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A brief and biased history of texture synthesis 
methods

Bergen and Adelson, Nature 1988

Learn:  use filters.

Malik and Perona

Malik J, Perona P. Preattentive texture 
discrimination with early vision 
mechanisms. J OPT SOC AM A 7: (5) 923-
932 MAY 1990 

Learn:  use lots of filters, multi-ori&scale.

Bergen and Heeger

Learn:  use filter marginal statistics.
Bergen and Heeger results
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Bergen and Heeger failures De Bonet (and Viola)
SIGGRAPH 1997

DeBonet
Learn:  use filter conditional statistics across scale.

DeBonet

DeBonet What we’ve learned from the 
previous texture synthesis methods

From Adelson and Bergen:
examine filter outputs

From Perona and Malik:
use multi-scale, multi-orientation filters.

From Heeger and Bergen:
use marginal statistics (histograms) of filter 
responses.

From DeBonet:
use conditional filter responses across scale.
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Efros & Leung ’99

• [Shannon,’48] proposed a way to generate 
English-looking text using N-grams:
– Assume a generalized Markov model
– Use a large text to compute prob. distributions of 

each letter given N-1 previous letters 
– Starting from a seed repeatedly sample this Markov 

chain to generate new letters 
– Also works for whole words

WE  NEED TO EAT CAKE

Mark V. Shaney (Bell Labs)

• Results (using alt.singles corpus):
– “As I've commented before, really relating to 

someone involves standing next to impossible.”
– “One morning I shot an elephant in my arms and 

kissed him.”
– “I spent an interesting evening recently with a 

grain of salt”

• Notice how well local structure is 
preserved!
– Now, instead of letters let’s try pixels…

Efros and Leung

What we learned from Efros and 
Leung regarding texture synthesis

• Don’t need conditional filter responses 
across scale

• Don’t need marginal statistics of filter 
responses.

• Don’t need multi-scale, multi-orientation 
filters.

• Don’t need filters.
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Efros & Leung ’99
• The algorithm

– Very simple
– Surprisingly good results
– Synthesis is easier than analysis!
– …but very slow

• Optimizations and Improvements
– [Wei & Levoy,’00] (based on [Popat & Picard,’93]) 
– [Harrison,’01]
– [Ashikhmin,’01]

pp

Efros & Leung ’99 extended

• Observation: neighbor pixels are highly correlated

Input image

non-parametric
sampling

BB

Idea:Idea: unit of synthesis = blockunit of synthesis = block
• Exactly the same but now we want P(B|N(B))

• Much faster: synthesize all pixels in a block at once

• Not the same as multi-scale!

Synthesizing a block

Image Quilting
• Idea:

– let’s combine random block placement of Chaos 
Mosaic with spatial constraints of Efros & Leung

• Related Work (concurrent):
– Real-time patch-based sampling [Liang et.al. ’01]
– Image Analogies [Hertzmann et.al. ’01] 

Input texture

B1 B2

Random placement 
of blocks 

block

B1 B2

Neighboring blocks
constrained by overlap

B1 B2

Minimal error
boundary cut

min. error boundary

Minimal error boundary
overlapping blocks vertical boundary

__ ==
22

overlap error

Our Philosophy
• The “Corrupt Professor’s Algorithm”:

– Plagiarize as much of the source image as you can
– Then try to cover up the evidence

• Rationale:  
– Texture blocks are by definition correct samples of 

texture so problem only connecting them together
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Algorithm
– Pick size of block and size of overlap
– Synthesize blocks in raster order

– Search input texture for block that satisfies overlap 
constraints (above and left)

• Easy to optimize using NN search [Liang et.al., ’01]

– Paste new block into resulting texture
• use dynamic programming to compute minimal error 

boundary cut



6

Failures
(Chernobyl
Harvest)

input image

Portilla & Simoncelli

Wei & Levoy Image Quilting

Xu, Guo & Shum

Portilla & Simoncelli

Wei & Levoy Image Quilting

Xu, Guo & Shum

input image

Portilla & Simoncelli

Wei & Levoy Image Quilting

input image

Homage to 
Shannon!

Xu, Guo & Shum
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Texture Transfer
• Take the texture from one 

object and “paint” it onto 
another object
– This requires separating texture 

and shape
– That’s HARD, but we can cheat 
– Assume we can capture shape by 

boundary and rough shading

•
Then, just add another constraint when sampling: Then, just add another constraint when sampling: 
similarity to underlying image at that spotsimilarity to underlying image at that spot

++ ==

++ ==
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Source
texture

Target 
image

Source
correspondence

image

Target
correspondence  
image

++ ==
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Image analogies
Image Analogies Image Quilting

Summary of image quilting
• Quilt together patches of input image 

– randomly (texture synthesis) 
– constrained (texture transfer)

• Image Quilting 
– No filters, no multi-scale, no one-pixel-at-a-time! 
– fast and very simple
– Results are not bad

Part 2

• Data driven approach for other image 
processing and computer vision problems.  
Example:  super-resolution.

Prescription for doing vision

“Propagate local evidence”

Identical image intensities...
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…different interpretations Information must propagate over 
the image.

Local 
information... ...must propagate

Model image and scene patches 
as nodes in a Markov network

image patches

Φ(xi, yi)

Ψ(xi, xj)

image

scene

scene patches

Network joint probability

scene
image

Scene-scene
compatibility

function
neighboring
scene nodes

local 
observations

Image-scene
compatibility

function
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How represent the local image 
interpretations?

• Gaussian distributions of parameters
• Particles

– Condensation
– Non-parametric belief propagation

• Examples 

Exemplars

• Gives you a discrete set of states; makes system 
easy to debug.  

• Easy to propagate hypotheses.
• Add realistic details with real-world samples.
• Key implementation issue: need to use tricks to 

squeeze as much as you can out of each example.
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Outline

• Fun with exemplars
– Super-resolution
– (Texture synthesis and style modification)

• Limitations of exemplars;  other directions

Examples of exemplars

• Super-resolution
• (Texture synthesis and transfer)

• Line drawing style modification
• Shape-from-shading/reflectance estimation
• Motion estimation
• Human body animation

Examples of exemplars

• Super-resolution
• (Texture synthesis and transfer)

• Line drawing style modification
• Shape-from-shading/reflectance estimation
• Motion estimation
• Human body animation

Super-resolution

• Image:  low resolution image
• Scene:  high resolution image

im
ag

e
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ultimate goal...

Polygon-based 
graphics 
images are 
resolution 
independent

Pixel-based images 
are not resolution 

independent
Pixel replication

Cubic splineCubic spline, 
sharpened

Training-based 
super-resolution

3 approaches to perceptual 
sharpening

(1)  Sharpening;  boost existing high 
frequencies.

(2)  Use multiple frames to obtain 
higher sampling rate in a still frame.

(3)  Estimate high frequencies not 
present in image, although implicitly 
defined.

In this talk, we focus on (3), which 
we’ll call “super-resolution”.

spatial frequency
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Super-resolution: other approaches

• Schultz and Stevenson, 1994
• Pentland and Horowitz, 1993
• fractal image compression (Polvere, 1998; 

Iterated Systems)
• astronomical image processing (eg. Gull and 

Daniell, 1978;  “pixons”
http://casswww.ucsd.edu/puetter.html)

Training images, ~100,000 image/scene patch pairs

Images from two Corel database categories:  
“giraffes” and “urban skyline”.

Do a first interpolation

Zoomed low-resolution

Low-resolution

Zoomed low-resolution

Low-resolution

Full frequency original

Full freq. original
RepresentationZoomed low-freq.

True high freqs
Low-band input

(contrast normalized, 
PCA fitted)

Full freq. original
RepresentationZoomed low-freq.

(to minimize the complexity of the relationships we have to learn,
we remove the lowest frequencies from the input image, 

and normalize the local contrast level).



12

Training data samples (magnified)

......

Gather ~100,000 patches

low freqs.

high freqs.

True high freqs.Input low freqs.

Training data samples (magnified)

......

Nearest neighbor estimate

low freqs.

high freqs.

Estimated high freqs.

Input low freqs.

Training data samples (magnified)

......

Nearest neighbor estimate

low freqs.

high freqs.

Estimated high freqs.

Example:  input image patch, and closest 
matches from database

Input patch

Closest image
patches from database

Corresponding
high-resolution

patches from database

Scene-scene compatibility function, 
Ψ(xi, xj) 

Assume overlapped regions, d, of hi-res. 
patches differ by Gaussian observation noise:

d

Uniqueness constraint,
not smoothness.
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Image-scene compatibility 
function, Φ(xi, yi)

Assume Gaussian noise takes you from 
observed image patch to synthetic sample:

y

x

Markov network

image patches

Φ(xi, yi)

Ψ(xi, xj)
scene patches

VISTA--
Vision by Image-Scene TrAining

image patches

Φ(xi, yi)

Ψ(xi, xj)

image

scene

scene patches

Super-resolution application

image patches

Φ(xi, yi)

Ψ(xi, xj)
scene patches

Iter. 3

Iter. 1

Belief Propagation
Input

Iter. 0

After a few iterations of belief propagation, the 
algorithm selects spatially consistent high resolution 

interpretations for each low-resolution patch of the 
input image.

Zooming 2 octaves

85 x 51 input

Cubic spline zoom to 340x204 Max. likelihood zoom to 340x204

We apply the super-resolution 
algorithm recursively, zooming 

up 2 powers of 2, or a factor of 4 
in each dimension.
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True
200x232

Original
50x58

(cubic spline implies thin 
plate prior)

Now we examine the effect of the prior 
assumptions made about images on the 

high resolution reconstruction.
First, cubic spline interpolation.

Cubic spline
True

200x232

Original
50x58

(cubic spline implies thin 
plate prior)

True

Original
50x58

Training images

Next, train the Markov network 
algorithm on a world of random noise 

images.

Markov
network

True

Original
50x58

The algorithm learns that, in such a 
world, we add random noise when zoom 

to a higher resolution.

Training images

True

Original
50x58

Training images

Next, train on a world of vertically 
oriented rectangles.

Markov
network

True

Original
50x58

The Markov network algorithm 
hallucinates those vertical rectangles that 

it was trained on.

Training images
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True

Original
50x58

Training images

Now train on a generic collection of 
images.

Markov
network

True

Original
50x58

The algorithm makes a reasonable guess 
at the high resolution image, based on its 

training images.

Training images

Generic training images
Next, train on a generic 

set of training images.  
Using the same camera 

as for the test image, but 
a random collection of 

photographs.

Cubic 
Spline

Original
70x70

Markov
net, 
training:
generic

True
280x280

Kodak Imaging Science Technology Lab test.

3 test images, 640x480, to be
zoomed up by 4 in each 
dimension.

8 judges, making 2-alternative, 
forced-choice comparisons.

Algorithms compared

• Bicubic Interpolation
• Mitra's Directional Filter
• Fuzzy Logic Filter
•Vector Quantization
• VISTA
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Bicubic spline Altamira VISTA

Bicubic spline Altamira VISTA

User preference test results

“The observer data indicates that six of the observers ranked
Freeman’s algorithm as the most preferred of the five tested
algorithms. However the other two observers rank Freeman’s algorithm
as the least preferred of all the algorithms….

Freeman’s algorithm produces prints which are by far the sharpest
out of the five algorithms.  However, this sharpness comes at a price
of artifacts (spurious detail that is not present in the original
scene). Apparently the two observers who did not prefer Freeman’s
algorithm had strong objections to the artifacts. The other observers
apparently placed high priority on the high level of sharpness in the
images created by Freeman’s algorithm.”

Training images
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Training image Processed image

Conclusions

• Exemplars (local, non-parametric image 
representations) are useful, fun, easy-to-use.

• Requirement:  find ways to get by with too 
few exemplars.

end


