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Multiple-exposure images by Marey




Strobe photograph by Edgerton




Other photographs by Doc
Edgerton




What hardware was needed to make
these photographs?

Strobe light, capacitor, thyristor...




Computational photography

Surely we can update those photographic
techniques, adding the generality and
flexibility of digital methods. Analyze and re-
render the images.



Computational photography

Fredo and Bill describing computational
photography:

 Fredo: using computation to make better
guality photographs—to enhance.

 Bill: using computation to reveal things
about the world that we otherwise couldn’t
see—to0 reveal.



How display a single-frame summary of
multiple frames?






Typical frame




Average over 50 frames




Median filter over time




Vector median filter (20x20 patchs)




2X2 vector median 2X2 vector least median




Shapetime photography

Joint work with Hao Zhang, U.C. Berkeley
2002
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Figure 4: (a) Layer assignments, without MRF processing. (b)
Shape-time image based on those assignments. (c) Most proba-
ble layer assignments, computed by MRFE. (d) Resulting shape-
time image.

number of pixels in the image.

1
PO = = [T 0t TT v () (2)
Z (it i






“how to sew”






Input sequence

Shape-Time
composite =

“Inside-out”



Z-cam, made by 3DV
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http://www.3dvsystems.com



3DV camera operation

Transmitted Camera

pulse

http://www.3dvsystems.com



3DV camera operation

Object Returned 50 Om
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3DV camera operation
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RGB image







shapetime video image
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Zitnick et al, Siggraph 2004




Show Michael Cohen slides, a selection
from:

http://research.microsoft.com/~cohen/FindingMa
gicinAnlmageStack.pdf



To appearin the ACM SIGGRAPH '04 conference proceedings

Interactive Digital Photomontage
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Figure 1 From a set of five source images (of which four are shown on the left), we quickly create a composite family portrait in which everyone is smiling

and looking at the camera (right). We simply flip through the stack and coarsely draw strokes using the designated source image objective over the people we
wish to add to the composite. The user-applied strokes and computed regions are color-coded by the borders of the source images on the left {middle).



In our case, we define the cost function C ot a pixel labeling L as
the sum ot two terms: a data penalty C, over all pixels p and an
interaction penalty C. over all pairs ot neighboring pixels p.g:

C(Ly = Y C,p,Lp)) + > Cip,q. L(p).L(g)) (1)
p P.q

For our application, the data penalty 1s defined by the distance to
the image objective, whereas the interaction penalty is defined by
the distance to the seam objective.



Designated color (most or feast similar): the Euclidean distance in
RGB space of the source image pixel & Lp) (p) from a user-specified

target color. We supply a user interface for the selection of a pixel
in the span that is used as the color target.

Minimum (maximum) lwminance: the distance in luminance from
the minimum (maximum) luminance pixel in a pixels span.

Minimum (maximum) likefihood: the probability (or one minus
the probability) of the color at § L[le[ p ). given a probability distri-
bution function formed from the color histogram of all pixels in the

span (the three color channels are histogrammed separately, using
20 bins, and treated as independent random variables).

Eraser: the Euclidean distance in RGE space of the source image
pixel § L(p) (p) from the current composite color.

Minimum (maximum) difference: the Euclidean distance in RGE
space of the source image pixel SL[FJ(PJ from S, (p), where 5, is a

user-specified source image.

Designated image: 0 if L{p) = u, where §, is a user-specified
source image, and a large penalty otherwise.

Contrast: a measure created by subtracting the convolution of two

Graussian blur kernels computed at different scales [Reinhard et al.
2002].



We define the seam objective to be 0if L(p) = L{g). Otherwise, we
define the objective as:

X if matching “colors”
o ¥ if matching “gradients™
Cilp.q. Lip), Lig)) = X+Y if matching “colors & gradients’
X/Z  if matching “colors & edges”

where
X = ”SL(;,:,'IP:' _SLW]'IF':'” T ”SL(pjl:q:I _Squ[‘-'ﬂ”
Y = ”vSLEp:,'{P]'_vSLw]':P]” + HFSL[pj'[‘f:' _FSL[qj{q}”
L = EL[;,:,'[P-‘?]' T EL[qj[P-'q}}

and VS;(p) is a 6-component color gradient (in R, G, and B) of
image 7 at pixel p, and E;( p.q) is the scalar edge potential between
two neighboring pixels p and g of image z, computed using a Sobel
filter.
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Figure 2 A set of macro photographs of an ant (three of eleven used shown on the left) taken at different focal lengths. We use a global maximum contrast
image objective to compute the graph-cut composite automatically (top left, with an inset to show detail, and the labeling shown directly below). A small
number of remaining artifacts disappear after gradient-domain fusion (top, middle). For comparison we show composites made by Auwto-Montage (top, right),
by Haeberli’s method (bottom, middle), and by Laplacian pyramids (bottom, right). All of these other approaches have artifacts; Haeberli’s method creates
excessive noise, Auto-Montage fails to attach some hairs to the body. and Laplacian pyramids create halos around some of the hairs.



Figure 12 From a set of five images (top row) we create a relatively clean
background plate using the maximum likelihood objective (middle row, left).
The next two images to the right show that our result compares favorably to
a per-pixel median filter, and a per-pixel maximum likelihood objective, re-
spectively. An inset of our result (bottom row, left) shows several remaining
people. The user paints over them with the eraser objective, and the system
offers to replace them with a region, highlighted in blue, of the fourth input
image. The user accepts this edit, and then applies gradient-domain fusion
to create a final result (bottom row, middle). Finally, using a minimum like-
liood image objective allows us to quickly create a large crowd (bottom

right).



Figure 5 To capture the progression of time in a single image we generate this stroboscopic image from a video sequence. Several video frames are shown in
the first column. We first create a background image uwsing the maximumn likelihood objective (second column, top) and then add it to the stack. Then, we use
the maximum difference objective to compute a composite that is maximally different from the background (second column, bottom). A lower weight for the
image ohjective results in fewer visible seams but also fewer instances of the girl (third column, top). Beginning with the first result, the user removes the other
girls by brushing in parts of the background and one of the sources using the desigrated source objective (third column, bottom) to create a final result (right).



Figure & We nse a set of portraits {first row) to mix and match facial features, to either improve a portrait, or create entirely new people. The faces are first
hand-aligned, for example, to place all the noses in the same location. In the first two images in the second row, we replace the closed eves of a portrait with the
open eves of another. The wser paints strokes with the designated source objective to specify desired features. Next, we create a fictional person by combining
three source portraits. Gradient-domain fusion is used to smooth out skin tone differences. Finally, we show two additional mixed portraits.



Demonstrate MSR group shot program,
downloadable from

http://research.microsoft.com/~cohen/
or
http://research.microsoft.com/projects/GroupShot/



http://research.microsoft.com/~cohen/
http://research.microsoft.com/projects/GroupShot/

Analyzing and synthesizing
motion
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Aperture Problem and Normal
Flow



Aperture Problem and Normal
Flow



Aperture Problem and Normal
Flow




Aperture Problem and Normal
Flow




Aperture Problem and Normal
Flow




Aperture Problem and Normal
Flow




Optical flow constraint equation

Brightness should stay
constant as you track

motion | (X+uodt,y+vot,t+ot) =1(x,y,t)

15t order Taylor series,
valid for small Ot

(X, y,t) +uadtl, +vatl, +dtl, = 1(x,y,t)

Constraint equation

ul, +vl, +1,=0

“BCCE” - Brightness Change Constraint Equation



Aperture Problem and Normal

Flow
The gradient constraint:

@

Normal Flow;

u,

Lu+l v+1, =0

VieU =0

Defines a line in the (u,v) space
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Combining Local Constraints

- VIteU = I
T VIZeU = I
N VIGeU =—|°

U etc.



Lucas-Kanade

(a good, generic motion analysis method):
Integrate gradients over a patch

Assume a single velocity, u, v, for all pixels within an image
patch. Find the (u, v) that minimizes the BCCE squared
residual over the patch:

E(u,V) = Z(Ix(x, y)u+ly(x,y)v+lt)2

X,yell

Setting derivative w.r.t. (u, v) equal to zero gives:

DRt B ol

Note similarity of LHS matrix to Harris corner detector.
When full-rank (corner-like), specifies a unique (u, v).




Motion without movement

Joint work with Ted Adelson and David
Heeger, MIT

1991



A linear combination of quadrature-phase
filters can advance the local phase




Convolved with an image, the image data now
modulates the local amplitude. People mis-
attribute the phase advance to translation.
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(Steerable filters allow synthesizing motion in arbitrary directions.)



Motion without movement video



http://www.cs.yorku.ca/~kosta/Motion_Without_Movement/Motion_Without Movement.html



http://www.cs.yorku.ca/~kosta/Motion_Without_Movement/Motion_Without_Movement.html
Konstantinos G. Derpanis




Motion Magnification

(go to other slides...)
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