Computational photography
MIT 6.098, 6.882
Bill Freeman, Fredo Durand

 Finish digital forensics
* Analyzing multiple images
— Shapetime photography
— Image stacks
* Analysing and synthesizing motion sequences
— Motion without movement
— Motion magnification
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Analyzing multiple images
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Multiple-exposure images by Marey

Strobe photograph by Edgerton

Other photographs by Doc
Edgerton

What hardware was needed to make
these photographs?

Strobe light, capacitor, thyristor...




Computational photography

Surely we can update those photographic
techniques, adding the generality and
flexibility of digital methods. Analyze and re-
render the images.

Computational photography

Fredo and Bill describing computational
photography:

« Fredo: using computation to make better
guality photographs—to enhance.

« Bill: using computation to reveal things
about the world that we otherwise couldn’t
see—to reveal.

How display a single-frame summary of
multiple frames?
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Typical frame

Average over 50 frames




Median filter over time

Vector median filter (20x20 patchs)

2x2 vector median 2x2 vector least median

Shapetime photography

Joint work with Hao Zhang, U.C. Berkeley
2002

Video frames

Multiple-
‘exposure
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Figusre 4: () Layer assignments, without MRF processing. (b)
Shape-time image based on those assignments. () Most proba-

ble layer assignments, computed by MRE. (d) Resulting shape-
time image.

number of pixels in the image.
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“how to sew”

Input sequence




Z-cam, made by 3DV
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http://www.3dvsystems.com

3DV camera operation

Object I'ransmitted

pulse

http://www.3dvsystems.com

3DV camera operation

Object Returned 350 Om

pulse

http://www.3dvsystems.comv

3DV camera operation

Camera

http://www.3dvsystems.com

RGB image

Z image




shapetime video image

Zitnick et al, Siggraph 2004

Show Michael Cohen slides, a selection
from:

http://research.microsoft.com/~cohen/FindingMa
giclnAnimageStack.pdf

To appear in the ACM SIGGRAPH *04 conference proceedings

Interactive Digital Photomontage

Aseem Agarwala!  Mira Dontcheva!  Maneesh Agrawala®  Steven Drucker®

Brian Curless'  David Salesin'?  Michael Cohen®

"niversity of Washington Microsoft Research

Alex Colburn®




In our case, we define the cost function C of a pixel labeling L as
the sum of two terms: a data penalty C, over all pixels p and an
interaction penalty C; over all pairs of neighboring pixels p,q:

CL) = Y GpLp) + LCp. g, L(p). L@)) (D)
r P4
For our application, the data penalty is defined by the distance to

the image objective, whereas the interaction penalty is defined by
the distance to the seam objective.

Designated color (most or least similar): the Euclidean distance in
RGB space of the source image pixel SL(p) (p) from a user-specified
target color. We supply a user interface for the selection of a pixel
in the span that is used as the color target.

Minimum (maximum) leminance: the distance in luminance from
the minimum (maximum) luminance pixel in a pixels span.

Minimum (maximum) likelihood: the probability (or one minus
the probability) of the color at SL(p) (p). given a probability distri-
bution function formed from the color histogram of all pixels in the
span (the three color channels are histogrammed separately, using
20 bins, and treated as independent random variables).

Eraser: the Euclidean distance in RGB space of the source image
pixel §, Lp) (p) from the current composite color.

Minimum (maximum) difference: the Euclidean distance in RGB
space of the source image pixel SL(p)(P) from S, (p), where S, isa

user-specified source image.

Designated image: 0 if L(p) = u, where S, is a user-specified
source image, and a large penalty otherwise.

Centrast: a measure created by subtracting the convolution of two
Gaussian blur kernels computed at different scales [Reinhard et al.
2002].

We define the seam objective to be 0 if L{p) = L(g). Otherwise, we
define the objective as:

X if matching “colors™
_ Y if matching “gradients”
Gilp.q.L(p). L(g)) = X+Y if matching “colors & gradients]
X/Z  if matching “colors & edges”

where
X = ”SL(P)(P) _SL(q) Pl + ||SL(p)(Q) _SL(q) (@)l
Y = ||VSL(p)(P) - VSL(Q)(P]” + ”VS,r_,(p)(‘i'] _VSL(Q)(‘?)”
Z = EL(P)[P~(1] + EL(q) (p.q))

and VS;(p) is a 6-component color gradient (in R, G, and B) of]
image z at pixel p, and E;(p.q) is the scalar edge potential between
two neighboring pixels p and g of image z, computed using a Sobel
filter.
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Figure 12 From a set of five images (top row) we create a relatively clean
background plate using the maximum likelihood objective (middle row, left).
The next two images to the right show that our result compares favorably to
a per-pixel median filter, and a per-pixel maximum likelihood objective, re-
spectively. An inset of our result (bottom row, left) shows several remaining
people. The user paints over them with the eraser objective, and the system
offers to replace them with a region, highlighted in blue, of the fourth input
image. The user accepts this edit, and then applies gradient-domain fusion
to create a final result (bottom row, middle). Finally, using a minimunm like-
lihood image objective allows us to quickly create a large crowd (bottom
right).
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Demonstrate MSR group shot program,
downloadable from

http://research.microsoft.com/~cohen/
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http://research.microsoft.com/projects/GroupShot/
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Analyzing and synthesizing
motion
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Aperture Problem and Normal
Flow

Aperture Problem and Normal
Flow

Aperture Problem and Normal
Flow




Aperture Problem and Normal
Flow

Aperture Problem and Normal
Flow

Aperture Problem and Normal
Flow

Optical flow constraint equation

Brightness should stay
constant as you track

motion I(X+U&,y+v&,t+&): I(X, y,t)

1t order Taylor series,
valid for small St

[(x, y,t)+udtl, +vétl, +atl, = 1(x,y,t)

Constraint equation

ul, +vl, +1,=0

“BCCE” - Brightness Change Constraint Equation

Aperture Problem and Normal
Flow
The gradient constraint:

Lu+lv+1 =0

@ VlieU =0

Defines a line in the (u,v) space

v
Normal Flow: j>\
u —_LLI u
TR \

Combining Local Constraints

< ViIteU =-I!
ViZeU =—12
VI*eU =-I¢

u etc.




Lucas-Kanade

(a good, generic motion analysis method):
Integrate gradients over a patch

Assume a single velocity, u, v, for all pixels within an image
patch. Find the (u, v) that minimizes the BCCE squared
residual over the patch:

E(u,v)= Z(Ix(x, Yu+1,(x, y)v+ It)z

X,yeQ
Setting derivative w.r.t. (u, v) equal to zero gives:
2
[le lely](uJ__[leI[]
) =
20, 20 ) (X

Note similarity of LHS matrix to Harris corner detector.
When full-rank (corner-like), specifies a unique (u, v).

Motion without movement

Joint work with Ted Adelson and David
Heeger, MIT

1991

A linear combination of quadrature-phase
filters can advance the local phase

& ik}

e o SRR EE

2]

Convolved with an image, the image data now
modulates the local amplitude. People mis-
attribute the phase advance to translation.

(Steerable filters allow synthesizing motion in arbitrary directions.)

Motion without movement video

VEE://www cs.yorku.ca/~kosta/Motion_Without_Movement/Motion_Without_Movement.html
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http:/A .s.yorku. ion_Without_| ion_Without_|

Konstantinos G. Derpanis

html

Motion Magnification

(go to other slides...)
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