samples.
Effects such as curvature and the anisotropy of the incident light
field (for instance, near-field illumination) at the sample points play
a role in how space and angle interact in the outgoing light field,
potentially causing additional shears [Durand et al. 2005]. As our
samples lie on the actual curved surfaces, our input as a whole con-
tains these effects. But as our input does not carry information
about the curvature and the properties of the incident light field, the
reconstruction filters of the individual samples cannot account for
the additional shears. Regardless, our treatment allows faithful re-
construction of glossy surfaces reflecting off other glossy surfaces.
This is demonstrated in the results.

When the reconstruction ray points towards a fronto-parallel sur-
face with uniform angular sampling, our reconstruction procedure
corresponds to performing nearest neighbor in space that has been
warped using a Mahalanobis distance aligned with the anisotropy
of the light field — this renders the isocontours of the filters locally
isotropic.

2.5 Implementation Details

In our prototype implementation, we support the Torrance-Sparrow
BRDF model with the Blinn microfacet distribution (the “Metal”
material in PBRT), and take κ = 4

√
1/r where r is the roughness

parameter of the Blinn distribution [Pharr and Humphreys 2010].
The formula is chosen empirically.

Since PBRT treats geometric primitives as two-sided, we need to
do the same. When a reconstruction ray hits a back-facing splat, it
contributes to visibility similarly to front-facing splats. However,
back-facing splats contribute to radiance only if all splats of the
first surface are back-facing, otherwise their radiance contribution
is ignored.

In rare occasions, a reconstruction ray may hit a surface that con-
sists of only one or two samples. Although the k-NN search tries
to guarantee that this never happens, the subsequent shrinking may
affect the result. This happens, for instance, inside dense foliage
where individual leaves may be hit by only one input sample. To
avoid over-estimating the occlusion, we empirically reduce the splat
size by 1

2
for single-sample surfaces and by 1

3
for two-sample sur-

faces when such undersampling is detected. This treatment affects
less than 1% of the reconstruction rays in our scenes.

The reconstruction results are not particularly sensitive to the
choice of k, and we use k = 12 in all examples of this paper.

3 Test Results

We have implemented our algorithm as a standalone library that
takes a buffer of samples as input, and modified PBRT [Pharr and
Humphreys 2010] to generate the input. We have produced both
a multicore CPU and a GPU implementation of the reconstruc-
tion algorithm, and our test platform is a 3.2GHz quad core Intel
Core i7 and NVIDIA GTX480. All result images were rendered at
1280×720 (720p).

In this section, we first test reconstruction of indirect illumination
in diffuse scenes, followed by glossy reflections. We then perform
more targeted tests and demonstrate that our occlusion heuristic al-
lows faithful reproduction of visibility. We use ambient occlusion
as a test case because its quality is directly determined by the ac-
curacy of visibility. Finally, we show results for defocus and mo-
tion blur. We focus on the quality of the reconstructed images, and
postpone discussion about scalability, memory consumption, and
extensions to Section 4. We compare our results to methods that,
similarly to us, reconstruct the image based on a small number of
“fat” samples [Lehtinen et al. 2011; Dammertz et al. 2010; Sen and
Darabi 2012].

The auxiliary material contains all of the uncompressed images that
are shown or referred to in this section.

3.1 Indirect Illumination in Diffuse Scenes

We reconstruct multi-bounce diffuse global illumination in SAN
MIGUEL lit with an area light source (Figure 7). The input contains
8 samples per pixel (leftmost inset). We reconstruct the incident
light field over the hemisphere at visible points, and integrate to
produce the result (third inset from the left), as per Equation 3. We
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pay no special attention to the fact that the radiances L of the input
samples contain noise due to the multiple bounces rendered by the
path tracer. Our reconstruction is more true to ground truth (second
left) than the comparison methods, A-Trous wavelets [Dammertz
et al. 2010] (fourth inset from left) and random parameter filtering
(RPF, last one on right) [Sen and Darabi 2012]. We use both com-
parison methods for reconstructing incident irradiance, i.e., before
multiplication by texture.

Rendering the 8 spp input with PBRT takes 36.6s. Our reconstruc-
tion with 256 reconstruction rays per pixel on the GPU takes 189.5s.
Of this, preprocessing, including building the BVH, sizing the sam-
ples using k-NN, and shrinking the samples using the input rays
takes 9.5s. The rest is spent on reconstruction rays. This is consid-
erably more efficient than rendering the similar-quality 512 spp im-
age with PBRT, which takes 3910.5s, or 18x longer than combined
input+reconstruction. Our 256 spp result exhibits significantly less
noise than PBRT’s 256 spp rendering, thanks to our spatial filtering
of the samples. Notice that our ability to perform image antialiasing
is limited by the number of primary hits in the input samples.

The supplemental video contains a short animation rendered from
8 input samples per pixel using 512 reconstruction rays per pixel.
Each frame is processed in isolation; no temporal filtering of any
kind is employed. The result demonstrates the temporal stability of
our reconstruction even from severely noisy input.

Comparison methods A-Trous is an iterative approximation to
a cross-bilateral filter, with the twist that when spatial support
widens between iterations, the range filters tighten. This allows
the application of a very large spatial filter without disproportion-
ate blurring. The original implementation uses three range filters:
color, normal, and world-space position. Since our input is very
noisy, and we do not wish to clamp the input samples’ energies, we
chose not to use color as a range filter (using it gave worse results).
While the quality leaves some room for improvement, the A-Trous
filter is efficient: our CPU implementation takes 58s in this scene.

Since no reference implementation of random parameter filtering
(RPF) is available, we reimplemented it by following the authors’
detailed guidelines [Sen and Darabi 2011]. RPF is a sophisticated
cross-bilateral filter that automatically tunes the weights for each
feature, at each pixel, based on mutual information between do-
main variables, scene features (position, normal, texture, etc.), and
radiance. Their input samples are almost identical to ours. Unfor-
tunately, the original formulation of RPF makes heavy use of the
color channel as a range filter, requiring special treatment for bright
samples (“HDR clamp”), which essentially discards high-energy
spikes. This loses a significant amount of energy, up to 50% in
our tests. We modified their algorithms to reinsert the lost energy
evenly to all samples within the pixel. Our reasonably tuned CPU
implementation filters the image in 2895s, roughly in line with their
results. We estimate a 10x possible speedup from a GPU port. We
use the parameters recommended in the authors’ guidelines.

3.2 Glossy Reflection

Figure 9 shows MONKEY HEADS, a scene with three statuettes of
decreasing gloss2 on a glossy ground plane. The scene is lit by
single-bounce indirect illumination from a distant point light source
(direct illumination not shown), and consequently the input samples
are noise-free. The input contains 8 samples per pixel. Our result
is computed using 512 reconstruction rays per pixel. A-Trous and
RPF results are shown below. We noticed the results for A-Trous

2The roughnesses are 0.01, 0.05 and 0.25 for the statuettes and 0.01 for
the ground plane.

could be significantly improved by introducing an additional range
filter over the normal of the secondary hit, which is conveniently
present in our data. We present this extension in our comparison
results in addition to the original algorithm.

Our results are significantly closer to ground truth than either com-
parison method both visually and in terms of PSNR (38.6dB vs.
31–33dB). The full-size images are provided in the auxiliary mate-
rial for closer inspection. In particular, we reconstruct the position
and sharpness of the reflections faithfully, thanks to the 4D treat-
ment of the input samples that accounts for both space and angle.
Figure 10 demonstrates the importance of accounting for angular
effects. While the comparison methods produce smooth results,
the reflections have shifted noticeably and are not as sharp as they
should. Note that unlike the comparison methods, we use the ren-
dering system (PBRT) to evaluate the BRDFs of the final bounce
towards the eye, as per Equation 3.

While closely matching ground truth, our algorithm is currently
2.6x slower in this scene than the reference method. This is mainly
due to the extreme geometric simplicity of the scene, which plays to
our disadvantage because our algorithm scales weakly with scene
complexity (Section 4). Our spatial hierarchy does not currently
include angular subdivisions [Arvo and Kirk 1987], and we may
therefore process redundant splats on glossy surfaces, where the
spatial supports are larger (Section 2.2). Another possible improve-
ment is discussed in Section 4. Regardless, the result demonstrates
that the information required for reconstructing high-quality reflec-
tions is present in the sparse input, and that our algorithm correctly
extracts it to produce a high-quality result.

3.3 Ambient Occlusion

Our algorithm can be easily used for rendering ambient occlusion
by bypassing the radiance filter and thresholding the distance to the
closest apparent surface found. Figure 8 shows our ambient occlu-
sion reconstruction in SAN MIGUEL. Although the scene contains
fine geometric features such as grooves and vegetation, our recon-
struction from only 4 input samples per pixel is in very close agree-
ment with the ground truth computed using 2048 samples per pixel.
In this case, image antialiasing is particularly limited since the in-
put contains only 4 primary hits per pixel. The GPU execution time
was 145 seconds for 256 reconstruction rays per pixel at 720p.

In contrast to the ambient occlusion technique of Egan et
al. [2011a], we do not resort to brute force Monte Carlo sampling
of the original scene at all.

3.4 Motion and Defocus

Finally, we demonstrate the generality of our reconstruction by ap-
plying it to motion blur and defocus (Figure 11). Specifically, in-
stead of secondary rays, we now store the primary rays cast from
a lens, and reconstruct the incident temporal light field at differ-
ent points on the lens instead of indirect lighting at scene points.
We use the BUTTERFLIES dataset from Lehtinen et al. [2011] and
compare against their publicly available implementation.

Our result is slightly more accurate, approx. 1 dB in terms of PNSR.
The images are available in the supplemental material. Our better
result is explained by our better adaptation to the input sampling
rate. They use a worst-case radius derived from the dispersion of the
sampling pattern, which tends to blur in-focus geometry slightly,
but may still result in lack of support in regions of the temporal light
field that contain features that are visible from only a small fraction
of the lens and shutter interval. In contrast, our k-NN approach
adapts to the local sampling density, leading to sharp results in well-

To appear in ACM Transactions on Graphics 31(4)



PBRT (512 spp) Input (8 spp) PBRT (512 spp) Our reconstruction A-Trous RPF

Figure 7: Diffuse global illumination in SAN MIGUEL. Only indirect illumination is shown. Our result upsamples the 8 spp incident light
field using 256 reconstruction rays per pixel. The supplemental material contains the full images.

Input (4 spp) Our reconstruction Ground truth (2048 spp)

Figure 8: Our reconstruction of ambient occlusion from 4 input samples per pixel, compared to 2048 spp ground truth from PBRT.
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Ground truth (8192 spp from PBRT)

Input 8 spp (20.3dB)

Our (38.6dB), diff x2

A-Trous (31.5dB), diff x2

A-Trous + secondary normal (32.3dB), diff x2

RPF (32.1dB), diff x2

Figure 9: Glossy reflectance. The closeups show differences from
the ground truth (multiplied by 2). Our result upsamples the inci-
dent light field from 8 to 512 samples per pixel. The full uncom-
pressed images are provided as auxiliary material.

sampled areas, and better support for the lower sampling density
areas, as demonstrated in Figure 12.

Our reconstruction takes 3–4x longer than the algorithm of Lehti-
nen et al., primarily because they use a specialized 2D hierarchy in
post-perspective space, essentially tailoring the data structure to the
known distribution of reconstruction rays (they all originate from
the lens). As our focus is reconstructing the incident light field at
arbitrary points in the scene, we use a true 3D hierarchy.

Our result No angular bandwidth

Figure 10: Disregarding angular effects, effectively treating all
surfaces hit by secondary rays as diffuse, has a large negative im-
pact on the result.

Figure 11: Motion blur and depth of field rendered using our algo-
rithm using 1 sample per pixel as input. Please refer to the supple-
mental material for images showing input data and ground truth.

4 Discussion

Scalability and memory consumption The execution time of
our algorithm scales linearly with the number of reconstruction
rays, but is only very weakly affected by the structure of the scene
and the number of input samples. For example, increasing the num-
ber of input samples from 1 to 8 in SAN MIGUEL increases the ex-
ecution time by only about 40%. Also, SAN MIGUEL takes only
80% longer to reconstruct than CORNELL with the same parame-
ters, even though the original model contains about 5–6 orders of
magnitude more geometry, and has much more challenging struc-
ture (foliage vs. straight walls).

Memory consumption is almost completely determined by the num-
ber of input samples. Each sample consists of 30 floating-point
numbers, totaling up to ∼1GB at 720p with 8 input samples per
pixel, independent of scene structure. In addition, the BVH con-
sumes about 80MB with these parameters, again almost indepen-
dently of the scene structure. All other memory usage is negligible.

Recursive filtering With very low input sampling rates, artifacts
can appear near corners: when we integrate over the hemisphere, a
large fraction of the reconstruction rays may hit the same few sam-
ples. If the samples are noisy, the reconstructed image can suffer
from structured artifacts, as demonstrated in Figure 13. In this ex-
ample, CORNELL was rendered with up to eight-bounce indirect
illumination from a point light at 1024×1024 with only one sam-
ple per pixel. The multiple bounces lead to noise in the samples’
radiances. We implemented an experimental step that reduces vari-
ance by performing a quick reconstruction of the incident lighting
at the secondary hits and replacing the secondary hits’ radiances
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Our reconstruction [Lehtinen et al. 2011]

Figure 12: Close-up of a pinhole reconstruction from BUTTER-
FLIES. Lehtinen et al. [2011] do not adapt to the local density of
the input samples and fail to reconstruct the marked regions. Our
novel visibility heuristic reproduces the correct visibility.

with the reconstructed values before reconstructing incident light-
ing at the primary hits. In this scene, performing this step with
16 reconstruction rays adds less than 10% to execution time, and
almost completely removes the artifacts. As a result, our recon-
struction matches the ground truth closely, accurately preserving
the boundaries of indirect shadows. Image antialiasing is still miss-
ing, because we have only one primary ray per pixel. Notice that
the black borders near the corners are present in the ground truth
PBRT rendering as well.

Glossy GI with noisy samples It should be possible to general-
ize the recursive filtering to more reliable handling of highly spec-
ular surfaces. In the extreme, it is clearly not very useful to recon-
struct incident radiance onto a mirror from sparse samples. Instead
it would make more sense to reconstruct at the next path segment
to remove the noise on the surface seen in the mirror. Since our
reconstruction works in 3D, it should be possible to extend it to
walk forward in the path segments adaptively based on the angular
bandwidth of the reflectance function.

Information content We find it interesting that even very sparse
input samplings can contain nearly all of the relevant information
about visibility and light transport, particularly in diffuse scenes.
For example, in diffuse CORNELL one input path per pixel allows
an essentially perfect reconstruction of indirect illumination, and
even in the much more complex SAN MIGUEL four samples per
pixel yields very good reconstructions.

Multi-layer materials Most realistic material models are built
from multiple layers. It would be interesting to extend our work
to reconstruct the layers independently. For example, a varnished
wood consists of an almost-diffuse base layer, a specular top layer,
and the two are mixed according to a Fresnel term. Treating the two
layers separately would allow very broad reuse of the samples from
the base layer, while the glossy top layer could only be used from
a narrow set of directions. Overall this would allow broader reuse
than collapsing the layers beforehand and selecting the maximum
bandwidth for the sample.

Sheared filters In contrast to sheared reconstruction of (tempo-
ral) light fields [Egan et al. 2009; Egan et al. 2011b] where recon-
struction and integration are combined to a single, large filter, we
perform integration over incident angle numerically. This allows us
to reason about the anisotropy of each input sample individually,

Input (1 spp) Ground truth (2048 spp)

Our without recursive step Our with recursive step

Figure 13: Multi-bounce indirect illumination in Cornell box re-
constructed from 1 spp input. Recursive filtering removes the arti-
facts in corners.

but prevents a clean frequency analysis due to the non-translation-
invariant nature of our reconstruction filters. However, in simple
uniformly sampled planar scenarios, our filter reduces to earlier lin-
ear sheared formulations.

Failure cases The proposed algorithm can fail if the scene con-
tains higher-frequency shading and visibility than what the input
sampling rate can capture. For example, a sparse sampling of hair
will probably not suffice to accurately describe its visibility and
shading. In these cases the resulting reconstruction is consistent
with the input sampling, but may not be faithful to the original
scene. The foliage in our diffuse results is an example of difficult
visibility that is handled gracefully at low sampling rates. Also,
the distribution of input rays, which is driven by reflectance at the
primary hits, may be insufficient to capture very high-frequency an-
gular effects (e.g., a mirror) at the secondary hits. This would lead
to slight blurring in the reconstructed light field.

Specialized hierarchies Our bandwidth-aware k-NN produces
a hierarchy that serves two purposes: it is used to resolve visibility
and also to guarantee that we find the nearby splats with similar
angular support. An alternative design would be to have separate
hierarchies for the two tasks. In that design, the visibility hierarchy
would ignore angular bandwidth and implement the shrinking step.
The second hierarchy would take bandwidth into account and omit
shrinking. This slightly more complicated approach could improve
the execution speed in case of very glossy materials.
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