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How was pset 2?




What have we learnt last time? g

e Logisgood
* Luminance is different from chrominance
e Separate components:
— Low and high frequencies
e Strong edges are important
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Homomorphic filtering Hesaie

e Oppenhein, in the sixties
* Images are the product of illumination and albedo

— Similarly, many sounds are the product of an
envelope and a modulation

 Illlumination is usually slow-varying

e Perform albedo-iIllumination using low-pass filtering
of the log image

o http://www.cs.sfu.ca/~stella/papers/blairthesis/main/node33.html
« See also Koenderink "'Image processing done right"

http://www.springerlink.com/(I1bpumaapconcbjngteojwagv)/app/home/contribution
asp?referrer=parent&backto=issue,11,53:journal,1538,3333:linkingpublicationres

ults,1:105633,1




i

What's great about the bilateral filter-

Separate image Iinto two components
Preserve strong edges
Non-iterative

— More controllable, stable
Can be accelerated

St
S

AR,

e Lots of other applications
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Edit materials and lighting

With Oh, Chen and Dorsey




A Simple Relighting Example

e With Oh, Chen and Dorsey




Flash Photography (Elmar Eisemann)én.
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Bilateral filtering on meshes

e http://www.cs.tau.ac.il/~dcor/onli
ne papers/papers/shachar03.pdf

o http://people.csail.mit.edu/thouis/
JDDO03.pdf

Figure 1: The dragon model (left) is artificially corrupted by Gaussian noise (o = 1/5 of the mean edge length) (middle), then
smoothed in a single pass by our method (right). Note that features such as sharp corners are preserved.



Questions?




Questions?
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Today: Gradient manipulation

Idea:
 Human visual system is very sensitive to gradient
e Gradient encode edges and local contrast quite well

e Do your editing in the gradient domain
« Reconstruct image from gradient ; ;

» Various instances of this idea, I’'ll mostly follow Perez et al. Siggraph 2003
http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf



sources/destinations

From Perez et al. 2003



CSAIL

seamless cloning

t

len

clone grad

Solution

sources/destinations



Gradients and grayscale images

,_llr'_? =

T CSAIL

Grayscale image: nx n scalars

Gradient: nx n 2D vectors

Overcomplete!

What’s up with this?

Not all vector fields are the gradient of an image!
Only if they are curl-free (a.k.a. conservative)

— But it does not matter for us



Today message |

« Variational approach

— Express your problem as an energy minimization over
a space of functions

* And we are going to spend our time going back and
force between minimization and setting derivatives to
zero. Your head will spin.



Questions?




. . _;lli" 5L
Seamless Poisson cloning

e Given vector field v (pasted gradient), find the value

of f In unknown region that optimize4,,

4S8,
Wity oo~/7 Squ,

. . , 1, Haly,
min /[ V=V with flon = floa ere?
! Q Ony;,.
/[‘/0/78

Pasted gradient  pask

t-‘."'j ‘-\--..I._j
o
y

region
Q

\H’,ﬂﬂr*&h JQ

v 8 Background

Figure 1: Guided interpolation notations. Unknown function f
interpolates in domain Q the destination function f*, under guid-

ance of vector field v, which might be or not the gradient field of a
source function g.



Warning:

 What follows Is not strictly necessary to implement
Poisson image editing

 But
— It helps understand the properties of the equation
— It helps to read the literature
— It's cool math



Membrane interpolation

 What if v is null?
e Laplace equation (a.k.a. membrane equation )

n’gﬂ//g VP with flya = f*lao




Membrane interpolation

« What if vis null?
« Laplace equation (a.k.a. membrane equation )

min [/ V71 with floq = /[

« Mathematicians will tell you thereisan =
Assoclated Euler-Lagrange equation: =~

 Kind of the idea that we want a minimum, so we kind
of derive and get a simpler equation



Calculus

Simplified version:
o Want to minimize g(x) over the space of real values x
e Derive and set g'(x)=0

 Now we have a more complex equation: we want to
minimize a variational equation over the space of
functions f

1n,ill //Q VP with floa = f g

 It's a complex business to derive wrt functions

— In general, derivatives are well defined only for
functions over 1D domains



Derivative definition

e 1D derivative:

flz+4e)— (f(z)

€

IIMe—0 f/(CB) —

 multidimensional derivative:
— For a directionu_f directional derivative Is

f(Z 4 ew) — (f (&)

€

Dzﬁf(f) = lim¢_.g

e For functionals ?
— Do something similar, replace vector by function



Calculus of variation — 1D

- We want to minimize | ° f'(=)%dx with f(x,)=a, f(x)=b
1
e Assume we have a solution f

Try to define some notion of 1D derivative wrt to a 1D
parameter € in a given direction of functional space:

* For a perturbation function n(x) that also respects
the boundary condition (i.e. n(x;)=m(X,)=0)
and scalar ¢,
the integral [ (f'(x)+e n'(x))? dx should be bigger than

for f’ alone



. L Al
Calculus of variation — 1D

o [(F'(X)+en'(x))? dx should be bigger than for f’ alone

o [T(X)*+2en’'(x) FF(X)+ &n’(x)* dx

e The third term is always positive and is negligible
when g goes to zero

e Derive wrt g and set to zero

[2n'(xX)f'(x) dx =0



Calculus of variation — 1D

[ (@) £ ax
 How do we get rid of n ? And still include the
knowledge that n(x;)=n(x,)=0

 When we have an integral of a product and we are
playing with derivatives, look into integration by
parts

— Now how do you remember integration by parts?
— Integrate one, derive the other
— It's about the derivative of a product in an integral

2 d
[gh]% :/ 2ﬂdx

1 dx

= [ F(@)g(x) + f(x)g (x)dx

L1



Calculus of variation — 1D =

[ 7 @) @) ax=o0
Integrate by parts
2 / / T2 2 7
[ @) 1@ dx = [n@) @] 72 [ n@) 1) dx
T1 L1

L1

We know that n(x,)=n(x,)=0
Weget  [™(2) "(x) dx =0

L1

Must be true for any n
Therefore, f''(x) must be zero everywhere




Intuition

e In 1D; just linear interpolation!
— The min of [ f* Is the slope integrated over the interval

 Locally, if the second derivative was not zero, this

would mean that the first derivative Is varying, which
IS bad since we want [ f’ to be minimized

* Note that, in 1D: by setting f'', we leave two degrees
of freedom. This is exactly what we need to control
the boundary condition at x; and X,







Recap e

« Variational minimization (integral of a functional)
with boundary condition

min [ (V2 with flo0 = £ |0

* Derive Euler-Lagrange equation:
— Use perturbation function
— Calculus of variation. Set to zero. Integrate by parts.

Af =0 over Q with flyo = |50



Questions?




What if v is not null =i

Seamlessly paste N\A/\ onto M\/\’

Xy Xy

Just add a linear function so that the boundary condition is respected
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What if v Is not null

« Variational minimization (integral of a functional)
with boundary condition

min [[[[V7= v with fla0 = |0
* Derive Euler-Lagrange equation:

Af = divv over Q, with f|50 = f*[50

where divv = % - g—: is the divergence of v = (u,v)



In 2D, iIf v IS conservative =

e Ifvisthe gradient of an image g
e Correction functionf so that f = g -|- f

P

e f performs membrane interpolation over Q:

Af =0over Q, floo=(f"—2)lya

] s f
QL f
/NN TR N
[N % N\ )

\**“‘\‘l\l
\:J""mnw
T e s aQ



Questions?




ITING csan

Back to practical Poisson ed

seamless cloning

sources/destinations



Discrete Poisson solver

T CSAIL

e Two approaches:

— Minimize variational problem min /[ v/~ with flsq = /'lsa.
— Solve Euler-Lagrange equation as =divvover Q. with f|0 = f*|sq

In practice, variational is best
* In both cases, need to discretize derivatives
— Finite differences over 4 pixel neighbors

— We are going to work using pairs
e Partial derivatives are easy on pairs
« Same for the discretization of v

P

9
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Discrete Poisson solver

» Minimize variational problem min /[ v/~ with flsq = 'loo

Discretized
gradient 3
: ) . .
I?‘m Z (ff} o fff o V}Jq) ’ with fp — ff?’ ,fOI’ all p - (99
Q . .
T2 (p.q)NQFD Discretized N
(all pairs that v: g9(p)-g(q) Boundary condition

are in Q)

 Rearrange and call N, the neighbors of p
forall pe Q. | [Ny|fp — Z fo = Z fq + Z Vg
QEN;JQQ (JENNQ()Q QEN;J

e Big yet sparse linear system only for
boundary pixels




Result (eye candy)

source/destination cloning seamless cloning



Questions?




"é_—\
ll
i
\
T
-
- |

Solving big matrix systems Hesaie

e AX=b
 You can use Matlab’s \
— But not very scalable

e In Pset 3, we ask you to implement conjugate
gradient

— http://www.cs.cmu.edu/~quake-papers/painless-
conjugate-gradient.pdf

— http://www.library.cornell.edu/nr/bookcpdf/c10-6.pdf




Conjugate gradient

An Introduction to
the Conjugate Gradient Method
Without the Agonizing Pain
Edition l%

Jonathan Richard Shewchuk
August 4, 1994

o “The Conjugate Gradient Method is the most prominent iterative
method for solving sparse systems of linear equations.
Unfortunately, many textbook treatments of the topic are written
with neither illustrations nor intuition, and their victims can be
found to this day babbling senselessly in the corners of dusty
libraries. For this reason, a deep, geometric understanding of the
method has been reserved for the elite brilliant few who have
painstakingly decoded the mumblings of their forebears.
Nevertheless, the Conjugate Gradient Method is a composite of
simple, elegant ideas that almost anyone can understand. Of
course, a reader as intelligent as yourself will learn them almost
effortlessly.”



allsils]
AX:b TesAlL

e Assquare, symmetric and positive-definite
 When the A is dense, you’re stuck, use
backsubstitution

 When A is sparse, iterative techniques (such as

Conjugate Gradient) are faster and more memory
efficient

e Simple example:

{32 2
T =

26 —38
(Yeah yeah, it’s not sparse)




Turn AX=b Into a minimization problé’”

* Minimization is more logical to analyze iteration (gradient ascent/descent)
e Quadratic form f(z) = %xTA:c T e
— € can be ignored because we want to minimize
e Intuition:
— the solution of a linear system is always the intersection of n hyperplanes
— Take the square distance to them
— A needs to be positive-definite so that we have a nice parabola

> - r 1T T
Glfaf_)h of qua.dratlc t(?nn f(z) =27 Az — b’ x + ¢. The copgours of the quadratic form. Each ellipsoidal curve has
minimum point of this surface is the solution to Az = b.  .onstant f(x).
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Gradient of the quadratic form

”x)Fm — Not our image gradient!
#«1 — Multidimensional gradient (as -
many dim as rows in matrix) ‘\Q J { H‘%%/%
. \ 4
since f(g;):ixTAx—bTx+c AV T /‘///%
o SN LYY
f’(ac):%ATzc—l—%Al‘—b (4(:‘::‘&%"?/{7 B
PP A R
And since A is symmetric ;//j 5; ; I : ::
AREES
77771111

f'(z) = Az — b
Gradient f'(x) of the quadratic form. For every x, the
gradient points in the direction of steepest increase of f (),

Not surprising: we turned Ax=b
Into the quadratic minimization

(if A is not symmetric, conjuagte gradient finds solution for %(AT + A)x = b.

and 1s orthogonal to the contour lines.



Steepest descent/ascent &

L2

[ J P i C k — - :4;‘—_—_—_-_.;:::;_;_:'_"--7-- T
gradient —— & V‘*
direction [ . 8 NN

4 e =S
optimum §\\:

In this S5 —
direction f(z@ +arw) (c)

140
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\ﬁ
2
« . ~ .
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Energy along the gradient
The method of Steepest Descent.




Residual B

o At iteration I, we are at a point x(i)

* Residual r(i)=b-Ax(i)

e Cool property of quadratic form:
residual = - gradient




‘Vé_—\
ll
i
\
)
-
- |

Behavior of gradient descent Heeain

o Zigzag or goes straight depending if we’re lucky
— Ends up doing multiple steps in the same direction
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Conjugate gradient

e Smarter choice of direction

— ldeally, step directions should be orthogonal to one
another (no redundancy)

— But tough to achieve

— Next best thing: make them A-orthogonal (conjugate)
That Is, orthogonal when transformed by A: 4, Ad;, = o

\ \ |
\ \ \ /
'-\. '\\ /o
-.\‘ \. § 22 f_f
\ T i
\\ ~— | - y
u, . g ;
5, -, - £ /
\ N L _ Yy
“ — 7 //
. “ s
N - S
t — == . ~ e
(a) (b)

Figure 22: These pairs of vectors are A-orthogonal . .. because these pairs of vectors are orthogonal.



Conjugate gradient

e For each step:
— Take the residual (gradient)
— Make i1t A-orthogonal to the previous ones
— Find minimum along this direction
* Plus life Is good:
- In practice, you only
need the previous one o

— You can show that the new
residual r(i+1) is already N
A-orthogonal to all previous
directions p but p(i) N

Figure 30: The method of Conjugate Gradients.
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Recap

« Poisson image cloning: paste gradient, enforce
boundary condition

- - - . 2 %
e Variational formulation m;n/fglvf—‘fl with flyg = f*|sa-
o Also Euler-Lagrange formulation as = divvover @, with £, = £*15q

o Discretize variational version,
leads to big but sparse linear system

Conjugate gradient is a smart iterative technique to
solve It



Questions?
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Figure 2: Concealment. By importing seamlessly a piece of the
background. complete objects, parts of objects, and undesirable ar-

lifacts can easily be hidden. In both examples, multiple strokes (not
shown) were used.



CSAIL

sources destinations cloning seamless cloning
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Manipulate the gradient

« Mix gradients of g & f: take the max

source/destination seamless cloning mixed seamless cloning

Figure 8: Inserting one object close to another. With seamless
cloning, an object in the destination image touching the selected
region L2 bleeds into 1t. Bleeding 1s inhibited by using mixed gradi-
ents as the guidance field.
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CSAIL

(c) seamless cloning and estinatiun v-
eraged

(d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c¢) seamless cloning, even
averaged with the original image, is not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.



Bl

CSAIL

swapped textures



source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transfer of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks

out whichever of source or destination structure is the more salient
at each location.



Reduce big gradients s

e Dynamic range compression

e See Fattal et al. 2002 . ‘
pm——

&

| o

Figure 10: Local illumination changes. Applying an appropriate
non-linear transformation to the gradient field inside the selection
and then integrating back with a Poisson solver, modifies locally
the apparent illumination of an image. This is useful to highlight
under-exposed foreground objects or to reduce specular reflections.



Questions?




Fourier interpretation

» Least square on gradient m}}n//g V£ —v]? with flag = f*log
« Parseval anybody? |
— Integral of squared stuff is the same in Fourier and
primal
 What is the gradient/derivative In Fourier?
— Multiply coefficients by frequency

e Seen In Fourier, Poisson editing does a weighted least
square of the image where low frequencies have a
small weight and high frequencies a big weight



Issues with Poisson cloning

e Colors
e Contrast
* The backgrounds in f & g should be similar
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Improvement: local contrast

e Use the log
« Or use covariant derivatives (next slides)



Covariant derivatives & Photoshop -,

e Photoshop Healing brush

* Developed independently from Poisson editing by
Todor Georglev (A obe)

From TodorGeorglev s slldes http //photo csail.mit.edu/posters/todor_slides.pdf



Seamless Image Stitching in the Gradient Domaélcmu

e Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair Weliss

http://www.cs.huji.ac.il/~alevin/papers/eccv04-blending.pdf
http://eprints.pascal-network.org/archive/00001062/01/tips05-blending.pdf

e Various strategies (optimal cut, feathering)

.

Input image I Stitching result

Fig. 1. Image stitching. On the left are the mput images. w 1s the overlap region. On top right 1s a
simple pasting of the mput images. On the bottom right 1s the result of the GIST1 algorithm.



Photomontage Sesan

e http://grail.cs.washington.edu/projects/photomontage
/photomontage.pdf

Figure 6 We use a set of portraits (first row) to mix and match facial features, to either improve a portrait, or create entirely new people. The faces are first
hand-aligned, for example, to place all the noses in the same location. In the first two images in the second row, we replace the closed eyes of a portrait with the
open eyes of another. The user paints strokes with the designated source objective to specify desired features. Next, we create a fictional person by combining
three source portraits. Gradient-domain fusion is used to smooth out skin tone differences. Finally, we show two additional mixed portraits.



Elder's edge representation o

« http://elderlab.yorku.ca/~elder/publications/journals/
ElderPAMIOL.pdf




Gradient tone mapping
« Fattal et al. Siggraph 2002

Sjenusie

Integrate

Slide from Siggraph 2005 by Raskar (Graphs by Fattal et al.)




Gradient attenuation

log(Luminance) Gradient magnitude

Attenuation map

From Fattal et al.



Fattal et al. Gradient tone mapping %




Gradient tone mapping )

« Socolinsky, D. Dynamic Range Constraints in Image
Fusion and Visualization , in Proceedings of Signal
and Image Processing 2000, Las Vegas, November
2000.

Fig. 1. (a) Mediastinal window of thoracic CT scan. (b) Lung window of thoracic CT scan. (c) Clipped solution of equation (2) for the fusion of (a) and (b). (d)
Linearly scaled solution of (2) for the fusion of (a) and (b). {e) Solution of equation (6) for the fusion of{a) and (b).
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Gradient tone mapping
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« Socolinsky, D. Dynamic Range Constraints in Image
Fusion and Visualization , in Proceedings of Signal

and Image Processing 2000.

Fig. 4. Left: average of images in figure 2. Middle: rendering of the sum of the images in figure 2 through adaptive histogram compression. Right: fusion of
images in figure 2 using the obstacle method.



e Socolinsky, D. and Wolff, L.B., A new paradigm for
multispectral image visualization and data fusion,
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Fort Collins, June 1999.

Figure 4: (a) Grayscale version of 9-band image com-
puted through PCA. (b) Grayscale version of the same
image computed through our algorithm.



Retinex

e Land, Land and McCann
(inventor/founder of
polaroid)

* Theory of lightness
perception (albedo vs.
Illumination)

e Strong gradients come from
albedo, illumination is
smooth

B

Reflectance

[llumination Level
(# photons/unit time)

100

-

// \\

4B, 32 158673 A
e SO R G 0

Luminance Edge Calculation of Ato C



Questions?




Color2gray 2

e Use Lab gradient to create grayscale images

Color2Gray: Salience-Preserving Color Removal

Amy A. Gooch Sven C. Olsen Jack Tumblin Bruce Gooch

Northwestern University *

Figure 1: A color image (Left) often reveals important visual details missing from a luminance-only image (Middle). Our

Color2Gray algorithm (Right) maps visible color changes to grayscale changes.  Image: Impressionist Sunrise by Claude
Monet, courtesy of Artcyclopedia.com.



Poisson Matting o

e Sun et al. Siggraph 2004
o Assume gradient of F & B is negligible
* Plus various image-editing tools to refine matte
[=aF+(l1—oa)B
Vi=(F-B)Voo+aVF+(1—«)VB
1

Figure 1: Pulling of matte from a complex scene. From left to right: a complex natural image for existing matting techniques where the color background

is complex, a high quality matte generated by Poisson matting, a composite image with the extracted koala and a constant-color background, and a composite
image with the extracted koala and a different background.



Gradient camera? &

e Tumblin et al. CVPR 2005
http://www.cfar.umd.edu/~aagrawal/qgradcam/gradca

m.html

~. Log ) N o |
Q—>— - = e M H
$ X L/;L> ; ;_A/D: Diff ™ ]
s _
o B Gain X ||l €
—_ e k ) ) L O
O — 1180\
g o o o !5 06_ g
-D—- .]_I (s} @ Q -
<~ " :
EUZ """"""""" 1A/Dp Diff |1 1

Figure 2. Log-gradient camera overview: intensity sensors orga-
nized into 4-pixel cliques share the same self-adjusting gain setting
k, and send log(14) signals to A/D converter. Subtraction removes
common-mode noise, and a linear ‘curl fix’ solver corrects satu-
rated gradient values or ‘dead’ pixels, and a Poisson solver finds
output values from gradients.



Poisson-ish mesh editing

e http://portal.acm.org/citation.cfm?i
d=1057432.1057456

e http://www.cad.zju.edu.cn/home/xu
dong/Projects/mesh editing/main.h

tm
» http://people.csail.mit.edu/sumner/r
esearch/deftransfer/ | |
Figure 1: An unknown mythical creature. Left: mesh components
for merging and deformation (the arm), Right: final editing result.
Reference
Y . m [m
E
o | ‘
]
lE
| Output

Figure 1: Deformation transfer copies the deformations exhibited by a source mesh onto a different target mesh. In this example, deformations
of the reference horse mesh are transfered to the reference camel. generating seven new camel poses. Both gross skeletal changes as well as
more subtle skin deformations are successfully reproduced.



Questions?




Alternative to membrane By

* Thin plate: !

08

minimize second derivative

04+

-

&o

5

ming [ [ £2.+ 202, + f£7,dxdy
Membrane interpolation

09
08
07
08
05
04
03

0.2l
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03
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Inpainting =09

 More elaborate energy functional/PDEs
o http://www-mount.ee.umn.edu/~guille/inpainting.htm




Key references Ll

Socolinsky, D. Dynamic Range Constraints in Image Fusion
and Visualization 2000.
http://www.equinoxsensors.com/news.htmi

Elder, Image editing in the contour domain, 2001
http://elderlab.yorku.ca/~elder/publications/journals/ElderPA
MI01.pdf

Fattal et al. 2002
Gradient Domain HDR Compression
http://www.cs.huji.ac.il/%7Edanix/hdr/

Poisson Image Editing Perez et al.
http://research.microsoft.com/vision/cambridge/papers/perez

siggqraph03.pdf

Covariant Derivatives and Vision, Todor Georgiev (Adobe
Systems) ECCV 2006
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Poisson, Laplace, Lagrange, Fourier, Monge, Parseval —csait

« Fourier studied under Lagrange, Laplace & Monge, and
Legendre & Poisson were around

« They all raised serious objections about Fourier's work on
Trigomometric series

e http://www.ece.umd.edu/~taylor/frame2.htm
e http://www.mathphysics.com/pde/history.html

* http://www-groups.dcs.st- _
and.ac.uk/~history/Mathematicians/Fourier.html

e http://www.memagazine.org/contents/current/webonly/wex809
05.html

e http://www.shsu.edu/~icc cmf/bio/fourier.ntml

o http://en.wikipedia.org/wiki/Simeon Poisson

e http://en.wikipedia.org/wiki/Pierre-Simon Laplace

e http://en.wikipedia.org/wiki/Jean Baptiste Joseph Fourier

e http://www-groups.dcs.st-
and.ac.uk/~history/Mathematicians/Parseval.html




Refs Laplace and Poisson e

o http://www.ifm.liu.se/~boser/elma/Lect4d.pdf

o http://farside.ph.utexas.edu/teaching/329/lectures/nod
e/4.html
e http://en.wikipedia.org/wiki/Poisson's equation

o http://www.colorado.edu/engineering/CAS/courses.d/
AFEM.d/AFEM.Ch03.d/AFEM.Ch03.pdf




Gradient image editing refs Lo

http://research.microsoft.com/vision/cambridge/papers/perez siggraph03.p
df

http://www.cs.huji.ac.il/~alevin/papers/eccv04-blending.pdf

http://www.eq.orqg/EG/DL/WS/COMPAESTH/COMPAESTHO05/075-
081.pdf.abstract.pdf

http://photo.csail.mit.edu/posters/Georgiev Covariant.pdf

Covariant Derivatives and Vision, Todor Georgiev (Adobe Systems)
ECCV 2006

http://www.mpi-
sb.mpg.de/~hitoshi/research/image restoration/index.shtml

http://www.cs.tau.ac.il/~tommer/vidoegrad/
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=1467600
http://grail.cs.washington.edu/projects/photomontage/
http://www.cfar.umd.edu/~aagrawal/iccvO5/surface reconstruction.html
http://www.merl.com/people/raskar/Flash05/
http://research.microsoft.com/~carrot/new page 1.htm
http://www.idiom.com/~zilla/Work/scatteredInterpolation.pdf




PSet 3: write a review (6.882 only) e

e Choose a paper from the list
— Or suggest another paper
* Write a review using the Slggraph form



Peer review system (Siggraph biased}:.

e Peer reviews, committees
— A paper chair forms a committee (~40 people)

— Each paper is assigned to 2 committee members: a primary & a
secondary

— Each committee member assigns it to 1 or 2 external (a.k.a.
tertiaries)

— The committee meets and decides who gets accepted
e Double blind process

— The authors don't know who reviews them

— The tertiaries don't know who they review

— In some fields, even the committee members don't know who
they review.

— (Guessing who reviewed you?
» A very bad idea. Too often wrong!



Other systems

e Journals:
— No deadline, no committee meeting

— Review cycle: reviewers critique, authors improve,
until convergence

* Non-blind system

— Some think that reviewer anonymity is bad:

* Reviewers might not feel the need to do a good job since
they’re not cited

e Competitors could slow down a paper to buy time



What to write in a review

 Help committee with decision, assess work

— The score helps, but a concise discussion of the pros
and cons, comparison to previous work Is more
Important

o Give feedback to authors, help them improve their
work

— Technical points
— Writing (most important)

— As a reviewer, always a difficult balance between
effort spent and doing a good job (sometimes you feel
you should become a co-author for your contribution)



Reviewing

« Ethical issues
— What if | work on the same subject?
— Confidentiality

— Conflicts
o Advisor: lifetime conflict
o Co-author (~ 2 to 3 years)
« Co-principal investigator on a grant
o Family
e Same institution or could be perceived as same institution
(e.g.CSAIL and Medialab, MSR Redmond and MSR Asia)

« Anything that



Siggraph review form B

1) Briefly describe the paper and its contribution to computer graphics and
interactive techniques. Please give your assessment of the scope and
magnitude of the paper's contribution.

2) Is the exposition clear? How could it be improved?
3) Are the references adequate? List any references that are needed.

4) Could the work be reproduced by one or more skilled graduate students? Are
all important algorithmic or system details discussed adequately? Are the
limitations and drawbacks of the work clear?

5) Please rate this paper on a continuous scale from 1 to 5, where: 1 = Reject, 2
= Doubtful, 3 = Possibly accept, 4 = Probably accept, 5 = Accept.

6) Please rate your expertise in the subject area of the paper on a continuous
scale from 1 to 3, where: 1=Tyro, 2=Journeyman, 3=Expert.

7) Explain your rating by discussing the strengths and weaknesses of the
submission. Include suggestions for improvement and publication alternatives, if
appropriate. Be thorough -- your explanation will be of highest importance for
any committee discussion of the paper and will be used by the authors to
improve their work. Be fair -- the authors spent a lot of effort to prepare their
subm(ijssion, and your evaluation will be forwarded to them during the rebuttal
period.

8) List here any questions that you want answered by the author(s) during the
rebuttal period.

9) You may enter private comments for the papers committee here. These
comments will not be sent to the paper author(s).



Importance of good writing .

 What is the use of creating the best innovative ideas If
nobody else can understand them?

e See Fredo’s slides ""How to write a bad paper
http://people.csail.mit.edu/fredo/FredoBadWriting.pdf

useful links http://people.csail.mit.edu/fredo/student.html

e Bill’s slides
and links:

http://www.al.mit.edu/courses/6.899/doneClasses.html
(April 10)




Kajiya on conference reviewing

—CsAlL

“The reviewing process for SIGGRAPH is far
from perfect, although most everyone is giving it
their best effort.

The very nature of the process is such that
many reviewers will not be able to spend nearly
enough time weighing the nuances of your paper.
This 1s something for which you must
compensate in order to be successful.”



(1.

Links Tesan

How to Get Your SIGGRAPH Paper Rejected, Jim Kajiya,
SIGGRAPH 1993 Papers Chair, (link)

Ted Adelson's Informal guidelines for writing a paper, 1991.
(link)
Notes on technical writing, Don Knuth, 1989. (pdf)

What's wrong with these equations, David Mermin, Physics
Today, Oct., 1989. (pdf)

Ten Simple Rules for Mathematical Writing, Dimitri P.
Bertsekas (link)

Advice on Research and Writing (at CMU)

How (and How Not) to Write a Good Systems Paper by Roy
Levin and David D. Redell

Things | Hope Not to See or Hear at SIGGRAPH by Jim Blinn
How to have your abstract rejected




Next time: how to take great pictures .

e “,ﬁ‘»?‘“- )

.....

Photos Steve McCurry



