Image pyramids and their applications

6.882 Bill Freeman and Fredo Durand Feb. 28, 2006

Image pyramids

- Gaussian
- Laplacian
- Wavelet/QMF
- Steerable pyramid

(Cor	างด	blut	tior	۱a	nd	su	bs	am	npli ca:	ng se)	as	a	ma	atri	хn	nul	tip	ly (1-d
U1 =																			
1	4	6	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	4	6	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	4	6	4	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	4	6	4	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	4	6	4	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	4	6	4	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	4	6	4	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4	6	4	1	0

U2 =
1 4 6 4 1 0 0 0
0 0 1 4 6 4 1 0
0 0 0 0 1 4 6 4
0 0 0 0 0 0 1 4

Image pyramids

- Gaussian
- Laplacian
- Wavelet/QMF
- Steerable pyramid

The Laplacian Pyramid

- Synthesis
 - preserve difference between upsampled Gaussian pyramid level and Gaussian pyramid level
 - band pass filter each level represents spatial frequencies (largely) unrepresented at other levels
- Analysis
 - reconstruct Gaussian pyramid, take top layer

Image pyramids

- Gaussian
- Laplacian
- Wavelet/QMF
- Steerable pyramid

What is a good representation for image analysis?

(Goldilocks and the three representations)

- Fourier transform domain tells you "what" (textural properties), but not "where". In space, this representation is too spread out.
- Pixel domain representation tells you "where" (pixel location), but not "what". In space, this representation is too localized
- Want an image representation that gives you a local description of image events—what is happening where. That representation might be "just right".

The inverse transform for the Haar wavelet >> inv(U) ans = 0.5000 0.5000 0.5000 -0.5000

Apply this	ove	ər ı	mu	ltip	ole	sp	bati	ial positions
U =								
1	1	0	0	0	0	0	0	
1	-1	0	0	0	0	0	0	
0	0	1	1	0	0	0	0	
0	0	1	-1	0	0	0	0	
0	0	0	0	1	1	0	0	
0	0	0	0	1	-1	0	0	
0	0	0	0	0	0	1	1	
0	0	0	0	0	0	1	-1	

Th	e	hię	gh	fre	əq	ue	nc	cies
U =								
1	1	0	0	0	0	0	0	
1	-1	0	0	0	0	0	0	
0	0	1	1	0	0	0	0	
0	0	1	-1	0	0	0	0	
0	0	0	0	1	1	0	0	
0	0	0	0	1	-1	0	0	
0	0	0	0	0	0	1	1	
0	0	0	0	0	0	1	-1	

		The	in	vers	se	tran	sf	orm
>> inv(U))							
ans =								
0.5000	0.50	000	0	0	0	0	0	0
0.5000	-0.5	000	0	0	0	0	0	0
0	0	0.5000	0.5	000	0	0	0	0
0	0	0.5000	-0.5	000	0	0	0	0
0	0	0	0	0.5000	0.5	5000	0	0
0	0	0	0	0.5000	-0.5	5000	0	0
0	0	0	0	0	0	0.5000	0.	5000
0	0	0	0	0	0	0.5000	-0.	5000

		Simoncein ai	id Adeison, in Subband coding , Kluwe
	OME-5	OME-9	OME-13
	0.8593118	0.7973934	0.7737113
1	0.3535534	0.41472545	0.42995453
2	-0.0761025	-0.073386624	-0.057897797
2	-0.0101025	-0.060944743	-0.09800052
4		0.02807382	0.039045125
5		0.02001002	0.021651438
6			-0.014556438
Table 4 1: 0d	l I-longth OME	kornels Half of	the impulse response sample
values are show	n for each of t	he normalized lo	wpass OMF filters (All filters
are symmetric a	bout $n = 0$.	The appropriate	highpass filters are obtained
by delaying by	one sample an	d multiplying w	th the sequence $(-1)^n$.
o) ana/mg o/	one sumpre un	a manopolog	an and sequence (1) .

Good and bad features of wavelet/QMF filters

- Bad:
 - Aliased subbands
 - Non-oriented diagonal subband
- Good:
 - Not overcomplete (so same number of coefficients as image pixels).
 - Good for image compression (JPEG 2000)

Image pyramids

- Gaussian
- Laplacian
- Wavelet/QMF
- Steerable pyramid

Steerable pyramids

- Good:
 - Oriented subbands
 - Non-aliased subbands
 - Steerable filters
- Bad:
 - Overcomplete
 - Have one high frequency residual subband, required in order to form a circular region of analysis in frequency from a square region of support in frequency.

	Laplacian Pyramid	Dyadic QMF/Wavelet	Steerable Pyramid
self-inverting (tight frame)	no	yes	yes
overcompleteness	4/3	1	4k/3
aliasing in subbands	pernaps	yes	no
rotated orientation bands	no	only on hex lattice [9]	yes
the contract of the one			and other representation

• Summary of pyramid representations

Why use these representations?

- Handle real-world size variations with a constant-size vision algorithm.
- Remove noise
- Analyze texture
- · Recognize objects
- Label image features

An application of image pyramids: noise removal

Pre-attentive texture discrimination

Pre-attentive texture discrimination

Pre-attentive texture discrimination

Same or different textures?

Pre-attentive texture discrimination

Pre-attentive texture discrimination

 Pre-attentive texture discrimination

Same or different textures?

Jim Bergen proposed this...

Histogram matching algorithm

Match-histogram (im1,im2) im1-cdf = Make-cdf(im1) im2-cdf = Make-cdf(im2) inv-im2-cdf = Make-inverse-lookup-table(im2-cdf) Loop for each pixel do im1[pixel] = Lookup(inv-im2-cdf, Lookup(im1-cdf,im1[pixel]))

"At this im1 pixel value, 10% of the im1 values are lower. What im2 pixel value has 10% of the im2 values below it?"

Alternate matching the histograms of all the subbands and matching the histograms of the reconstructed images.

The Gaussian pyramid

- Smooth with gaussians, because – a gaussian*gaussian=another gaussian
- Synthesis
 - smooth and sample
- Analysis
 take the ter
 - take the top image
- Gaussians are low pass filters, so repn is redundant

