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Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

The computational advantage of pyramids

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
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Convolution and subsampling as a matrix multiply (1-d 
case)

U1 =

1     4     6     4     1     0     0     0     0     0    0     0     0     0     0     0     0     0     0     0

0     0     1     4     6     4     1     0     0     0    0     0     0     0     0     0     0     0     0     0

0     0     0     0     1     4     6     4     1     0    0     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     1     4     6     4    1     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     1     4    6     4     1     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0    1     4     6     4     1     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0    0     0     1     4     6     4     1     0     0     0

0     0     0     0     0     0     0     0     0     0    0     0     0     0     1     4     6     4     1     0

Next pyramid level

U2 =

1     4     6     4     1     0     0     0

0     0     1     4     6     4     1     0

0     0     0     0     1     4     6     4

0     0     0     0     0     0     1     4

b * a, the combined effect of the two 
pyramid levels

>> U2 * U1

ans =

1     4    10    20    31    40    44    40    31    20    10     4     1     0     0     0     0     0     0     0

0     0     0     0     1     4    10    20    31    40    44    40    31    20    10     4     1     0     0     0

0     0     0     0     0     0     0     0     1     4    10    20    31    40    44    40    30    16     4     0

0     0     0     0     0     0     0     0     0     0    0     0     1     4    10    20    25    16     4     0

Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid

Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid

The Laplacian Pyramid

• Synthesis
– preserve difference between upsampled

Gaussian pyramid level and Gaussian 
pyramid level

– band pass filter - each level represents spatial 
frequencies (largely) unrepresented at other 
levels

• Analysis
– reconstruct Gaussian pyramid, take top layer
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http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

Laplacian pyramid algorithm

-
-

-

Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid

What is a good representation for 
image analysis? 

(Goldilocks and the three representations)

• Fourier transform domain tells you “what”
(textural properties), but not “where”.  In 
space, this representation is too spread out.

• Pixel domain representation tells you “where”
(pixel location), but not “what”.  In space, this 
representation is too localized

• Want an image representation that gives you 
a local description of image events—what is 
happening where.  That representation might 
be “just right”.
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Wavelets/QMF’s

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

= Vectorized image

transformed image

The simplest wavelet transform:  
the Haar transform

U =

1     1

1    -1

The inverse transform for the Haar wavelet

>> inv(U)

ans =

0.5000    0.5000

0.5000   -0.5000

Apply this over multiple spatial positions

U =

1     1     0     0     0     0     0     0

1    -1     0     0     0     0     0     0

0     0     1     1     0     0     0     0

0     0     1    -1     0     0     0     0

0     0     0     0     1     1     0     0

0     0     0     0     1    -1     0     0

0     0     0     0     0     0     1     1

0     0     0     0     0     0     1    -1

The high frequencies

U =

1     1     0     0     0     0     0     0

1    -1     0     0     0     0     0     0

0     0     1     1     0     0     0     0

0     0     1    -1     0     0     0     0

0     0     0     0     1     1     0     0

0     0     0     0     1    -1     0     0

0     0     0     0     0     0     1     1

0     0     0     0     0     0     1    -1

The low frequencies

U =

1     1     0     0     0     0     0     0

1    -1     0     0     0     0     0     0

0     0     1     1     0     0     0     0

0     0     1    -1     0     0     0     0

0     0     0     0     1     1     0     0

0     0     0     0     1    -1     0     0

0     0     0     0     0     0     1     1

0     0     0     0     0     0     1    -1
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The inverse transform

>> inv(U)

ans =

0.5000    0.5000         0         0         0         0    0         0

0.5000   -0.5000         0         0         0         0         0        0

0         0    0.5000    0.5000         0         0    0         0

0         0    0.5000   -0.5000         0         0         0         0

0         0         0         0    0.5000    0.5000    0         0

0         0         0         0    0.5000   -0.5000         0         0

0         0         0         0         0         0    0.5000    0.5000

0         0         0         0         0         0    0.5000   -0.5000

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990. Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Now, in 2 dimensions…

Frequency domain

Horizontal high pass

Horizontal low pass
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Apply the wavelet transform separable in both dimensions

Horizontal high pass, 
vertical high pass

Horizontal high pass, 
vertical low-pass

Horizontal low pass, 
vertical high-pass

Horizontal low pass,
Vertical low-pass

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

To create 2-d filters, apply 
the 1-d filters separably in 
the two spatial dimensions

Wavelet/QMF representation Good and bad features of wavelet/QMF 
filters

• Bad: 
– Aliased subbands
– Non-oriented diagonal subband

• Good:
– Not overcomplete (so same number of 

coefficients as image pixels).
– Good for image compression (JPEG 2000)

Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid

Steerable filters

http://people.csail.mit.edu/billf/freemanThesis.pdf
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http://www.merl.com/reports/docs/TR95-15.pdf

Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

Non-oriented steerable pyramid

http://www.merl.com/reports/docs/TR95-15.pdf

3-orientation steerable pyramid

http://www.merl.com/reports/docs/TR95-15.pdf

Steerable pyramids

• Good:
– Oriented subbands
– Non-aliased subbands
– Steerable filters

• Bad:
– Overcomplete
– Have one high frequency residual subband, required 

in order to form a circular region of analysis in 
frequency from a square region of support in 
frequency.

Oriented pyramids

• Laplacian pyramid is orientation 
independent

• Apply an oriented filter to determine 
orientations at each layer
– by clever filter design, we can simplify 

synthesis
– this represents image information at a 

particular scale and orientation
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http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995

http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995

But we need to get rid 
of the corner regions 
before starting the 
recursive circular 
filtering

• Summary of pyramid representations

Image pyramids

Shows the information added in 
Gaussian pyramid at each 
spatial scale.  Useful for noise 
reduction & coding.

Progressively blurred and 
subsampled versions of the 
image.  Adds scale invariance 
to fixed-size algorithms.

Shows components at each 
scale and orientation 
separately.  Non-aliased 
subbands.  Good for texture 
and feature analysis.

Bandpassed representation, complete, but with 
aliasing and some non-oriented subbands.

• Gaussian

• Laplacian

• Wavelet/QMF

• Steerable pyramid

Schematic pictures of each matrix 
transform

Shown for 1-d images
The matrices for 2-d images are the same idea, but more 

complicated, to account for vertical, as well as horizontal, 
neighbor relationships.

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

= Vectorized image

transformed image
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Fourier transform

= *

pixel domain 
image

Fourier bases 
are global:  
each transform 
coefficient 
depends on all 
pixel locations.

Fourier 
transform

Gaussian pyramid

= *
pixel image

Overcomplete representation.  
Low-pass filters, sampled 
appropriately for their blur.

Gaussian 
pyramid

Laplacian pyramid

= *
pixel image

Overcomplete representation.  
Transformed pixels represent 
bandpassed image information.

Laplacian
pyramid

Wavelet (QMF) transform

= *
pixel imageOrtho-normal 

transform (like 
Fourier transform), 
but with localized 
basis functions.  

Wavelet 
pyramid

= *
pixel image

Over-complete 
representation, 
but non-aliased 
subbands. 

Steerable
pyramid

Multiple 
orientations at 

one scale  

Multiple 
orientations at 
the next scale  

the next scale…

Steerable pyramid Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html
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Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html Why use these representations?

• Handle real-world size variations with a 
constant-size vision algorithm.

• Remove noise
• Analyze texture
• Recognize objects
• Label image features

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

Very early computational approach to 
creating large depth-of-field

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf
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An application of image pyramids:
noise removal

Image statistics (or, mathematically, how 
can you tell image from noise?)

Noisy image

Clean image
Pixel representation 

image histogram

bandpass filtered image bandpassed representation 
image histogram
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Pixel domain noise image and 
histogram

Bandpass domain noise image and 
histogram

Noise-corrupted full-freq and bandpass images

But want 
the 
bandpass
image 
histogram 
to look like 
this

P(x, y) = P(x|y) P(y)
so
P(x|y) P(y) = P(y|x) P(x)

P(x, y) = P(x|y) P(y)
so
P(x|y) P(y) = P(y|x) P(x)
and
P(x|y) = P(y|x) P(x) / P(y)

Bayes theorem

The parameters you 
want to estimate

What you observe Prior probability

Likelihood 
function

Constant w.r.t. 
parameters x.

P(x, y) = P(x|y) P(y) By definition of 
conditional probability

Using that twice

P(x)

Bayesian MAP estimator for clean bandpass
coefficient values

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x)

P(y|x)

y

P(y|x)

P(x|y)P(x|y)

Bayesian MAP estimator
Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x) y

P(y|x)

P(x|y)
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Bayesian MAP estimator
Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x) y

P(y|x)

P(x|y)

MAP estimate,     , as function of 
observed coefficient value, y

y

x̂

x̂

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
Simoncelli and Adelson, Noise Removal via 
Bayesian Wavelet Coring

Noise removal results

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
Simoncelli and Adelson, Noise Removal via 
Bayesian Wavelet Coring

Image texture

The Goal of Texture Synthesis

• Given a finite sample of some texture, the 
goal is to synthesize other samples from that 
same texture
– The sample needs to be "large enough“

True (infinite) texture

SYNTHESIS

generated image

input image
The Goal of Texture Analysis

Compare textures and decide if they’re made of the 
same “stuff”.

True (infinite) texture

ANALYSIS

generated image

input image

“Same” or 
“different”
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Pre-attentive texture discrimination Pre-attentive texture discrimination

Pre-attentive texture discrimination

Same or different textures?

Pre-attentive texture discrimination

Pre-attentive texture discrimination Pre-attentive texture discrimination

Same or different textures?
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Julesz
• Textons:  analyze the texture in terms of 

statistical relationships between 
fundamental texture elements, called 
“textons”.  

• It generally required a human to look at 
the texture in order to decide what those 
fundamental units were...

Influential paper:

Bergen and Adelson, Nature 1988

Learn:  use filters.
Malik and Perona

Malik J, Perona P. Preattentive texture 
discrimination with early vision 
mechanisms. J OPT SOC AM A 7: (5) 923-
932 MAY 1990 

Learn:  use lots of filters, multi-ori&scale.

Representing textures

• Textures are made up 
of quite stylised
subelements, repeated 
in meaningful ways

• Representation:
– find the subelements, 

and represent their 
statistics

• But what are the 
subelements, and how 
do we find them?
– recall normalized 

correlation
– find subelements by 

applying filters, looking at 
the magnitude of the 

• What filters?
– experience suggests 

spots and oriented bars 
at a variety of different 
scales

– details probably don’t 
matter

• What statistics?
– within reason, the more 

the merrier.
– At least, mean and 

standard deviation
– better, various 

conditional histograms.
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image

Squared responses Spatially blurred

Threshold squared, 
blurred responses, 
then categorize 
texture based on 
those two bits

vertical filter

horizontal filter

If matching the averaged squared filter 
values is a good way to match a given 
texture, then maybe matching the entire 
marginal distribution (eg, the histogram) of 
a filter’s response would be even better.

Jim  Bergen proposed this…

SIGGRAPH 1994
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Histogram matching algorithm

“At this im1 pixel value, 10% of the im1 values are lower.  What im2 
pixel value has 10% of the im2 values below it?”

Heeger-Bergen texture synthesis algorithm

Alternate matching the histograms of all the subbands and matching 
the histograms of the reconstructed images.

Bergen and Heeger
Learn:  use filter marginal statistics.

Heeger/Bergen, Siggraph 1994

Bergen and Heeger results

Heeger/Bergen, Siggraph 1994

Bergen and Heeger failures

Heeger/Bergen, Siggraph 1994

More examples

Heeger/Bergen, Siggraph 1994
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Heeger/Bergen, Siggraph 1994

More examples Synthetic surfaces

Heeger/Bergen, Siggraph 1994

Heeger/Bergen, Siggraph 1994

Synthetic surfaces Sampling example
Analyze crossed 

gratings…

Sampling example
Analyze crossed 

gratings…

Sampling example
Analyze crossed 

gratings…
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Sampling example
Analyze crossed 

gratings…

Where does 
perceived near 
horizontal 
grating come 
from? 

A F(A)

B F(B) A*B F(A)**F(B)

A*B F(A)**F(B) A*B Lowpass(F(A)**F(B))
~=F(C)

C
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end The Gaussian pyramid

• Smooth with gaussians, because
– a gaussian*gaussian=another gaussian 

• Synthesis 
– smooth and sample

• Analysis
– take the top image

• Gaussians are low pass filters, so repn is 
redundant

Application to image compression

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf


