
Deep Joint Demosaicking and Denoising
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Figure 1: We propose a data-driven approach for jointly solving denoising and demosaicking. By carefully designing a dataset made of rare
but challenging image features, we train a neural network that outperforms both the state-of-the-art and commercial solutions on demosaicking
alone (group of images on the left, insets show error maps), and on joint denoising–demosaicking (on the right, insets show close-ups). The
benefit of our method is most noticeable on difficult image structures that lead to moiré or zippering of the edges.

Abstract

Demosaicking and denoising are the key first stages of the digital
imaging pipeline but they are also a severely ill-posed problem that
infers three color values per pixel from a single noisy measurement.
Earlier methods rely on hand-crafted filters or priors and still exhibit
disturbing visual artifacts in hard cases such as moiré or thin edges.
We introduce a new data-driven approach for these challenges: we
train a deep neural network on a large corpus of images instead
of using hand-tuned filters. While deep learning has shown great
success, its naive application using existing training datasets does
not give satisfactory results for our problem because these datasets
lack hard cases. To create a better training set, we present metrics to
identify difficult patches and techniques for mining community pho-
tographs for such patches. Our experiments show that this network
and training procedure outperform state-of-the-art both on noisy and
noise-free data. Furthermore, our algorithm is an order of magnitude
faster than the previous best performing techniques.

Keywords: deep learning, demosaicking, denoising, data driven
methods, convolutional neural networks
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1 Introduction

Demosaicking and denoising are simultaneously the crucial first
steps of most digital camera pipelines. They are quintessentially
ill-posed reconstruction problems: at least two-thirds of the data is
missing and the existing data is corrupted with noise. Furthermore,
complex aliasing issues arise because the red, green and blue chan-
nels are sampled at different locations and at different rates. while
most image areas are easy to address, the rare challenging regions
can still lead to catastrophic failure and visually disturbing artifacts
such as checkerboard patterns, zippering around edges, and moiré.

For modularity, demosaicking and denoising are often solved in-
dependently and sequentially. This unfortunately leads to error
accumulation because demosaicking needs to cope with unreliable
samples and denoising suffers from the non-linear and variable per-
pixel noise introduced by demosaicking. It has long been recognized
that exploiting the regularity of natural images is key to lifting under-
determination. Traditional techniques have hard-coded hand-crafted
heuristics into local filters [Cok 1987; Laroche and Prescott 1994;
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Buades et al. 2009]. Heide et al. [2014] proposed a joint solution to
denoising and demosaicking by embedding a non-local natural im-
age prior into an optimization approach. However, their prior is still
hand-crafted and the combination of optimization and a non-local
prior leads to a steep increase in computation cost.

In contrast, we address demosaicking and denoising jointly using
a data-driven local filtering approach for efficiency. We train our
model on a large set of ground truth data to optimally leverage
regularities found in natural images. We build on the success of
deep learning and convolutional neural networks, e.g. [LeCun et al.
2015]. While data-driven local-filtering has been explored previ-
ously [Klatzer et al. 2016; Tian et al. 2014; Lansel and Wandell
2011], assembling a quality training set is always key and we found
that the characteristics of demosaicking and denoising make this a
challenge, in particular because catastrophically hard inputs are rare
and because salient artifacts are not well captured by standard image
metrics. Another challenge is that deep learning often requires to
train a new network or to fine-tune an existing one for even slightly
different instances of a problem. This is particularly problematic
for issues such as sensor noise, whose strength varies with the ISO
setting, and other imaging characteristics.

Our contributions to joint denoising-demosaicking are a Convolu-
tional Neural Network capable of handling a wide range of noise
levels and a procedure to build a training set rich in challenging im-
ages prone to moiré and artifacts. We demonstrate that our approach
enables higher-quality results than previous work and runs faster on
both CPU and GPU.

2 Related Work

Demosaicking is a well-studied problem and most algorithms per-
form well in flat regions of the image. But all tend to struggle around
strong edges and textured areas (Figure 1). This leads to conspicuous
artifacts such as zippering, color moiré and loss of detail. Many
approaches derive edge-adaptive interpolation schemes to control
such artifacts [Laroche and Prescott 1994]. A popular solution is
to design nonlinear filters that avoid interpolating across the strong
local edges [Li et al. 2008]. The key ingredient for demosaicking
is to leverage cross-channel dependencies to recover details beyond
the Nyquist frequency of each channel. Correlations between color
channels can be captured by the smooth hue prior [Cok 1987] where
color ratios or differences are modeled as smoothly varying signals.
Algorithms based on this heuristic interpolate channels sequentially
starting with the luminance component i.e. green channel [Zhang
et al. 2009; Chang and Tan 2004]. The demosaicked green channel
is then used to guide the chrominance interpolation. In these tech-
niques, image quality is adversely affected when the smooth hue
heuristic does not hold, leading to false color (Figure 1). Hirakawa
et al. [2005] use median filtering on color differences to mitigate
the effect. But such post-processing techniques have drawbacks like
excessive blurring, and do not fundamentally change the issue of
color moiré. We propose to replace hand-crafted filters by a ma-
chinery that can jointly interpolate the three color channels, is fully
trainable and can learn to disambiguate error-prone patterns directly
from natural images without relying on hard-coded heuristics.

Self-similarity and data-driven demosaicking Recent methods
overcome the ill-posedness of demosaicking by exploiting local self-
similarity in natural images and fill in the missing color information
from similar neighboring patches [Buades et al. 2009; Zhang et al.
2011]. He et al. [2012] use SVM regression to learn on-line a demo-
saicking process tailored to the input image. Another approach to the
demosaicking problem is to employ machine-learning. Kwan et al.
[2004] adopt a classification approach to select one of two discrete

directions of interpolation with hand-designed features. Some tech-
niques employ fully connected shallow neural network architectures
with small spatial footprints [Go et al. 2000; Kapah and Hel-Or
2000]. Early data-driven techniques used simple architectures and
hard-coded heuristics. They were trained on small datasets of up
to a few hundred images, and do not compare favorably with the
state-of-the-art. This has been attributed to the lack of appropri-
ate training datasets [Zhang et al. 2009]. Learning-based methods
enable experimentation with new sensor designs and alternative mo-
saick patterns [Lansel and Wandell 2011; Tian et al. 2014]. In this
work, we gather a dataset of millions of difficult patches from online
photo collections according to the severity of the artifacts produced
by a baseline demosaicking method. We train a model directly from
the input mosaick to the final color image and achieve state-of-the
art quality.

Joint denoising and demosaicking Demosaicking is further
complicated by the presence of noise. Estimates of edge orientation
in noisy data are less reliable which leads to noticeable artifacts in
the demosaicked image. The techniques that perform these steps
sequentially usually start with denoising [Park et al. 2009]. A no-
table exception, Akiyama et al. [2015] first denoise the Bayer array
viewed as a four-channels quarter-resolution image. Recent attempts
have shown the advantages of joint approaches [Hirakawa and Parks
2006; Condat and Mosaddegh 2012]. Jeon and Dubois [2013] opti-
mize a set of filters for discrete noise levels. Heide et al [2014] use a
global primal-dual optimization with a self-similarity prior. The near-
est neighbor search and the iterative nature of the algorithm makes it
slow and somewhat impractical. Khashabi et al. [2014] demonstrate
a learning approach that generalizes to non-Bayer mosaick patterns.
Klatzer et al. [2016] use a sequential energy minimization approach
which can be interpreted as a convolutional network with trainable
activation functions and where intermediate layers are constrained
to output a color image. Klatzer et al. can learn a noise model
from data but this model is tailored to a single noise level and fixed
after training. Instead, we expose a runtime parameter and train our
network so it adapts to a wide range of noise levels.

Neural networks for image processing Convolutional neural
networks (CNN) have revolutionized classification problems in com-
puter vision [Krizhevsky et al. 2012; Szegedy et al. 2015; Simonyan
and Zisserman 2014]. They are also rapidly becoming a mainstream
tool in image processing tasks like pixel-wise object segmentation
[Long et al. 2015; Badrinarayanan et al. 2015; Noh et al. 2015],
depth and normals estimation from a single image [Eigen et al. 2014;
Wang et al. 2015], view interpolation [Flynn et al. 2016], deconvolu-
tion [Xu et al. 2014], filter approximation [Xu et al. 2015], image
colorization [Cheng et al. 2015; Zhang et al. 2016; Larsson et al.
2016; Iizuka et al. 2016], style-transfer [Gatys et al. 2016], optical
flow [Dosovitskiy et al. 2015a], image inpainting [Eigen et al. 2013;
Pathak et al. 2016] and image synthesis [Dosovitskiy et al. 2015b].

3 Convolutional Neural Network for Joint De-
mosaicking and Demoising

Demosaicking and denoising have traditionally been addressed us-
ing nonlinear filter design, incorporating prior heuristics about inter-
and intra-channel correlation, behavior around edges, and exploit-
ing intra-image patch similarity. A convolutional network seems a
natural choice for the problem in this context. First, it enables dis-
covery of natural correlations in the data. Second, the network can
represent a superset of the pipelines implemented by many previous
techniques while all its parameters are optimized jointly to minimize
a single objective.



Figure 2: Our proposed architecture. The first layer of the network packs 2 × 2 blocks in the Bayer image into a 4D vector to restore
translation invariance and speed up the processing. We augment each vector with the noise parameter σ to form 5D vectors. Then, a series of
convolutional layers filter the image to interpolate the missing color values. We finally unpack the 12 color samples back to the original pixel
grid and concatenate a masked copy of the input mosaick. We perform a last group of convolutions at full resolution this time to produce the
final features. We linearly combine them to produce the demosaicked output.

A network alone is not sufficient to tackle denoising/demosaicking.
We will see in § 4 that the choice of training data has critical im-
pact, especially because difficult inputs are rare yet cause visually
disturbing artifacts.

We cast joint denoising and demosaicking as a supervised learning
problem: we train our algorithm on a set of input measurements for
which the desired output is known. We create the training set from
millions of sRGB images, generating the corresponding mosaicked
arrays by leaving out two color channels per pixel and adding noise.
We then build a convolutional neural network and train it in an end-
to-end fashion. The inputs are the mosaicked array M with a single
channel per pixel and an estimate σ of the noise level; the output is
an image O of the same size with a RGB triplet per pixel. We start
our exposition focusing on demosaicking and then discuss noise.

3.1 Network architecture

We use a standard feed-forward network architecture to implement
our demosaicking operator (Figure 2). Our network is composed of
D + 1 convolutional layers. Each convolution layer has W outputs
and uses kernels of size K ×K. We denote by F d the feature map
of the d-th layer. In addition to the input mosaick M, the network
takes as input an estimate of the noise level σ. We first describe the
general architecture of the network. Details on how σ comes into
play can be found in § 3.2. Since the Bayer mosaick is ubiquitous,
we specialize our network to exploit its structure. We show however
in § 5 that our approach generalizes to non-Bayer patterns.

We first rearrange the samples of the Bayer input mosaick to obtain
a quarter-resolution multi-channel image which makes the spatial
pattern translation invariant with a period of 1 pixel and reduces
the computational cost of the subsequent steps. The first layer F 0

extracts 2×2 patches from M and packs them as a 4 channel feature
map indexed by c.

F 0
c (x, y) = M

(
2x+ (c mod 2), 2y +

⌊ c
2

⌋)
(1)

The bulk of the processing is performed at this lower resolution
by the next D layers. They share the same structure and consist
in convolutions with a bank of filters of spatial footprint K × K
followed by a point-wise ReLU non-linearity f (·) = max(0, ·).

F dc = f

(
bdc +

W∑
c′=1

wdcc′ ∗ F d−1
c′

)
for c ∈ {1 . . .W} (2)

bdc is a scalar bias for the c-th channel of layer d, and wdcc′ is a
two-dimensional convolution kernel of size K × K. Each layer
uses a total of W 2 such filters. The final low-resolution feature
map FD has 12 channels instead of W (and accordingly uses 12W
filters). These final features correspond to the color samples of a
2 × 2 neighborhood. We upsample them back to full-resolution,
reversing the process of Equation 1. We also concatenate masked
copies of the input mosaick M as channels in FD+1. The masks mc

effectively isolate the RGB color samples on three distinct channels.

FD+1
c (x, y) = mc(x, y)M(x, y) for c ∈ {1 . . . 3} (3)

FD+1
c (x, y) = FDc′

(⌊x
2

⌋
,
⌊y
2

⌋)
for c ∈ {4 . . . 6} (4)

Here c′ = 4(c−4)+1+(x mod 2)+2(y mod 2). This implements
a form of residual network: we fast-forward the identity mapping
to deeper layers, thereby allowing the network to learn a residual
instead of the absolute mapping. Propagating the identity through
many non-linear layers is harder an uses more parameters than with
this shorcut [He et al. 2016]. However, we do not force the network
to use both the fast-forwarded identity and the non-linear stack in
fixed proportions but rather let it learn the appropriate mix: we
perform a last convolution (Equation (2)), at full resolution this time,
to produce FD+2. The final output O of the network is an affine
combination of the last feature maps FD+2.

Oc(x, y) = bO
c +

∑
c′

wO
cc′F

D+2
c′ (x, y) (5)

Overall we opted for a thin (small W ), deep (large D) architecture
that is most similar to that of [Simonyan and Zisserman 2014]. We
experimented with networks of depth fromD = 5 up to 20. For each
convolutional layer, we used kernels with spatial footprint K = 3.
The network thus implements a non-linear filter with a receptive field
of 2D(K − 1)+K +1 pixels with respect to the input’s resolution.
We pad the input of each convolution layer by K−1

2
pixels on each

side so that the spatial dimension does not decrease with depth. The
network thus also learns the boundary condition and does not reduce
the dimensions of the input image, which would happen if we were
to keep only the valid part of the convolutions. While processing
the image at full-resolution with the color masks of Equation (4)
directly applied to the input mosaick is possible (§ 5), it incurs a
higher computational cost since the network then processes four
times as many pixels. This also reduces the receptive field of the
final layer. We did not find this alternative approach to significantly
affect the denoising/demosaicking performances.



3.2 Joint denoising with multiple noise levels

A combination of Poisson and Gaussian noises in linear space accu-
rately models camera noise [Foi et al. 2008]. Because we work with
white-balanced gamma-corrected sRGB images, we use an additive
Gaussian noise model as [Jeon and Dubois 2013] recommends.

We want to alleviate the need for a specialized network for each
noise level. Instead, we train a single network on a continuous
range of noise levels and explicitly add the noise level as an input
parameter to the network. At training time and for each new input
M, we randomly sample a noise level σ ∈ [σ1, σ2]. We corrupt
M with a centered additive Gaussian noise of variance σ2 before
feeding it to the network. We also provide the network with the
scalar estimate of the noise level σ as extra input (Figure 2). In
practice, since camera model and settings are stored alongside the
raw data and one can rely on offline noise calibration, the noise level
is typically known and used to inform demosaicking. In order to
incorporate this new information into the convolutional architecture,
we spatially replicate the noise level to match the input dimensions
of the first layer F 0 and concatenate it as an extra channel: F 0

now has 5 channels (Figure 2). [Burger et al. 2012] used a similar
approach for denoising-only in a non-convolutional setup.

3.3 Training procedure

At training time, we use a dataset D = {(σi,Mi, Ii)}i of
mosaicked/ground-truth image patches where Mi is generated from
Ii and corrupted with additive white Gaussian noise of variance σ2

i

on-line. We optimize the weights and biases by minimizing the
normalized L2 loss on this training set:

L
({
w(d), b(d)

}
d

)
=

1

p2|D|
∑
i

||Oi − Ii||2 (6)

In all our experiments, we use a patch size p = 128 pixels for the
training samples. The filter weights w(d) are initialized according to
[He et al. 2015] and the biases b(d) are first set to 0. The optimization
is carried out by ADAM [Kingma and Ba 2014], a flavor of stochastic
gradient descent that maintains an adaptive estimate of the first
and second order moments of the gradient and uses them to be
independent of any diagonal rescaling of the gradient. We use a
batch size of 64, and an initial learning rate of 10−4. We used an
L2 weight decay of 10−8 on w(d). All other parameters are left at
the value recommended by the authors. As learning progresses, we
decrease the learning rate by a factor 10 whenever the validation error
on an independent dataset stalls, typically twice, after 10 epochs.
In our experience, higher initial learning rates fail to converge to a
good solution. The training is performed with a customized version
of CAFFE [Jia et al. 2014] on a NVIDIA Titan X, and usually takes
2-3 weeks.

4 Training Data

When trained on standard datasets, our neural network works well
on average but produces disturbing artifacts on a number of hard
cases, the common plague of demosaicking and denoising. These
challenges are due to two important issues. First, hard cases are
rare and get diluted by the vastly more common easy areas. Second,
metrics such as L2 or PSNR fail to notice demosaicking artifacts
that are salient to humans.

We now present an algorithm for detecting challenging patches
and focus the training on them using a combination of adaptive
training based on human visual difference predictors and a new
metric optimized to detect moiré artifacts.

We first train a network on standard datasets and use it to demo-
saick and denoise millions of ground-truth photographs in order to
mine for hard cases. We look for two classes of artifacts frequently
missed by the network: luminance artifacts and color moiré. In-
spired by curriculum learning [Bengio et al. 2009], we adaptively
build a new dataset composed of these artifact-prone patches. We
use this dataset to fine-tune or train the network from sratch. This
improves the model’s performance on difficult cases and can be seen
as reweighting the loss function to give more weight to artifact-prone
patches. Below, we discuss our selection strategy and the metrics
we use.

4.1 Ground-truth and mosaicked image

We start with a large number of sRGB images downloaded from
the web to generate ground truth data. We create a mosaick from
each image, add noise, and use this pair for training. We restrict
our selection to images with at least 16 Mpix to favor higher quality
images. To avoid biasing the network towards distortions caused by
the camera pipeline that first created the downloaded images, we
downsample them by a factor 4 using bicubic interpolation and use
this as ground-truth. While more complex downsampling techniques
are possible [Khashabi et al. 2014], they do not help in our context:
our training images are JPEG-compressed and come from unknown
and diverse sources.

We create the mosaicked and noisy image M by retaining only one
color channel per pixel according to the Bayer pattern from the
sRGB image. We also augment patches from the training set with
random rotations in 90◦steps, random left-right mirror images, and 1-
pixel shifted copies in either dimension. This augments the training
data by a factor 32× and provides some rotational and translational
invariance.

4.2 Challenging patches are rare

Publicly available demosaicking datasets contain a few hundred
images which is insufficient for training the thousands of parameters
of a deep network. Instead, we trained our first network using 1.3
million images from Imagenet [Deng et al. 2009] and 1 million
images from MirFlickr [Huiskes and Lew 2008]. While this network
matches the PSNR statistics of previous work, a closer inspection
reveals artifacts near thin edges and complex textures (see Figure 3).
Large quantity of training samples do not guarantee convincing
demosaicking.

A random selection of images is mainly composed of smooth patches
as these dominate natural images [Levin et al. 2012]. Challenging
structures only make up a small fraction, shown as the tail of the
patch distribution in Figure 4. Smooth patches account for a majority
of the training time, even though results on such cases are already
perceptually indistinguishable from ground truth. We compensate
for this by assembling a training set with more difficult patches.

4.3 Mining hard patches

We create a database of difficult patches by applying the first network
(trained on Imagenet) to millions of new patches we download from
the web and retaining the failure cases. We detect patches that pose
two specific challenges: luminance artifacts around thin structures
(e.g. zipper) and color moiré. We use separate metrics to detect these
cases. Rejecting trivial cases effectively reweighs the loss function
(Eq. (6)) towards challenging ones.

Salient luminance artifacts We first use the perceptually based
HDR-VDP2 [Mantiuk et al. 2011] to detect luminance artifacts
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Figure 3: A network trained on a standard image dataset (second
row) creates noticeable artifacts in its output such as the zippering
on the thin yellow line, confusion around curves in the first and
last example, and moiré in the third example. When training the
same network on our new dataset of difficult cases, these artifacts
are mostly gone (third row). The last row shows the difference map
between the two network outputs, and the first row is the ground-
truth image. (best viewed in digital form)

our dataset

Imagenet+MirflickR

PSNR (dB)

percentage of patches

challenging patches
useful for training

Figure 4: Most of the patches in a generic training dataset (here
Imagenet and Mirflickr) are easy cases for modern demosaicking
algorithms (in this figure, we measure the PSNR of AHD [Hirakawa
and Parks 2005]). For a network to perform well in challenging
situations, it needs to be trained on challenging patches, i.e., on
data that lies on the tail of the patch distribution. This plot shows
that our dataset contains more such patches. Further, not shown
in this figure is the fact that demosaicking failures on our patches
lead to more visually unpleasant artifacts: we explicitly selected the
patches for this reason.

around thin edges. We have found that standard metrics like PSNR,
SSIM, S-CIELAB do not capture perceptual artifacts as convincingly
as HDR-VDP2. It has also been empirically shown to correlate
well with human judgement for simpler demosaicking [Sergej and
Mantiuk 2014]. It compares the visibility of local artifacts as well
as overall image quality to a reference. It models the response of

reference LDI-NAT demosaicked HDR-VDP2 prediction

Figure 5: HDR-VDP run on the demosaicked output of LDI-NAT
[Zhang et al. 2011]. First, row full image. Second row, HDR-VDP
correctly detects the zipper pattern due to luminance variations. It
signals some anomalies in the output image but with a low proba-
bility of detection. It works only on luminance, therefore misses the
chrominance moiré artifacts.

the human visual system including phenomena such as spectral
sensitivity, luminance adaptation and frequency masking and is
calibrated against contrast sensitivity measurements. For each new
image, we apply demosaicking using the pre-trained network. We
then compare the network’s output to the ground truth using HDR-
VDP and compute a probability of artifacts at each pixel. We smooth
the probability map using Gaussian blur (σ = 3) and extract up to 30
local maxima if the artifact probability exceeds 0.1. This resulted in
2,489,180 problematic patches from 1,393,107 15.2 Mpix images
(∼ 3% of total pixels). We adjusted the metric to approximate the
response of a human viewing a 2560× 1600 30-inch sRGB display
from a distance of 1m. HDR-VDP detects high-frequency luminance
artifacts (Fig. 5a); training our network on these patches yielded
drastically improved results. The metric however misses color moiré
artifacts because it only analyzes the luminance channel (Fig. 5,
bottom row).

Moiré and aliasing Moiré is an interference pattern caused by
aliasing. Repetitive details close to or smaller than the resolution of
the sampling grid can give rise to artificial low frequency patterns.
Mosaic images have their color channels at spatial offsets; moiré
appears as distracting false color bands (Fig.6b) after demosaicking
because of erroneous interpolation of color samples. The effect
of aliasing is best understood in the Fourier domain because it in-
troduces undesirable frequencies. We quantify moiré artifacts by
measuring the change in frequency content from the ground-truth
I to the demosaicked image O image. We first convert both I and
O to the Lab space and compute the 2D Fourier transform of each
channel FI(ω) and FO(ω) respectively. We then compute the gain



(a) input (b) demosaicked
output

(c) error (d) amplitude gain in
the Fourier domain

Figure 6: Frequency Gain due to moire

of the demosaicked image with respect to the input at each frequency.

ρ(ω) =

{
log
(
|FO(ω)|2+η
|FI(ω)|2+η

)
if |ω| ≤ r

1 otherwise
(7)

We only compare the gain in frequencies lower than r to mitigate
boundary effects and high-frequency noise. We smooth the gain map
with Gaussian blur and mark the patch as aliased if the maximum
gain value across all channels and frequencies exceeds a threshold t.
For 128× 128 patches, we set the the low-pass radius r = 0.95π,
the standard deviation of the Gaussian kernel to 3, and gain map
threshold to t = 2. This criterion consistently selects moiré-prone
patches. Figure 6 shows the gain map for an aliased patch.

These moiré patches are rare; they lie at the end of the tail of natural
patch distribution (Figure 4). We found 0.05% of patches from 2
million images patches are aliased. Nonetheless, these artifacts are
important because they can still affect large areas of an image (e.g. a
128× 128 patch), making it unusable.

5 Results

We evaluate our network in various conditions. Unless stated other-
wise, all the experiments in this section use a network with D = 15
layers (each with W = 64 3 × 3 filters) trained from scratch on
2,590,186 128× 128 hard patches. The network has 559,776 train-
able parameters. We stop the training when the error on a separate
validation set of 4000 images stops decreasing. We test all tech-
niques on another dataset of 2000 images. All three datasets are
independent and have been mined in the same fashion, as described
in Section 4. Half of the test set was mined using the HDR-VDP
metric (we refer to this half as the vdp test set). The other half was
assembled using the moiré metric (we refer to it as moiré). The pa-
rameters of competing techniques are set to the values recommended
by their authors, often tuned on the Kodak/McMaster datasets in-
cluded in our comparison. Our main metric is PSNR where the
error is averaged over pixels and color channels before taking the
logarithm.

First, we compare our algorithm against previous work on the
demosaicking-only task with noise-free sRGB images (Table 1, in
particular no denoising is applied). This evaluation illustrates that
high PSNR statistics can obscure subtle perceptual artifacts: we
demonstrate this on hard cases from our testing dataset (Figure 9).
We then present our results on demosasicking noisy inputs, which
we refer to as joint denoising and demosasicking (Figure 7). Al-
though our network is trained on 8-bits sRGB data, we also evaluate
our network on linear RGB data (Table 2) and non-Bayer mosaicks.
This shows that our approach generalizes to other demosaicking con-
ditions. We finally describe implementation details and show that
our algorithm is faster than the previous best-performing methods
on both CPU and GPU.

Demosaicking noise-free images We first evaluate our algo-
rithm on noise-free inputs from two common demosaicking datasets:
McMaster [Zhang et al. 2011] and Kodak [Li et al. 2008]. Table 1
(first two columns) show that our network outperforms the previous
techniques on these datasets. These results alone however are not
sufficient because these datasets are known to have flaws and to
misrepresent the statistics of digital images [Levin et al. 2012]. To
provide a more accurate depiction of the demosaicking challenges,
we also compare our technique with the state of the art on a testing
set of 2000 hard cases not seen during training (Table 1 third and
fourth columns). Our method produces consistently better results
quantitatively and the improvement is also visually significant (Fig-
ure 9). Our network (trained on difficult cases) successfully handles
complex patterns and generates artifact-free results. We also com-
pare to the widely used Adobe Camera Raw software. Results for
all the datasets and techniques can be found in the supplemental
material. Since the test images are noise-free, no denoising has been
applied in this experiment.

kodak mcm vdp moiré

bilinear 32.9 32.5 25.2 27.6
Adobe Camera Raw 9 33.9 32.2 27.8 29.8
Klatzer* [2016] 35.3 30.8 28.0 30.3
Gunturk [2002] 35.8 33.2 29.3 31.3
Lu [2010] 36.0 33.4 29.4 31.4
Li [2005] 36.1 33.1 29.2 31.5
Hirakawa [2005] 36.1 33.8 28.6 30.8
Condat [2011] 35.5 33.3 28.4 30.9
Condat [2012] 36.1 33.6 29.6 31.9
Jeon [2013] 36.4 34.0 27.8 30.4
Hirakawa [2006] 36.5 33.9 30.0 32.1
Hamilton [1997] 36.9 35.2 28.9 30.9
Zhang [2005] 37.3 34.7 30.3 32.4
Buades [2009] 37.3 35.5 29.7 31.7
Zhang (NLM) [2011] 37.9 36.3 30.1 31.9
Getreuer [2011] 38.1 36.1 30.8 32.5
Heide [2014] 40.0 38.6 27.1 34.9
ours 41.2 39.5 34.3 37.0

Table 1: PSNR comparison of our approach to state of the art
techniques on the demosaicking-only scenario. First and second
column show evaluation on standard datasets. Third and fourth
column show comparisons on our datasets containing images prone
to luminance artifacts and color moiré respectively. No denoising is
applied for any of the competing methods. (*) For Klatzer et al., we
used the published model which was trained on linear data and ran
it on linearized images. The training code was not available at the
time of publication.

Training set and training time We initially trained our network
on the 1.3 million images from Imagenet [Deng et al. 2009] and
1 million from MirFlickr [Huiskes and Lew 2008] instead of our
dataset of difficult cases. Despite reaching competitive PSNR levels
(on-par with FlexISP [Heide et al. 2014]), the network produced
noticeable artifacts, mainly along thin structures and moiré-prone
textures. We believe that this is due to the inherent bias of these
standard datasets towards trivial cases like smooth patches or unam-
biguous edges. Training a network on the difficult cases significantly
improves visual quality (Figure 3). We found that fine-tuning the
Imagenet+MirFlickr network or retraining from scratch worked
equally well. All the results we report are trained from scratch on
the hard examples only. Accuracy is numerically competitive after
a day of training but image quality improves with longer training.



Week-long training is common with deep networks and has no im-
pact on the practicality of our approach since it is done only once
before the algorithm is deployed.

Joint denoising and demosaicking results We now present re-
sults for joint denoising and demosaicking (Figure 10). We train on
images corrupted with continuous levels of noise σ ∈ [0; 20]. Simi-
lar to previous work, we model noise in the white-balanced gamma-
corrected images as signal-independent white Gaussian noise [Jeon
and Dubois 2013]. During evaluation, we tested images at 6 levels
of noise within the range used for training (Fig. 7). Our results
consistently outperform previous techniques on all noise levels.

We also experimented with networks trained on a single noise level
instead of continuous levels and did not observe noteworthy change
in result quality (Fig. 7). This suggests that the network is already
optimally trained, and does not require fine-tuning for each noise
level.

noise level

Figure 7: PSNR comparison joint denoising and demosaicking at
different levels of Gaussian noise with standard deviation σ. The
metric is averaged across all four datasets from Table 1: mcm, kodak,
vdp, moiré.

Processing linear data Khashabi et al. [2014] suggest that de-
mosaicking should be evaluated on raw RGB data with an affine
noise model [Foi et al. 2008; Hasinoff et al. 2010]. In previous
experiments, we instead trained and evaluated on sRGB to facilitate
comparisons with state-of-the-art techniques that choose to do the
same. Without any further training on linear data or affine noise
models, our sRGB trained network outperforms the best techniques
on the MSR 16-bits linear Panasonic testing set [Khashabi et al.
2014] (Table 2). Since noise parameters for individual images are
not provided in this dataset, we estimate the average noise variance
and use it as our noise parameter. We also fine-tuned our network
on our dataset of hard cases linearized from sRGB and observed
virtually the same performance. This shows that our network is not
restricted to sRGB data and generalizes well to linear data. Real
RAW training data would be ideal, but available datasets do not
contain enough challenging cases: we observed no quality improve-
ment when training on MIT5k [Bychkovsky et al. 2011] or the MSR
training set. Figure 8 shows the output of our algorithm on real
(linear) RAW images captured by a Canon 5D mark II at various
ISO levels.

Alternative mosaick patterns With a few simple modifications,
our method generalizes to non-Bayer patterns. We experimented
with the Fuji X-Trans pattern. Compared to the Bayer network
illustrated in Figure 2, we no longer process the image at quarter
resolution. Instead, the mosaicked input RGB values are kept at

noise-free with noise
linear sRGB linear sRGB

bilinear 30.9 24.9 – –
Hamilton [1997] 36.7 30.0 – –
Hirakawa [2005] 37.2 31.3 – –
Zhang (NAT) [2011] 37.6 31.6 – –
Gunturk [2002] 38.2 31.0 – –
Lu [2010] 38.3 31.0 – –
Zhang (NLM) [2011] 38.4 32.1 – –
Zhang [2005] 38.8 31.7 – –
Getreuer [2011] 39.4 32.9 – –
Khashabi [2014] 39.4 32.6 37.8 31.5
Heide* [2014] 40.0 33.8 – –
Klatzer [2016] 40.9 34.6 38.8 32.6
ours 41.6 35.3 38.4 32.5
ours (f.t.) 42.7 35.9 38.6 32.6

Table 2: Evaluation on linear data for both noise-free and noisy
data. We report PSNR in both linear and sRGB space. We feed
a single estimate of the average noise level to our network a test
time. We also fine tuned our network to linearized sRGB. Among
all competing techniques, only Khashabi[2014] and Klatzer [2016]
techniques were specifically designed for linear data. Results on
noisy images are excluded from the table for methods that do not
attempt to denoise.

full-resolution on separate planes: we remove layers F 0 and FD+1.
The X-Trans pattern is 6x6 pixels; this would imply a much more
aggressive downsampling. At train time, we apply a color mask
to the ground truth that converts it to the non-Bayer mosaick. We
trained this modified network from scratch for three days on our
dataset of hard-cases. We evaluate this new network on the MSR
Panasonic X-Trans dataset [Khashabi et al. 2014]. The table below
shows that our algorithm consistently performs better than previous
techniques.

linear sRGB

Khashabi [2014] 36.9 30.6
Klatzer [2016] 39.6 33.1
ours 39.7 33.2

Variations on the network configuration Using as few as D =
7 layers has a minimal impact on general accuracy, but patches
prone to moiré are significantly degraded: they benefit from the
large spatial footprint of the deeper network. W = 64 filters per
layer worked well, using W = 128 was superfluous and W = 32
decreased the PSNR.

Running time Unless stated otherwise, we benchmark all meth-
ods with 1MPix images on an Intel Core i7-3770K and GeForce
Titan 700 and report the average time over 10 runs. Our technique is
linear in the pixel count. Superlinear competitors can be made to run
in linear-time by processing the image in tiles. We use the Halide
image processing language [Ragan-Kelley et al. 2013] to implement
our network. Our CPU implementation of a D = 15 layers network
is 8× faster than ATLAS Caffe [Jia et al. 2014] and 3.5× faster
than Caffe with Intel’s Math Kernel Library. It processes image
at 3s/Mpix on a modern desktop CPU. Our approach is up to two
orders of magnitude faster than previous high-quality techniques
that use global optimization like FlexISP [Heide et al. 2014] and
other non-local techniques [Zhang et al. 2011] (Table 3).
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Figure 8: Our algorithm trained on sRGB data generalizes to real (linear) RAW images. It successfully removes color moiré on the fabric at
various noise levels whereas dcraw does not (first and second rows). In comparison, Klatzer et al. [2016] does not generalize well to widely
different noise levels: it denoises too aggressively the ISO100 image (first row), and produces artifacts on the ISO6400 image (second row).
This is particularly visible on the smooth wall. Our output is free of checkerboard patterns and staircase artifacts (third row). DCRaw exhibits
these artifacts on the red lettering and Klatzer et al. has checkboard on the blue line on the right.

CPU (ms/Mpix) GPU (ms/Mpix)

bilinear 127 –
Hamilton [1997] 385 –
Condat [2011] 566 –
Lu [2010] 737 –
Li [2005] 1117 –
Hirakawa [2006] 1618 –
Gunturk [2002] 1991 –
Hirakawa [2005] 2998 –
Condat [2012] 11,211 –
Jeon [2013] 14,728 –
Zhang [2005] 30,642 –
Khashabi [2014] 36,157* –
Zhang (NLM) [2011] 264,243 –
Zhang (NAT) [2011] 1,700,510 –
Heide [2014] 1,815,111 3000*
Klatzer [2016] 3,560,510 1600*
ours 2,932 325

Table 3: Runtime of different demosaicking algorithms in their
publicly available implementations. Our approach is faster than
previous high quality techniques like FlexISP [Heide et al. 2014].
Timings with an asterisk (*) are reported from the respective original
paper.

Limitations Our approach relies on image metrics to detect chal-
lenging patches and build a ground-truth dataset. We used HDR-
VDP for luminance artifacts, but it is not perfect and we can ben-
efit from a better metric. Also, if the sRGB ground truth is cor-
rupted with color moiré, our network will learn the corruption; a
no-reference moiré detector is required to alleviate this.

6 Conclusion

We demonstrated that a joint approach based on a deep neural net-
work can significantly improve the quality of demosaicking and
denoising. It can resolve even challenging situations that usually re-
sult in zippering or moiré artifacts. However, traditional supervised
learning must be adapted because the vast majority of image regions
are easy to address and the real hard cases do not occur enough and
and are not well characterized by even advanced perceptual image
metrics. We proposed an adaptive approach as well as a new moiré
detection metric to tackle these challenges. Our method outperforms
state-of-the-art solutions in terms of both perceptual and statistical
visual quality, while being an order of magnitude faster.
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