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Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid



http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf


The computational advantage of pyramids

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf




http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf


Convolution and subsampling as a matrix multiply (1-d 
case)

U1 =

1     4     6     4     1     0     0     0     0     0    0     0     0     0     0     0     0     0     0     0

0     0     1     4     6     4     1     0     0     0    0     0     0     0     0     0     0     0     0     0

0     0     0     0     1     4     6     4     1     0    0     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     1     4     6     4    1     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     1     4    6     4     1     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0    1     4     6     4     1     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0    0     0     1     4     6     4     1     0     0     0

0     0     0     0     0     0     0     0     0     0    0     0     0     0     1     4     6     4     1     0



Next pyramid level

U2 =

1     4     6     4     1     0     0     0

0     0     1     4     6     4     1     0

0     0     0     0     1     4     6     4

0     0     0     0     0     0     1     4



b * a, the combined effect of the two 
pyramid levels

>> U2 * U1

ans =

1     4    10    20    31    40    44    40    31    20    10     4     1     0     0     0     0     0     0     0

0     0     0     0     1     4    10    20    31    40    44    40    31    20    10     4     1     0     0     0

0     0     0     0     0     0     0     0     1     4    10    20    31    40    44    40    30    16     4     0

0     0     0     0     0     0     0     0     0     0    0     0     1     4    10    20    25    16     4     0



Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid



Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid



The Laplacian Pyramid

• Synthesis
– preserve difference between upsampled

Gaussian pyramid level and Gaussian 
pyramid level

– band pass filter - each level represents spatial 
frequencies (largely) unrepresented at other 
levels

• Analysis
– reconstruct Gaussian pyramid, take top layer



http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf


Laplacian pyramid algorithm

-
-

-







Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid



What is a good representation for 
image analysis? 

(Goldilocks and the three representations)

• Fourier transform domain tells you “what”
(textural properties), but not “where”.  In 
space, this representation is too spread out.

• Pixel domain representation tells you “where”
(pixel location), but not “what”.  In space, this 
representation is too localized

• Want an image representation that gives you 
a local description of image events—what is 
happening where.  That representation might 
be “just right”.



Wavelets/QMF’s

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

= Vectorized image

transformed image



The simplest wavelet transform:  
the Haar transform

U =

1     1

1    -1



The inverse transform for the Haar wavelet

>> inv(U)

ans =

0.5000    0.5000

0.5000   -0.5000



Apply this over multiple spatial positions

U =

1     1     0     0     0     0     0     0

1    -1     0     0     0     0     0     0

0     0     1     1     0     0     0     0

0     0     1    -1     0     0     0     0

0     0     0     0     1     1     0     0

0     0     0     0     1    -1     0     0

0     0     0     0     0     0     1     1

0     0     0     0     0     0     1    -1



The high frequencies

U =

1     1     0     0     0     0     0     0

1    -1     0     0     0     0     0     0

0     0     1     1     0     0     0     0

0     0     1    -1     0     0     0     0

0     0     0     0     1     1     0     0

0     0     0     0     1    -1     0     0

0     0     0     0     0     0     1     1

0     0     0     0     0     0     1    -1



The low frequencies

U =

1     1     0     0     0     0     0     0

1    -1     0     0     0     0     0     0

0     0     1     1     0     0     0     0

0     0     1    -1     0     0     0     0

0     0     0     0     1     1     0     0

0     0     0     0     1    -1     0     0

0     0     0     0     0     0     1     1

0     0     0     0     0     0     1    -1



The inverse transform

>> inv(U)

ans =

0.5000    0.5000         0         0         0         0    0         0

0.5000   -0.5000         0         0         0         0         0        0

0         0    0.5000    0.5000         0         0    0         0

0         0    0.5000   -0.5000         0         0         0         0

0         0         0         0    0.5000    0.5000    0         0

0         0         0         0    0.5000   -0.5000         0         0

0         0         0         0         0         0    0.5000    0.5000

0         0         0         0         0         0    0.5000   -0.5000



Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.



Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.



Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.



Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.



Now, in 2 dimensions…

Frequency domain

Horizontal high pass

Horizontal low pass



Apply the wavelet transform separable in both dimensions

Horizontal high pass, 
vertical high pass

Horizontal high pass, 
vertical low-pass

Horizontal low pass, 
vertical high-pass

Horizontal low pass,
Vertical low-pass



Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

To create 2-d filters, apply 
the 1-d filters separably in 
the two spatial dimensions



Wavelet/QMF representation



Good and bad features of wavelet/QMF 
filters

• Bad: 
– Aliased subbands
– Non-oriented diagonal subband

• Good:
– Not overcomplete (so same number of 

coefficients as image pixels).
– Good for image compression (JPEG 2000)



Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid



Steerable filters

http://people.csail.mit.edu/billf/freemanThesis.pdf



http://www.merl.com/reports/docs/TR95-15.pdf



Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE



Non-oriented steerable pyramid

http://www.merl.com/reports/docs/TR95-15.pdf



3-orientation steerable pyramid

http://www.merl.com/reports/docs/TR95-15.pdf



Steerable pyramids

• Good:
– Oriented subbands
– Non-aliased subbands
– Steerable filters

• Bad:
– Overcomplete
– Have one high frequency residual subband, required 

in order to form a circular region of analysis in 
frequency from a square region of support in 
frequency.



Oriented pyramids

• Laplacian pyramid is orientation 
independent

• Apply an oriented filter to determine 
orientations at each layer
– by clever filter design, we can simplify 

synthesis
– this represents image information at a 

particular scale and orientation





http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995

http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf


http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995

But we need to get rid 
of the corner regions 
before starting the 
recursive circular 
filtering

http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf


• Summary of pyramid representations



Image pyramids

Shows the information added in 
Gaussian pyramid at each 
spatial scale.  Useful for noise 
reduction & coding.

Progressively blurred and 
subsampled versions of the 
image.  Adds scale invariance 
to fixed-size algorithms.

Shows components at each 
scale and orientation 
separately.  Non-aliased 
subbands.  Good for texture 
and feature analysis.

Bandpassed representation, complete, but with 
aliasing and some non-oriented subbands.

• Gaussian

• Laplacian

• Wavelet/QMF

• Steerable pyramid



Schematic pictures of each matrix 
transform

Shown for 1-d images
The matrices for 2-d images are the same idea, but more 

complicated, to account for vertical, as well as horizontal, 
neighbor relationships.

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

= Vectorized image

transformed image



Fourier transform

= *

pixel domain 
image

Fourier bases 
are global:  
each transform 
coefficient 
depends on all 
pixel locations.

Fourier 
transform



Gaussian pyramid

= *
pixel image

Overcomplete representation.  
Low-pass filters, sampled 
appropriately for their blur.

Gaussian 
pyramid



Laplacian pyramid

= *
pixel image

Overcomplete representation.  
Transformed pixels represent 
bandpassed image information.

Laplacian
pyramid



Wavelet (QMF) transform

= *
pixel imageOrtho-normal 

transform (like 
Fourier transform), 
but with localized 
basis functions.  

Wavelet 
pyramid



= *
pixel image

Over-complete 
representation, 
but non-aliased 
subbands. 

Steerable
pyramid

Multiple 
orientations at 

one scale  

Multiple 
orientations at 
the next scale  

the next scale…

Steerable pyramid



Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html



Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html



Why use these representations?

• Handle real-world size variations with a 
constant-size vision algorithm.

• Remove noise
• Analyze texture
• Recognize objects
• Label image features



http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf



http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf



http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf



Very early computational approach to 
creating large depth-of-field

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf



An application of image pyramids:
noise removal



Image statistics (or, mathematically, how 
can you tell image from noise?)

Noisy image



Clean image



Pixel representation 
image histogram



bandpass filtered image



bandpassed representation 
image histogram



Pixel domain noise image and 
histogram



Bandpass domain noise image and 
histogram



Noise-corrupted full-freq and bandpass images

But want 
the 
bandpass
image 
histogram 
to look like 
this



P(x, y) = P(x|y) P(y)
so
P(x|y) P(y) = P(y|x) P(x)

P(x, y) = P(x|y) P(y)
so
P(x|y) P(y) = P(y|x) P(x)
and
P(x|y) = P(y|x) P(x) / P(y)

The parameters you 
want to estimate

Bayes theorem

What you observe Prior probability

Likelihood 
function

Constant w.r.t. 
parameters x.

P(x, y) = P(x|y) P(y) By definition of 
conditional probability

Using that twice



P(x)

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x)

P(y|x)

Bayesian MAP estimator for clean bandpass
coefficient values

y

P(y|x)

P(x|y)P(x|y)



Bayesian MAP estimator
Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x) y

P(y|x)

P(x|y)



Bayesian MAP estimator
Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x) y

P(y|x)

P(x|y)



MAP estimate,     , as function of 
observed coefficient value, y

y

x̂

x̂

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
Simoncelli and Adelson, Noise Removal via 
Bayesian Wavelet Coring

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf


Noise removal results

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
Simoncelli and Adelson, Noise Removal via 
Bayesian Wavelet Coring

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf


Image texture



The Goal of Texture Synthesis

• Given a finite sample of some texture, the 
goal is to synthesize other samples from that 
same texture
– The sample needs to be "large enough“

True (infinite) texture

SYNTHESIS

generated image

input image



The Goal of Texture Analysis

Compare textures and decide if they’re made of the 
same “stuff”.

True (infinite) texture

ANALYSIS

generated image

input image

“Same” or 
“different”



Pre-attentive texture discrimination



Pre-attentive texture discrimination



Pre-attentive texture discrimination

Same or different textures?



Pre-attentive texture discrimination



Pre-attentive texture discrimination



Pre-attentive texture discrimination

Same or different textures?



Julesz
• Textons:  analyze the texture in terms of 

statistical relationships between 
fundamental texture elements, called 
“textons”.  

• It generally required a human to look at 
the texture in order to decide what those 
fundamental units were...



Influential paper:



Bergen and Adelson, Nature 1988

Learn:  use filters.



Malik and Perona

Malik J, Perona P. Preattentive texture 
discrimination with early vision 
mechanisms. J OPT SOC AM A 7: (5) 923-
932 MAY 1990 

Learn:  use lots of filters, multi-ori&scale.



Representing textures

• Textures are made up 
of quite stylised
subelements, repeated 
in meaningful ways

• Representation:
– find the subelements, 

and represent their 
statistics

• But what are the 
subelements, and how 
do we find them?
– recall normalized 

correlation
– find subelements by 

applying filters, looking at 
the magnitude of the 

• What filters?
– experience suggests 

spots and oriented bars 
at a variety of different 
scales

– details probably don’t 
matter

• What statistics?
– within reason, the more 

the merrier.
– At least, mean and 

standard deviation
– better, various 

conditional histograms.





image

Squared responses Spatially blurred

Threshold squared, 
blurred responses, 
then categorize 
texture based on 
those two bits

vertical filter

horizontal filter









If matching the averaged squared filter 
values is a good way to match a given 
texture, then maybe matching the entire 
marginal distribution (eg, the histogram) of 
a filter’s response would be even better.

Jim  Bergen proposed this…



SIGGRAPH 1994



Histogram matching algorithm

“At this im1 pixel value, 10% of the im1 values are lower.  What im2 
pixel value has 10% of the im2 values below it?”



Heeger-Bergen texture synthesis algorithm

Alternate matching the histograms of all the subbands and matching 
the histograms of the reconstructed images.



Bergen and Heeger
Learn:  use filter marginal statistics.

Heeger/Bergen, Siggraph 1994



Bergen and Heeger results

Heeger/Bergen, Siggraph 1994



Bergen and Heeger failures

Heeger/Bergen, Siggraph 1994



More examples

Heeger/Bergen, Siggraph 1994



Heeger/Bergen, Siggraph 1994

More examples



Synthetic surfaces

Heeger/Bergen, Siggraph 1994



Heeger/Bergen, Siggraph 1994

Synthetic surfaces



Sampling example
Analyze crossed 

gratings…



Sampling example
Analyze crossed 

gratings…



Sampling example
Analyze crossed 

gratings…



Sampling example
Analyze crossed 

gratings…

Where does 
perceived near 
horizontal 
grating come 
from? 



A F(A)



B F(B)



A*B F(A)**F(B)



A*B F(A)**F(B)



A*B Lowpass(F(A)**F(B))
~=F(C)

C



end



The Gaussian pyramid

• Smooth with gaussians, because
– a gaussian*gaussian=another gaussian 

• Synthesis 
– smooth and sample

• Analysis
– take the top image

• Gaussians are low pass filters, so repn is 
redundant



Application to image compression

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
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