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A brief and biased history of texture synthesis

methods

Learn: use filters.

Bergen and Adelson, Nature 1988
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Learn: use lots of filters, multi-ori&scale.

Malik and Perona
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Learn: use filter marginal statistics.

Bergen and Heeger
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Bergen and Heeger failures

Figare 9 More failures: hay and marble

De Bonet (and Viola)

SIGGRAPH 1997

Multiresolution Sampling Procedure
for Analysis and Synthesis
of Texture Images
Jeremy 8. De Bonet -
Learning & Vision Group
Artificial Intelligence Laboratory
Massachusetts Institute of Technology

EmaiL: jsd@aimit.adu
Homepace: hitp:/fwww.ai.mil.adw/_jsd

Learn: use filter conditional statistics across scale.
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What we’ve learned from the
previous texture synthesis methods

From Adelson and Bergen:

examine filter outputs
From Perona and Malik:

use multi-scale, multi-orientation filters.
From Heeger and Bergen:

use marginal statistics (histograms) of filter
responses.

From DeBonet:

use conditional filter responses across scale.




IEEE Incternational Conference on Computer Visien, Corfu, Greece, September 1999

Texture Synthesis by Non-parametric Sampling

Alexei A, Efros and Thomas K. Leung
Computer Sci ivision
University of Califor
Berkeley, CA 94720-
{efros,leungt} @cs.berkeley.edu
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Efros & Leung 99

* [Shannon,’48] proposed a way to generate
English-looking text using N-grams:
— Assume a generalized Markov model

— Use a large text to compute prob. distributions of
each letter given N-1 previous letters

— Starting from a seed repeatedly sample this Markov
chain to generate new letters

— Also works for whole words

WE NEED TO EAT CAKE

Mark V. Shaney (Bell Labs)

* Results (using alt_singles corpus):

— “As I've commented before, really relating to
someone involves standing next to impossible.”

— ““One morning I shot an elephant in my arms and
kissed him.”

— “I spent an interesting evening recently with a
grain of salt”

 Notice how well local structure is
preserved!
— Now, instead of letters let’s try pixels...

Efros and Leung
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What we learned from Efros and
Leung regarding texture synthesis

» Don’t need conditional filter responses
across scale

» Don’t need marginal statistics of filter
responses.

Don’t need multi-scale, multi-orientation
filters.

Don’t need filters.




* The z;llgoritlﬁrtlroS & Leung "99

— Very simple
— Surprisingly good results
— Synthesis is easier than analysis!
— ...but very slow
 Optimizations and Improvements
— [Wei & Levoy,’00] (based on [Popat & Picard,’93])
— [Harrison,’01]
— [Ashikhmin,’01]

Efros & Leung 99 extended

non-parametric
sampling
G * L]
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Input image

Synthesizing a block
» Observation: neighbor pixels are highly correlated

Idea: unit of synthesis = block
e Exactly the same but now we want P(B|N(B))

* Much faster: synthesize all pixels in a block at once

* Not the same as multi-scale!

Image Quilting

* |dea:

— let’s combine random block placement of Chaos
Mosaic with spatial constraints of Efros & Leung

« Related Work (concurrent):
— Real-time patch-based sampling [Liang et.al. *01]
— Image Analogies [Hertzmann et.al. "01]

block
Input texture
B1 B2 B1 B2 B1 B2
Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut

Minimal error boundar

vertical bodndary

overlapping blocks

overlap error min. error boundary

Our Philosophy

« The “Corrupt Professor’s Algorithm”:
— Plagiarize as much of the source image as you can
— Then try to cover up the evidence

* Rationale:

— Texture blocks are by definition correct samples of
texture so problem only connecting them together




Algorithm

— Pick size of block and size of overlap
— Synthesize blocks in raster order

— Search input texture for block that satisfies overlap
constraints (above and left)

« Easy to optimize using NN search [Liang et.al., *01]
— Paste new block into resulting texture

* use dynamic programming to compute minimal error
boundary cut
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Failures
(Chernobyl
Harvest)

Wei & Levoy

Wei & Levoy

Homage to
Shannon!
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Texture Transfer
» Take the texture from one T G

object and “paint” it onto
another object
— This requires separating texture
and shape
— That’s HARD, but we can cheat

— Assume we can capture shape by
boundary and rough shading

Then, just add another constraint when sampling:
similarity to underlying image at that spot

Source . Target

texture § image

Source Target
correspondence correspondence

image ' image




Image analogies
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Applications

Image Analogies Image Quilting

Summary of image quilting

 Quilt together patches of input image
— randomly (texture synthesis)
— constrained (texture transfer)
* Image Quilting
— No filters, no multi-scale, no one-pixel-at-a-time!
— fast and very simple
— Results are not bad

Part 2

« Data driven approach for other image
processing and computer vision problems.
Example: super-resolution.

Prescription for doing vision

“Propagate local evidence”

Identical image intensities...




...different interpretations

Information must propagate over
the image.

Local

information...

...must propagate

Model image and scene patches
as nodes in a Markov network

image patches

scene patches =l g
III Image

scene

Network joint probability

P(XY) == [T ) TToex )

I Z i
scene Scene-scene Image-scene
image compatibility compatibility
function function
neighboring local

scene nodes observations

How represent the local image
interpretations?

« Gaussian distributions of parameters
* Particles

— Condensation

— Non-parametric belief propagation

« Examples

Exemplars

Gives you a discrete set of states; makes system
easy to debug.

Easy to propagate hypotheses.
Add realistic details with real-world samples.

Key implementation issue: need to use tricks to
squeeze as much as you can out of each example.




Outline

 Fun with exemplars
— Super-resolution
— (Texture synthesis and style modification)
« Limitations of exemplars; other directions

Examples of exemplars

« Super-resolution
(Texture synthesis and transfer)

Line drawing style modification
Shape-from-shading/reflectance estimation
» Motion estimation

Human body animation

Examples of exemplars

* Super-resolution

Super-resolution

* Image: low resolution image
« Scene: high resolution image

ultimate goal...

Pixel-based images
are not resolution
independent

Pixel replication

Cubic spline,
sharpened

Training-based
super-resolution

Polygon-based
graphics
images are
resolution
independent

3 approaches to perceptual
sharpening

(1) Sharpening; boost existing high

frequencies. e rv—
(2) Use multiple frames to obtain

higher sampling rate in a still frame%a
(3) Estimate high frequencies not

present in image, although implicitly

defined. _ : N
In this talk, we focus on (3), which

I 3 1 ” ial fi
we’ll call “super-resolution”. spatelfeaueney

amplitude

amplitud
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Super-resolution: other approaches

Schultz and Stevenson, 1994

Pentland and Horowitz, 1993

fractal image compression (Polvere, 1998;
Iterated Systems)

astronomical image processing (eg. Gull and
Daniell, 1978; “pixons”
http://casswww.ucsd.edu/puetter.html)

Training images, ~100,000 image/scene patch pairs

Images from two Corel database categories:
“giraffes” and “urban skyline”.

Do a first interpolation

Low-resolution

Full frq ncy original

Zoomed low-resolution

Low-resolution

True high fregs

Low-band input \
(contrast normalized, (to minimize the complexity of the relationships we have to learn,
PCA fitted) we remove the lowest frequencies from the input image,

and normalize the local contrast level).




Gather ~100,000 patches

H W @ W E N B W N highfregs.

.Ilm.. .....Iowfreqs e

Training data samples (magnified)

Nearest neighbor estimate

Input low fregs.

Estimated high fregs.

W W W ®E W B @ N highfregs.

.I.E.. .....Iowfreqs e

Training data samples (magnified)

Nearest neighbor estimate

Input low fregs.

Estimated high fregs.

W @ W E N HE W N highfregs.

.I.E.. .....Iowfreqs e

Training data samples (magnified)

Example: input image patch, and closest
matches from database

Input patch =

-

Closest image ==zige= =szyizrm =uziin = mvziigin mizisim sz smppim o azie:

patches from database 5 E E E = 5
; i

STEL U S mEr A ML S s i e e e S

Corresponding - H — = 5 = E
high-resolution g == = T
patches from database = n : = - lﬁ

gt e Sy ST a g i =mmpp i =

. . *$_ Image patch

Underlying candidate
scene patches. Each
renders Lo the image
patch.
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Scene-scene compatibility function,
]
lP(Xi’ Xj) E“-
Assume overlapped regions, d, of hi-res.
patches differ by Gaussian observation noise:

_ —|d;—d; |2 /202
U(zi,zj) = exp™ “7Y /

Uniqueness constraint,
& not smoothness.
d
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Image-scene compatibility =y

function, d(x;, ;) !
Assume Gaussian noise takes you from X

observed image patch to synthetic sample:

O (z;,y:) = exp_lyi—y(mi) /202

Markov network

image patches

VISTA--
Vision by Image-Scene TrAining

image patches

scene patches e
III Image
III\\\\\\\\\\\:T\iI {?i_ .I

scene

Super-resolution application

image patches

After a few iterations of belief propagation, the
algorithm selects spatially consistent high resolution
interpretations for each low-resolution patch of the
input image.

Belief Propagation

Iter. 0

Iter. 1

Iter. 3

We apply the super-resolution
algorithm recursively, zooming
up 2 powers of 2, or a factor of 4
in each dimension.

85 x 51 input

Cubic spline zoom to 340x204 Max. likelihood zoom to 340x204

13



Now we examine the effect of the prior
assumptions made about images on the
high resolution reconstruction.

First, cubic spline interpolation.

Original (cubic spline implies thin Original (cubic spline implies thin
50x58 plate prior) 50x58 plate prior)
True ) . True
200x232 Cubic spline 200x232
Next, train the Markov network The algorithm learns that, in such a
algorithm on a world of random noise world, we add random noise when zoom
images. to a higher resolution.
Original Original
50x58 50x58
Training images Training images
Markov
True network True
. . The Markov network algorithm
Next, train on a W.°"d of vertically hallucinates those vertical rectangles that
oriented rectangles. B M
it was trained on.
Original Original
50x58 50x58
Training images Training images
Markov
True network True

14



Now train on a generic collection of

images.
! |
o

Train_ing images

Original
50x58

True

The algorithm makes a reasonable guess
at the high resolution image, based on its

training images.
! |

Train_ing images

Original
50x58

True

Next, train on a generic
set of training images.
Using the same camera
as for the test image, but
arandom collection of
photographs.

Original Cubic
70x70 Spline
Markov
?rzti’nin : True
ng: 280x280
generic

Kodak Imaging Science Technology Lab test.

LK T *- X : 3

R X 3 test images, 640x480, to be
= - 4 zoomed up by 4 in each

dimension.

8 judges, making 2-alternative,
forced-choice comparisons.

Algorithms compared

« Bicubic Interpolation
 Mitra's Directional Filter
 Fuzzy Logic Filter
*Vector Quantization

* VISTA

15



Bicubic spline

Altamira

VISTA

User preference test results

“The observer data indicates that six of the observers ranked

Freeman’s algorithm as the most preferred of the five tested
algorithms. However the other two observers rank Freeman’s algorithm
as the least preferred of all the algorithms....

Freeman’s algorithm produces prints which are by far the sharpest
out of the five algorithms. However, this sharpness comes at a price
of artifacts (spurious detail that is not present in the original

scene). Apparently the two observers who did not prefer Freeman’s
algorithm had strong objections to the artifacts. The other observers
apparently placed high priority on the high level of sharpness in the
images created by Freeman’s algorithm.”

Cubic spling 200m

Source mage pasches.

Bandpass fMered and
ooneragt nomakred

Trus high reschuition piuoks

High ressciuteon poosls chosen
by super resohsion

Bardpass Hiered and contrast
nomakped best match polches
Fram trawang dals

Best match polches fom
trRining data

EAn

Training images |

N
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Training image
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Processed image

T

Conclusions

» Exemplars (local, non-parametric image

representations) are useful, fun, easy-to-use.

» Requirement: find ways to get by with too
few exemplars.

end
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