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Initial announcements

• How was the homework?
• Bill will be miss office hours next week.  

Please feel free to e-mail to make an 
appointment at some different time.



CCD color filter pattern

detector



The cause of color moire

detector

Fine black and white detail in image
mis-interpreted as color information.



Black and white edge falling on 
color CCD detector

Black and white image (edge)

Detector pixel colors

(previous slides were the freq domain interpretation of aliasing.
Here’s the spatial domain interpretation.)



Color sampling artifact

Interpolated pixel colors, 
for grey edge falling on colored
detectors (linear interpolation).



Typical color moire patterns

Blow-up of 
electronic camera
image.  Notice spurious
colors in the regions
of fine detail in the 
plants.



Color sampling artifacts



Motivation for median filter interpolation

The color fringe artifacts are obvious;  we can point to them.  Goal:  
can we characterize the color fringe artifacts mathematically?  
Perhaps that would lead to a way to remove them…



R-G, after linear interpolation



Median filter
Replace each pixel by the median over N 
pixels (5 pixels, for these examples).  
Generalizes to “rank order” filters.

5-pixel 
neighborhood

In: Out:

In: Out:

Spike 
noise is 
removed

Monotonic 
edges 
remain 
unchanged



Degraded image



Radius 1 median filter



Radius 2 median filter



R-G, after linear interpolation



R – G, median filtered (5x5)



Median Filter Interpolation

• Perform first interpolation on isolated color 
channels.

• Compute color difference signals.
• Median filter the color difference signal.
• Reconstruct the 3-color image.



Two-color sampling of BW edge

Luminance profile

True full-color image

Sampled data



Two-color sampling of BW edge

Sampled data

Linear interpolation

Color difference signal

Median filtered color difference signal



Two-color sampling of BW edge

Sampled data

Median filtered color difference signal

Reconstructed pixel values



Recombining the median filtered colors

Linear interpolation Median filter interpolation



Beyond linear interpolation between 
samples of the same color

• Luminance highs
• Median filter interpolation

– U.S. Patent 4,663,655 
• Regression
• Gaussian method
• Regression, including non-linear terms

– http://www1.cs.columbia.edu/CAVE/publications/pdfs/Schechner
_ICCV01.pdf

• Multiple linear regressors
– http://people.csail.mit.edu/billf/papers/cvpr04tappen.pdf

• Perceptual study
– http://color.psych.upenn.edu/brainard/papers/LongereIEEE.pdf



Project ideas

(1) Develop a new color interpolation 
algorithm

(2) Study the tradeoffs in sensor color 
choice for image reconstruction:

Human vision uses randomly placed, very 
unsaturated color sensors.  Cameras typically use 
regularly spaced, saturated color sensors.  Which is 
better;  why?



Image filtering 

• Reading:  
– Chapter 7, Forsyth and Ponce
– Oppenheim, Shafer, and Buck
– Oppenheim and Willsky



Take 6.341, discrete-time signal 
processing

• If you want to process pixels, you need to 
understand signal processing well, so 
– Take 6.341

• Fantastic set of teachers:
– Al Oppenheim 
– Greg Wornell
– Jae Lim

• Web page:  
http://web.mit.edu/6.341/www/



What is image filtering?

• Modify the pixels in an image based on 
some function of a local neighborhood of 
the pixels.
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Local image data

7

Modified image data

Some function



Linear functions

• Simplest:  linear filtering.
– Replace each pixel by a linear combination 

of its neighbors.
• The prescription for the linear 

combination is called the “convolution 
kernel”.
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Linear filtering (warm-up slide)

original
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Pixel offset
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Linear filtering (warm-up slide)
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Filtered
(no change)



Linear filtering
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shift
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Linear filtering
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Blurring
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Blurred (filter
applied in both 
dimensions).



Blur examples
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Blur examples
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Linear filtering (warm-up slide)

original

0

2.0
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0

1.0



Linear filtering (no change)

original

0

2.0

0

1.0

Filtered
(no change)



Linear filtering

original

0

2.0

0

0.33 ?



(remember blurring)

0
Pixel offset
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fic
ie
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original

0.3

Blurred (filter
applied in both 
dimensions).



Sharpening 

original

0

2.0

0

0.33

Sharpened 
original



Sharpening example
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(differences are

accentuated;  constant
areas are left untouched).
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Sharpening

before after



Spatial resolution and color

R

G

B
original



Blurring the G component

R

G

B

original processed



Blurring the R component

original processed

R

G

B



Blurring the B component

original

R

G

B
processed



From W. E. 
Glenn, in 
Digital 
Images and 
Human 
Vision, MIT 
Press, 
edited by 
Watson, 
1993



Lab color components

L

a

b

A rotation of the 
color 
coordinates into 
directions that 
are more 
perceptually 
meaningful:  
L: luminance, 
a: red-green, 
b: blue-yellow



Blurring the L Lab component

L

a

b
original processed



original

Blurring the a Lab component

L

a

b
processed



Blurring the b Lab component

original

L

a

b
processed



Application to image compression

• (compression is about hiding differences 
from the true image where you can’t see 
them).



Bandwidth (transmission resources) for the 
components of the television signal

Understanding image perception 
allowed NTSC to add color to the black 
and white television signal (with some, 
but limited, incompatibility artifacts).
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Oriented filters



Gabor filters at different
scales and spatial frequencies

top row shows anti-symmetric 
(or odd) filters, bottom row the
symmetric (or even) filters.



Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

Filtered images



Linear image transformations

• In analyzing images, it’s often useful to 
make a change of basis.

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

= Vectorized image

transformed image



Self-inverting transforms
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Same basis functions are used for the inverse transform

U transpose and complex conjugate



An example of such a transform:  
the Fourier transform

discrete domain
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To get some sense of what 
basis elements look like, we 
plot a basis element --- or 
rather, its real part ---
as a function of x,y for some 
fixed u, v. We get a function 
that is constant when (ux+vy) 
is constant. The magnitude of 
the vector (u, v) gives a 
frequency, and its direction 
gives an orientation. The 
function is a sinusoid with 
this frequency along the 
direction, and constant 
perpendicular to the 
direction. 

u

v
( )vyuxie +−π

( )vyuxie +π



Here u and v 
are larger than 
in the previous 
slide.

u

v
( )vyuxie +−π

( )vyuxie +π



And larger still...

u

v
( )vyuxie +−π

( )vyuxie +π



Phase and Magnitude

• Fourier transform of a 
real function is complex
– difficult to plot, visualize
– instead, we can think of the 

phase and magnitude of 
the transform

• Phase is the phase of the 
complex transform

• Magnitude is the 
magnitude of the complex 
transform

• Curious fact
– all natural images have 

about the same magnitude 
transform

– hence, phase seems to 
matter, but magnitude 
largely doesn’t

• Demonstration
– Take two pictures, swap 

the phase transforms, 
compute the inverse - what 
does the result look like?





This is the 
magnitude 
transform 
of the 
cheetah pic



This is the 
phase 
transform 
of the 
cheetah pic





This is the 
magnitude 
transform 
of the zebra 
pic



This is the 
phase 
transform 
of the zebra 
pic



Reconstruction 
with zebra 
phase, cheetah 
magnitude



Reconstruction 
with cheetah 
phase, zebra 
magnitude



Example image synthesis with Fourier basis.

• Following are 16 images showing the 
reconstruction of an image from a random 
selection of Fourier basis functions.

• Note, the selection of basis functions to include 
was not made according to basis magnitude.  
Doing that would have given us an approximate 
version of the image much sooner.



2



6



18



50



82



136



282



538



1088



2094



4052.
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8056.



15366



28743



49190.



65536.



Fourier transform magnitude



Masking out the fundamental and 
harmonics from periodic pillars



Name as many functions as you 
can that retain that same 

functional form in the transform 
domain



Forsyth&Ponce



Oppenheim, 
Schafer and 
Buck,
Discrete-time 
signal processing,
Prentice Hall, 
1999

Discrete-time, continuous frequency Fourier transform



Discrete-time, continuous frequency Fourier transform pairs

Oppenheim, 
Schafer and 
Buck,
Discrete-time 
signal processing,
Prentice Hall, 
1999



Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978 

Bracewell’s pictorial dictionary of Fourier 
transform pairs



Why is the Fourier domain 
particularly useful?

• It tells us the effect of linear convolutions.
• There is a fast algorithm for performing the 

DFT, allowing for efficient signal filtering.
• The Fourier domain offers an alternative 

domain for understanding and 
manipulating the image.



hgf ⊗=

Fourier transform of convolution

Consider a (circular) convolution of g and h



hgf ⊗=

( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Take DFT of both sides



hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Write the DFT and convolution explicitly
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution
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Move the exponent in
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

[ ]

Change variables in the sum
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

[ ]

Perform the DFT (circular boundary conditions)
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

[ ]

Perform the other DFT (circular boundary conditions)
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Analysis of our simple filters



Analysis of our simple filters

original
0Pixel offset

co
ef

fic
ie

nt

1.0

Filtered
(no change)

1        

][][
1

0

=

= ∑
−

=

⎟
⎠
⎞

⎜
⎝
⎛−M

k

M
kmi

ekfmF
π

0

1.0 constant



Analysis of our simple filters

0Pixel offset

co
ef

fic
ie

nt

original

1.0

shifted

M
mi

M

k

M
kmi

e

ekfmF

δπ

π

−

−

=

⎟
⎠
⎞

⎜
⎝
⎛−

=

= ∑

         

][][
1

0

0

1.0

Constant 
magnitude, 
linearly shifted 
phase

δ



Analysis of our simple filters
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Analysis of our simple filters
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Convolution versus FFT

• 1-d FFT:  O(NlogN) computation time, 
where N is number of samples.

• 2-d FFT: 2N(NlogN), where N is number of 
pixels on a side

• Convolution: K N2, where K is number of 
samples in kernel

• Say N=210, K=100.  2-d FFT: 20 220, while 
convolution gives 100 220



Sampling example
Analyze crossed 

gratings…



Sampling example
Analyze crossed 

gratings…



Sampling example
Analyze crossed 

gratings…



Sampling example
Analyze crossed 

gratings…

Where does 
perceived near 
horizontal 
grating come 
from? 



A F(A)



B F(B)



A*B F(A)**F(B)



A*B F(A)**F(B)



A*B Lowpass(F(A)**F(B))
~=F(C)

C



Sampling and aliasing



Sampling in 1D takes a continuous function and replaces it with a 
vector of values, consisting of the function’s values at a set of 
sample points.  We’ll assume that these sample points are on a 
regular grid, and can place one at each integer for convenience.



Sampling in 2D does the same thing, only in 2D.  We’ll assume that 
these sample points are on a regular grid, and can place one at each 
integer point for convenience.



A continuous model for a sampled 
function

• We want to be able to 
approximate integrals 
sensibly

• Leads to
– the delta function
– model on rightSample2D f (x,y)( )= f (x, y)δ (x − i, y − j)
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The Fourier transform of a sampled 
signal
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What is a good representation for 
image analysis?

• Fourier transform domain tells you “what”
(textural properties), but not “where”.

• Pixel domain representation tells you 
“where” (pixel location), but not “what”.

• Want an image representation that gives 
you a local description of image events—
what is happening where.



Scaled representations

• Big bars (resp. spots, 
hands, etc.) and little bars 
are both interesting
– Stripes and hairs, say

• Inefficient to detect big 
bars with big filters
– And there is superfluous 

detail in the filter kernel

• Alternative:
– Apply filters of fixed 

size to images of 
different sizes

– Typically, a collection 
of images whose edge 
length changes by a 
factor of 2 (or root 2)

– This is a pyramid (or 
Gaussian pyramid) by 
visual analogy



Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid



The Gaussian pyramid

• Smooth with gaussians, because
– a gaussian*gaussian=another gaussian 

• Synthesis 
– smooth and sample

• Analysis
– take the top image

• Gaussians are low pass filters, so repn is 
redundant



http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf




The computational advantage of pyramids

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf


http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf


Convolution and subsampling as a matrix multiply 
(1-d case)

U1 =

1     4     6     4     1     0     0     0     0     0    0     0     0     0     0     0     0     0     0     0

0     0     1     4     6     4     1     0     0     0    0     0     0     0     0     0     0     0     0     0

0     0     0     0     1     4     6     4     1     0    0     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     1     4     6     4    1     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     1     4    6     4     1     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0    1     4     6     4     1     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0    0     0     1     4     6     4     1     0     0     0

0     0     0     0     0     0     0     0     0     0    0     0     0     0     1     4     6     4     1     0



Next pyramid level

U2 =

1     4     6     4     1     0     0     0

0     0     1     4     6     4     1     0

0     0     0     0     1     4     6     4

0     0     0     0     0     0     1     4



b * a, the combined effect of the 
two pyramid levels

>> U2 * U1

ans =

1     4    10    20    31    40    44    40    31    20    10     4     1     0     0     0     0     0     0     0

0     0     0     0     1     4    10    20    31    40    44    40    31    20    10     4     1     0     0     0

0     0     0     0     0     0     0     0     1     4    10    20    31    40    44    40    30    16     4     0

0     0     0     0     0     0     0     0     0     0    0     0     1     4    10    20    25    16     4     0



Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid



Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid



The Laplacian Pyramid

• Synthesis
– preserve difference between upsampled

Gaussian pyramid level and Gaussian 
pyramid level

– band pass filter - each level represents spatial 
frequencies (largely) unrepresented at other 
levels

• Analysis
– reconstruct Gaussian pyramid, take top layer



Laplacian pyramid algorithm



http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf






Application to image compression

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf


Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid



What is a good representation for 
image analysis? 

(Goldilocks and the three representations)

• Fourier transform domain tells you “what”
(textural properties), but not “where”.  In 
space, this representation is too spread out.

• Pixel domain representation tells you “where”
(pixel location), but not “what”.  In space, this 
representation is too localized

• Want an image representation that gives you 
a local description of image events—what is 
happening where.  That representation might 
be “just right”.



Wavelets/QMF’s

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

= Vectorized image

transformed image



U =

1     1

1    -1



>> inv(U)

ans =

0.5000    0.5000

0.5000   -0.5000



U =

1     1     0     0     0     0     0     0

1    -1     0     0     0     0     0     0

0     0     1     1     0     0     0     0

0     0     1    -1     0     0     0     0

0     0     0     0     1     1     0     0

0     0     0     0     1    -1     0     0

0     0     0     0     0     0     1     1

0     0     0     0     0     0     1    -1



>> inv(U)

ans =

0.5000    0.5000         0         0         0         0    0         0

0.5000   -0.5000         0         0         0         0         0        0

0         0    0.5000    0.5000         0         0    0         0

0         0    0.5000   -0.5000         0         0         0         0

0         0         0         0    0.5000    0.5000    0         0

0         0         0         0    0.5000   -0.5000         0         0

0         0         0         0         0         0    0.5000    0.5000

0         0         0         0         0         0    0.5000   -0.5000



Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.
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Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

To create 2-d filters, apply 
the 1-d filters separably in 
the two spatial dimensions



Wavelet/QMF representation



Good and bad features of 
wavelet/QMF filters

• Bad: 
– Aliased subbands
– Non-oriented diagonal subband

• Good:
– Not overcomplete (so same number of 

coefficients as image pixels).
– Good for image compression (JPEG 2000)



Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid



Steerable pyramids

• Good:
– Oriented subbands
– Non-aliased subbands
– Steerable filters

• Bad:
– Overcomplete
– Have one high frequency residual subband, required 

in order to form a circular region of analysis in 
frequency from a square region of support in 
frequency.



Oriented pyramids

• Laplacian pyramid is orientation 
independent

• Apply an oriented filter to determine 
orientations at each layer
– by clever filter design, we can simplify 

synthesis
– this represents image information at a 

particular scale and orientation





http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995

http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf


http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995

But we need to get rid 
of the corner regions 
before starting the 
recursive circular 
filtering

http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf


Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE



Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html
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• Summary of pyramid representations



Image pyramids

Shows the information added in 
Gaussian pyramid at each 
spatial scale.  Useful for noise 
reduction & coding.

Progressively blurred and 
subsampled versions of the 
image.  Adds scale invariance 
to fixed-size algorithms.

Shows components at each 
scale and orientation 
separately.  Non-aliased 
subbands.  Good for texture 
and feature analysis.

Bandpassed representation, complete, but with 
aliasing and some non-oriented subbands.

• Gaussian

• Laplacian

• Wavelet/QMF

• Steerable pyramid



Linear image transformations

• In analyzing images, it’s often useful to 
make a change of basis.

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

= Vectorized image

transformed image



Schematic pictures of each matrix 
transform

• Shown for 1-d images
• The matrices for 2-d images are the same 

idea, but more complicated, to account for 
vertical, as well as horizontal, neighbor 
relationships.



Fourier transform

= *

pixel domain 
image

Fourier bases 
are global:  
each transform 
coefficient 
depends on all 
pixel locations.

Fourier 
transform



Gaussian pyramid

= *
pixel image

Overcomplete representation.  
Low-pass filters, sampled 
appropriately for their blur.

Gaussian 
pyramid



Laplacian pyramid

= *
pixel image

Overcomplete representation.  
Transformed pixels represent 
bandpassed image information.

Laplacian
pyramid



Wavelet (QMF) transform

= *
pixel imageOrtho-normal 

transform (like 
Fourier transform), 
but with localized 
basis functions.  

Wavelet 
pyramid



= *
pixel image

Over-complete 
representation, 
but non-aliased 
subbands. 

Steerable
pyramid

Multiple 
orientations at 

one scale  

Multiple 
orientations at 
the next scale  

the next scale…

Steerable pyramid



Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html



Why use these representations?

• Handle real-world size variations with a 
constant-size vision algorithm.

• Remove noise
• Analyze texture
• Recognize objects
• Label image features



end



An application of image pyramids:
noise removal



Image statistics (or, mathematically, 
how can you tell image from noise?)





Pixel representation 
image histogram



bandpass filtered image



bandpassed representation 
image histogram



Pixel domain noise image and 
histogram



Bandpass domain noise image and 
histogram



Noise-corrupted full-freq and bandpass images



P(x, y) = P(x|y) P(y)
so
P(x|y) P(y) = P(y|x) P(x)

P(x, y) = P(x|y) P(y)
so
P(x|y) P(y) = P(y|x) P(x)
and
P(x|y) = P(y|x) P(x) / P(y)

Bayes theorem

P(x, y) = P(x|y) P(y)

The parameters you 
want to estimate

What you observe Prior probability

Likelihood 
function

Constant w.r.t. 
parameters x.



P(x)

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x)

P(y|x)

Bayesian MAP estimator for clean bandpass
coefficient values

y

P(y|x)

P(x|y)P(x|y)



P(x)

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x)

P(y|x)

Bayesian MAP estimator

y

P(y|x)

P(x|y)
P(x|y)



P(x)

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x)

P(y|x)

Bayesian MAP estimator

y

P(y|x)

P(x|y)

P(x|y)



MAP estimate,     , as function of 
observed coefficient value, y

y

x̂

x̂

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
Simoncelli and Adelson, Noise Removal via 
Bayesian Wavelet Coring

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf


Noise removal results

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
Simoncelli and Adelson, Noise Removal via 
Bayesian Wavelet Coring

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf


Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid



The Gaussian pyramid

• Smooth with gaussians, because
– a gaussian*gaussian=another gaussian 

• Synthesis 
– smooth and sample

• Analysis
– take the top image

• Gaussians are low pass filters, so 
representation is redundant





The Laplacian Pyramid

• Synthesis
– preserve difference between upsampled

Gaussian pyramid level and Gaussian 
pyramid level

– band pass filter - each level represents spatial 
frequencies (largely) unrepresented at other 
levels

• Analysis
– reconstruct Gaussian pyramid, take top layer









Oriented pyramids

• Laplacian pyramid is orientation 
independent

• Apply an oriented filter to determine 
orientations at each layer
– by clever filter design, we can simplify 

synthesis
– this represents image information at a 

particular scale and orientation



Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE



Reading

• Related to today’s lecture: 
– Chapters 7.7, 9.2, Forsyth&Ponce..
– Adelson article on pyramid representations, 

posted on web site.



Aliasing

• Can’t shrink an image by taking every second 
pixel

• If we do, characteristic errors appear 
– In the next few slides
– Typically, small phenomena look bigger; fast 

phenomena can look slower
– Common phenomenon

• Wagon wheels rolling the wrong way in movies
• Checkerboards misrepresented in ray tracing
• Striped shirts look funny on colour television



Resample the 
checkerboard by taking 
one sample at each circle.  
In the case of the top left 
board, new representation 
is reasonable. 
Top right also yields a 
reasonable representation. 
Bottom left is all black 
(dubious) and bottom 
right has checks that are 
too big.



Constructing a pyramid by 
taking every second pixel 
leads to layers that badly 
misrepresent the top layer



Smoothing as low-pass filtering

• The message of the FT is 
that high frequencies lead 
to trouble with sampling.

• Solution: suppress high 
frequencies before 
sampling
– multiply the FT of the 

signal with something 
that suppresses high 
frequencies

– or convolve with a low-pass 
filter

• A filter whose FT is a 
box is bad, because 
the filter kernel has 
infinite support

• Common solution: 
use a Gaussian
– multiplying FT by 

Gaussian is equivalent 
to convolving image 
with Gaussian.



Sampling without smoothing.  Top row shows the images,
sampled at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.



Sampling with smoothing.  Top row shows the images.  We
get the next image by smoothing the image with a Gaussian with sigma 1 pixel,
then sampling at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.



Sampling with more smoothing.  Top row shows the images.  We
get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels,
then sampling at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.



Sampling and aliasing


	Color interpolation, image processing, and image representations
	Initial announcements
	CCD color filter pattern
	The cause of color moire
	Black and white edge falling on color CCD detector
	Color sampling artifact
	Typical color moire patterns
	Color sampling artifacts
	Motivation for median filter interpolation
	R-G, after linear interpolation
	Median filter
	Degraded image
	Radius 1 median filter
	R-G, after linear interpolation
	R – G, median filtered (5x5)
	Median Filter Interpolation
	Two-color sampling of BW edge
	Two-color sampling of BW edge
	Two-color sampling of BW edge
	Recombining the median filtered colors
	Beyond linear interpolation between samples of the same color
	Project ideas
	Image filtering 
	Take 6.341, discrete-time signal processing
	What is image filtering?
	Linear functions
	Convolution
	Linear filtering (warm-up slide)
	Linear filtering (warm-up slide)
	Linear filtering
	shift
	Linear filtering
	Blurring
	Blur examples
	Blur examples
	Linear filtering (warm-up slide)
	Linear filtering (no change)
	Linear filtering
	(remember blurring)
	Sharpening 
	Sharpening example
	Sharpening
	Spatial resolution and color
	Blurring the G component
	Blurring the R component
	Blurring the B component
	Lab color components
	Blurring the L Lab component
	Blurring the a Lab component
	Blurring the b Lab component
	Application to image compression
	Bandwidth (transmission resources) for the components of the television signal
	Oriented filters
	Linear image transformations
	Self-inverting transforms
	An example of such a transform:  the Fourier transform
	Phase and Magnitude
	Example image synthesis with Fourier basis.
	2
	6
	18
	50
	82
	136
	282
	538
	1088
	2094
	4052.
	8056.
	15366
	28743
	49190.
	 65536.
	Fourier transform magnitude
	Masking out the fundamental and harmonics from periodic pillars
	Name as many functions as you can that retain that same functional form in the transform domain
	Bracewell’s pictorial dictionary of Fourier transform pairs
	Why is the Fourier domain particularly useful?
	Fourier transform of convolution
	Fourier transform of convolution
	Fourier transform of convolution
	Fourier transform of convolution
	Fourier transform of convolution
	Fourier transform of convolution
	Fourier transform of convolution
	Analysis of our simple filters
	Analysis of our simple filters
	Analysis of our simple filters
	Analysis of our simple filters
	Analysis of our simple filters
	Convolution versus FFT
	Sampling example
	Sampling example
	Sampling example
	Sampling example
	Sampling and aliasing
	A continuous model for a sampled function
	The Fourier transform of a sampled signal
	What is a good representation for image analysis?
	Scaled representations
	Image pyramids
	The Gaussian pyramid
	The computational advantage of pyramids
	Convolution and subsampling as a matrix multiply (1-d case)
	Next pyramid level
	b * a, the combined effect of the two pyramid levels
	Image pyramids
	Image pyramids
	The Laplacian Pyramid
	Laplacian pyramid algorithm
	Application to image compression
	Image pyramids
	What is a good representation for image analysis? �(Goldilocks and the three representations)
	Wavelets/QMF’s
	Wavelet/QMF representation
	Good and bad features of wavelet/QMF filters
	Image pyramids
	Steerable pyramids
	Oriented pyramids
	Matlab resources for pyramids (with tutorial)
	Matlab resources for pyramids (with tutorial)
	Image pyramids
	Linear image transformations
	Schematic pictures of each matrix transform
	Fourier transform
	Gaussian pyramid
	Laplacian pyramid
	Wavelet (QMF) transform
	Steerable pyramid
	Matlab resources for pyramids (with tutorial)
	Why use these representations?
	end
	An application of image pyramids:�noise removal
	Image statistics (or, mathematically, how can you tell image from noise?)
	Pixel representation image histogram
	bandpass filtered image
	bandpassed representation image histogram
	Pixel domain noise image and histogram
	Bandpass domain noise image and histogram
	Noise-corrupted full-freq and bandpass images
	Bayes theorem
	Bayesian MAP estimator for clean bandpass coefficient values
	Bayesian MAP estimator
	Bayesian MAP estimator
	MAP estimate,     , as function of observed coefficient value, y
	Noise removal results
	Image pyramids
	The Gaussian pyramid
	The Laplacian Pyramid
	Oriented pyramids
	Reading
	Aliasing
	Smoothing as low-pass filtering
	Sampling and aliasing

