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A brief and biased history of texture synthesis
methods



Fig. 1 Top row, Textures
consisting of Xs within a
texture composed of Ls.
The micropatterns  are
placed at random orienta-
tions on a randomly per-
turbed lattice. a, The bars
of the Xs have the same
length as the bars of the
Ls. b, The bars of the Ls
have been lengthened by
25%. and the intensity
adjusted for the same
mean  luminance.  Dis-
criminability is enhanced.
¢, The bars of the Ls
have been shortened by
25%. and the intensity
adjusted for the same
mean  luminance.  Dis-
criminabitity is impaired.
Bottom row: the responses
of a size-tuned mechan-
ism d, response 0 image
a: e, response 1o image b;
i response Lo image .
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Bergen and Adelson, Nature 1988
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use filters.



Learn: use lots of filters, multi-ori&scale.
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Malik J, Perona P. Preattentive texture

discrimination with early vision
mechanisms. J OPT SOC AM A 7: (5) 923-

932 MAY 1990




Learn: use filter marginal statistics.

Bergen and Heeger

Figure 2: (Lelt) Input digitized sample lexiure: burled mappa wood. (Middle) Input noise. {Right) Cuipul synthetic texture
that matches the appearance of the digitized zample. Note that the synthesized texture iz larger than the digitized sample;
our approach allows generation ol as much texture as desired. In addition. the syniheuc lexiures lile seamlessly.



Bergen and Heeger results

1

Figure 3: In each pair left image is original and nght image is synthetic: stucco, iridescent ribbon, green marble, panda fur,
slag stone, figured yew wood.



Bergen and Heeger failures

Figure 9: More failures: hay and marble.




De Bonet (and Viola)

SIGGRAPH 1997

Multiresolution Sampling Procedure
for Analysis and Synthesis
of Texture Images
Jeremy S. De Bonet
Learning & Vision Group

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

EMAIL: jsd@ai.mit.edu
HOMEPAGE: http://www.ai.mit.edu/__jsd



Learn: use filter conditional statistics across scale.

DeBonet
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Figure 8: The distribution from which pixels in the synthesis pyra- Figure 9: An input texture is decomposed to form an analysis pyra-
mid are sampled 1s conditioned on the “parent™ structure of tk_msc mid, from which a new synthesis pyramid is sampled, conditioned
pixels. Each element of the parent structure contains a vector of the on local features within the pyramids. A filter bank of local texture

feature measurements at that location and scale. measures, based on psychophysical models, are used as features.



DeBonet




‘ _ DeBonet




What we’ve learned from the
previous texture synthesis methods

From Adelson and Bergen:

examine filter outputs
From Perona and Malik:

use multi-scale, multi-orientation filters.
From Heeger and Bergen:

use marginal statistics (histograms) of filter
responses.

From DeBonet:

use conditional filter responses across scale.



IEEE Internaticnal Conference on Computer Vision, Corfu, Greece, September 1999

Texture Synthesis by Non-parametric Sampling

Alexei A. Efros and Thomas K. Leung
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776, U.S.A.
{efros,leungt } @cs.berkeley.edu
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Efros & Leung 99

 [Shannon,’48] proposed a way to generate
English-looking text using N-grams:
— Assume a generalized Markov model

— Use a large text to compute prob. distributions of
each letter given N-1 previous letters

— Starting from a seed repeatedly sample this Markov
chain to generate new letters

— Also works for whole words

WE NEED TO EAT CAKE



Mark V. Shaney (Bell Labs)

e Results (using alt.singles corpus):.

— “As I've commented before, really relating to
someone Involves standing next to impossible.”

— ““One morning | shot an elephant in my arms and
kissed him.””

— ““I spent an interesting evening recently with a
grain of salt”

e Notice how well local structure 1s
preserved!

— Now, Instead of letters let’s try pixels...



Efros and Leung




ILIE

Figure 2. Results: given a sample image (left), the algorithm synthesized four new images with nelfrhburhuud windows of
width 5, T'1, 15, and 23 pixels respectively. Notice how perceptually intuitively the window size corresponds to the degree of
randomness in the resulting textures. Input images are: (a) synthetic rings, (b) Brodatz texture D11, (c) brick wall




What we learned from Efros and
L eung regarding texture synthesis

Don’t need conditional filter responses
across scale

Don’t need marginal statistics of filter
responses.

Don’t need multi-scale, multi-orientation
filters.

Don’t need filters.



. The algcmtl;fros & Leung 99

— Very simple

— Surprisingly good results

— Synthesis Is easier than analysis!
— ...but very slow

e Optimizations and Improvements
— [Wel & Levoy,’00] (based on [Popat & Picard,’93])
— [Harrison,’01]
— [Ashikhmin,’01]




Efros & Leung ’99 extended

non-parametric
sampling

Input image

Synthesizing a block

» Observation: neighbor pixels are highly correlated
ldea: unit of synthesis = block

e Exactly the same but now we want P(B|N(B))

e Much faster: synthesize all pixels in a block at once

e Not the same as multi-scale!



Image Quilting

e |dea:

— let’s combine random block placement of Chaos
Mosaic with spatial constraints of Efros & Leung

e Related Work (concurrent):
— Real-time patch-based sampling [Liang et.al. 01]
— Image Analogies [Hertzmann et.al. ’01]



block

Input texture

B1 | B2 B1 | | | B2 B1 | | B2

Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut




Minimal error boundar

overlapping blocks vertical bodndary

s

-

-]

overlap error min. error boundary



Our Philosophy

e The “Corrupt Professor’s Algorithm”:
— Plagiarize as much of the source image as you can
— Then try to cover up the evidence

« Rationale:

— Texture blocks are by definition correct samples of
texture so problem only connecting them together



Algorithm

— Pick size of block and size of overlap
— Synthesize blocks in raster order

— Search Input texture for block that satisfies overlap
constraints (above and left)

 Easy to optimize using NN search [Liang et.al., ’01]

— Paste new block into resulting texture

e use dynamic programming to compute minimal error
boundary cut
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Failures
(Chernobyl
Harvest)







| Xu Guo & Shum
B T T T TR
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Homage to
Shannon!
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Texture Transfer

» Take the texture from one
object and “paint” it onto
another object

— This requires separating texture
and shape

— That’s HARD, but we can cheat

— Assume we can capture shape by
boundary and rough shading

Then, just add another constraint when sampling:
similarity to underlying image at that spot
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sSource g - Target
texture . Image
Source Target
correspondence correspondence
Image Image







Image analogies

) NYU Media Research Lab | Projects | Image Analogies - Mozilla Firefox

File Edit Wiew &So  Bookmarks Tools  Help 0
Q-EI - LC:) - %1 |;| @ |'{C http: el reeu. edufprojectsfimage-analogies, V| D Go “g.
e nyu media research lab

new york university
' l image analogies

VWie present a new framework for processing images by example, called "image analogies " Rather than
home attempting to program individual filters by hand, we attempt to automatically learn filters from training data. For

F'Eﬂ‘F“ﬁI example, the following figure demonstrates an image analogy used to learn a painting style:
researc

ML edu
cs department
courant institute

MY Media Research Lab
719 Broadway

1Zth Floor

Mew York, MY 10003

tel +1 212 993 3390

fax +1 212 895 4122

Google
| | The images on the left are training data; our system "learns” the transformation from A to A', and then applies that
transformation to B to get B'. In other words, we compute B' to complete the analogy. (Only partial images are
showen above; here are the full images).

Many examples and results are shown on these pages. For additional details of the algorithm, please see the
paper.

Applications

T~ =eeliad the irmaca analsciac amorrcach fo o covearal difaorant ereblare:
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Summary of image quilting

 Quilt together patches of input image
— randomly (texture synthesis)
— constrained (texture transfer)
* Image Quilting
— No filters, no multi-scale, no one-pixel-at-a-time!
— fast and very simple
— Results are not bad




Part 2

o Data driven approach for other image
processing and computer vision problems.
Example: super-resolution.



Prescription for doing vision

“Propagate local evidence”




Identical Image intensities...

-

H




...different interpretations




Information must propagate over
the image.

Local
information...



Model image and scene patches
as nodes In a Markov network

Image patches
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Network joint probability

P(? y) == H‘P(x X )H(D(X y;)

scene Scene scene Image- scene
image compatibility compatibility
function function
neighboring local

scene nodes observations



How represent the local image
Interpretations?

o Gaussian distributions of parameters

o Particles
— Condensation
— Non-parametric belief propagation

o Examples



Exemplars

Glves you a discrete set of states; makes system
easy to debug.

Easy to propagate hypotheses.
Add realistic details with real-world samples.

Key implementation issue: need to use tricks to
squeeze as much as you can out of each example.




Outline

e Fun with exemplars
— Super-resolution
— (Texture synthesis and style modification)

o Limitations of exemplars; other directions



Examples of exemplars

Super-resolution
(Texture synthesis and transfer)

Line drawing style modification
Shape-from-shading/reflectance estimation
Motion estimation

Human body animation



Examples of exemplars

o Super-resolution



Super-resolution

e Image: low resolution image
e Scene: high resolution image

ultimate goal...




Pixel-based images
are not resolution
Independent

Pixel replication
L

Cubic spline,
sharpened

W

Training-based

Polygon-based super-resolution
graphics |
Images are
resolution
Independent




3 approaches to perceptual

sharpening N

amplitude

(1) Sharpening; boost existing high
freq UenCleS spatial frequency

(2) Use multiple frames to obtain
higher sampling rate in a still frame&gﬁ;H

(3) Estimate high frequencies not
present in iImage, although implicitly

defined. EIN \
In this talk, we focus on (3), which \\

spatial frequency

—>

amplitude

we’ll call “super-resolution”.



Super-resolution: other approaches

e Schultz and Stevenson, 1994
 Pentland and Horowitz, 1993

o fractal image compression (Polvere, 1998,
Iterated Systems)

 astronomical image processing (eg. Gull and
Daniell, 1978; “pixons”

http://casswww.ucsd.edu/puetter.ntml)



Training images, ~100,000 image/scene patch pairs

Images from two Corel database categories:
“giraffes” and “urban skyline”.




Do a first interpolation

Low-resolution
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Zoomed low-resolution Full frequency original

Low-resolution



Representation

Zoomed low-freq.

Full freq. original




Representation

Zoomed low-freq.

Full freq. original

. True high fregs

Low-band input \ J q

(contrast normalized, (to minimize the complexity of the relationships we have to learn,
PCA fitted) we remove the lowest frequencies from the input image,

and normalize the local contrast level).



Gather ~100,000 patches

i B @ B EBE B B =B N hghfregs.

IIIEII EREEEN .

Training data samples (magnified)



Nearest neighbor estimate

Input low fregs.

Estimated high fregs.

W @ W E B B = N highfregs.

l[III EREEEN .

Training data samples (magnified)



Nearest neighbor estimate

Input low fregs.

B B E B B N highfregs.
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Example: Input image patch, and closest
matches from database

Input patch

#1: Range [-2.67, 2.58]
Dims [7, 7]

LS o o o o
="

-
C I Osest I I I I a e #9: Range [-1.68, 228] #10: Range [-1.99, 266] #11: Range [-192, 1.95] #12: Range [-2.07, 2.41]  #13: Range [-2.26, 3.22]  #14: Range [-1 4 312]  #15: Range [-2.39, 2.95] #16: Range [-2.08, 1.51]
Dirns [7, 7] Dims [7, 7] Dims [7, 7] Lims [7, 7] Dims [7, 7] Dims [7, 7 Dims [7, 7] Lims [7, 7]

patches from database B E E = 5
-

#17: Range [-2.03, 1.82]  #18: Range [-1.67, 3.14]  #19: Range [-2.15, 1.9]  #20: Fange [-2.46, 2.26] #21: Range [-2.26, 2.25] #22: Range [-2.13, 1.95] #23: Range [-2.17, 2.13]  #24: Range [-1 B, 2.38]
Dirns [7, 7] Dims [7, 7] Dims [7, 7] Lims [7, 7] Dims [7, 7] Dims [7, 7] Dims [7, 7] Dims

"= = o

C d -
#25 Hange[ 07 236] 426 ﬁange[ 551 48] w27 ﬁange[ 333 343 428 Hange[ 47 43 w2 ﬁange[ 43 458 430; onge [ a 15 574 g3 Fone [ 345 s8] #32: Fange [ 439 451]
2 51

high-resolution —
patches from database = : :

e P

#33; ange - 329 430] a3t Fonge [ 403 628 #35 Hange[ 72 B4s] 436 Fage [ 557 S5 407 Fange [ zsa 3061 4 Fonge [ 523 332 439:Fone [ 324 2411 #A0: Fange [ 292 254]
. 5] 25 2 51 . 5] 2 51




Image patch

Underlying candidate
scene patches. Each
renders fo the image
patch.



Scene-scene compatibility function,

Assume overlapped regions, d, of hi-res.
patches differ by Gaussian observation noise:

. _|d._d‘|2 20.2
\I/(a:i,a:j) = exp i—d; 1%/

Unigueness constraint,
k not smoothness.
d



Image-scene compatibility $y
function, ®(x;, y:)
=

Assume Gaussian noise takes you from X
observed image patch to synthetic sample:

P (w;,y;) = exp Vvl /207



Markov network




VISTA--
Vision by Image-Scene TrAining

Image patches
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Super-resolution application

Image patches




Bel |ef P ropag atl on After a few iterations of belief propagation, the

algorithm selects spatially consistent high resolution
interpretations for each low-resolution patch of the
input image.

Iter. O

Iter. 1

Iter. 3




Zooming 2 octaves

=w‘ | o

We apply the super-resolution
algorithm recursively, zooming
up 2 powers of 2, or a factor of 4
in each dimension.

85 x 51 input

Cubic spline zoom to 340x204 Max. likelihood zoom to 340x204



Original
50x58

Now we examine the effect of the prior
assumptions made about images on the
high resolution reconstruction.

First, cubic spline interpolation.

(cubic spline implies thin
plate prior)

True
200x232



Original (cubic spline implies thin
50x58 plate prior)
: : True
Cubic spline 200x232




Next, train the Markov network
algorithm on a world of random noise
images.

Original
50x58




The algorithm learns that, in such a
world, we add random noise when zoom
to a higher resolution.

Original
50x58

Markov

True
network



Next, train on a world of vertically
oriented rectangles.

Original
50x58

Training images

True




The Markov network algorithm
hallucinates those vertical rectangles that
it was trained on.

Original

50x58
Training images

Markov

True
network




Now train on a generic collection of
Images.

Original
50x58




The algorithm makes a reasonable guess
at the high resolution image, based on its
training images.

Original
50x58

Markov
network



Generic training images

Next, train on a generic
set of training images.
Using the same camera
as for the test image, but
a random collection of
photographs.




Original
70x70

Markov
net,
training:
generic

True
280x280




Kodak I Knagmg Science Technology Lab test.
,f L RORIIN

7 %

3 test images, 640x480, to be
zoomed up by 4 in each
dimension.

8 judges, making 2-alternative,
forced-choice comparisons.



Algorithms compared

 Bicubic Interpolation

e Mitra's Directional Filter
e Fuzzy Logic Filter
*VVector Quantization

¢ VISTA






Bicubic spline Altamira



User preference test results

“The observer data indicates that six of the observers ranked

Freeman’s algorithm as the most preferred of the five tested
algorithms. However the other two observers rank Freeman’s algorithm
as the least preferred of all the algorithms....

Freeman’s algorithm produces prints which are by far the sharpest
out of the five algorithms. However, this sharpness comes at a price
of artifacts (spurious detail that is not present in the original

scene). Apparently the two observers who did not prefer Freeman’s
algorithm had strong objections to the artifacts. The other observers
apparently placed high priority on the high level of sharpness in the
Images created by Freeman’s algorithm.”









Super-resglution Zoom
p—r T

Source image patches

Eandpass fltered and
contrast nomalized

Trus high rasoclution poeals

High rasalution pixels chossn
by super-resolution

Bandpass hitered and contrast
mormahized best makch palches

framm traming daia

Hest match patches from
training data



Training Image
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Image

Processed




Conclusions

« Exemplars (local, non-parametric image
representations) are useful, fun, easy-to-use.

* Requirement: find ways to get by with too
few exemplars.
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