
6.098/6.882 Computational Photography 1

Problem Set 5

Assigned: April 13, 2006

Due: April 27, 2006

Problem 1 Panorama Imaging

In this problem we will guide you to build panorama by yourself. You
are not allowed to use any other software for this problem set. We ask you
to generate intermediate results at each step. You are also NOT allowed to
use MATLAB functions such as cp2tform, tformarray, tformfwd, tforminv,
maketform or imtransform.

Step 1. Take pictures

Take at least four pictures that you will stitch into a panorama. You may
borrow a digital camera and tripod from Ce (32-D460). Here are some hints
for taking the pictures.

• Make sure images overlap by ∼ 40%.

• Keep the same viewpoint.

• Use a tripod.

• See with distinct features (not repetitive).

• Try to keep the same exposure (use manual mode if available on your
camera, but check aperture and shudder speed to make sure the the
image looks nature).

• Avoid lenses with too much distortion (fish eye and other lenses that
do not preserve straight lines). Avoid the wide-angle range of zooms
because they tend to have such distortion.

• Down-sample the images to be smaller than 800x600 before processing.
Debug with even lower resolution, e.g. 400x300.



6.098/6.882 Computational Photography 2

• No moving objects in the scene for the first trial. You may shoot moving
objects and try to display them properly later for extra credits.

Step 2. Mark correspondences

While it is possible to create a panorama generation program that is en-
tirely automatic, using feature detectors and descriptors to find correspon-
dences, in order to simplify the problem, we will skip that step and allow you
to mark correspondences by hand.

Select the center picture as the reference, and mark correspondence be-
tween each image and the reference. If it is impossible to mark correspon-
dence to the reference, mark to the nearest and then you will propagate the
correspondence in a later step. For this case you may want to build a tree
structure of the images, where the reference is the root and each picture can
correspond to the reference picture by tracking the tree to the root.

To mark correspondence between a pair of images, you can use your favorite
tool. One suggestion is to use MATLAB function subplot to display the two
images side by side, and ginput to click the feature points. You may click
one feature point at image 1, and then click the corresponding feature point
at image 2, and so on. At the returning matrix from ginput, the odd rows
will be the feature points at image 1 and the even rows be the corresponding
feature points at image 2.

Step 3. Solve for homography

Write code to compute the homography between two images given pairs
of correspondences. Setup a set of linear equations as explained in lecture
to relate the 8 coefficients of the homography matrix to the correspondence
pairs. Recall that the ninth coefficient (bottom-right) can be set to 1. Use
the matlab command \ to find a least-square solution. Display the 3x3
homography transform matrix for each pair. Both transforms and inverse
transforms are needed for generating panorama.

(Extra credit): refine the correspondences. For each pair, search in the local
neighborhood of one image (e.g. 5x5 pixels) for the point that minimizes the
SSD (sum of square differences) of the pixels in a small window (5x5 too)
with the other image. If you are hard core, use sub-pixel accuracy.

Step 4. Compute the coordinate of the panorama



6.098/6.882 Computational Photography 3

To compose the final panorama we need to generate the coordinate system
for the big panorama picture that can embrace all the images warped to the
reference frame. You may warp the corners of each picture to the coordinate
of the reference frame, and then choose the minimum and maximum of the
corners to determine the frame of the panorama. Use MATLAB function
line to display the frame of each picture in the panorama in blue, and the
reference frame in red.

Step 5. Warp

Since you already know the corners of each frame in the panorama, you can
use MATLAB function inpolygon to generate a binary mask for each frame
to approximately indicate the pixels that will show up from that frame at
the panorama. Then apply the homography transform (before doing that
you need to translate the coordinate back to the reference frame) and use
interp2 to generate the warped image. Be careful with the pixels that are
outside the input picture. Modify the binary mask accordingly. You also
need to generate the mask and the translated image for the reference frame,
though you don’t have to go through this process. Display the masks and
the warped frames.

Step 6. Blend

You now have n images at the final resolution and n corresponding binary
masks. You need to blend them together.

First, implement a näıve solution where you use the binary mask to blend
the pictures in an arbitrary order (e.g. from left to right). Start from an
empty image and for each warped picture, overwrite the pixels where the
mask is 1. You will probably have artifacts at the boundary, but it will allow
you to verify that the images are actually aligned.

(6.882 only) In order to blend the panorama seamless, we want to use
pyramid blending as seen in problem set 2. We need to compute appropriate
masks and deal with the fact that we have more than two images to blend.
Our solution will be based on distance maps that indicate how far each pixel
is from the boundary of the input images. You can make your life easy
and use a Manhattan distance where the distance to the boundary simply
becomes min(x, y, width−x, height−y). Use the same warp procedure to
generate the distance map for each picture in the final frame (aligned with
the reference picture). Put value 0 for pixels outside the picture. Now for



6.098/6.882 Computational Photography 4

each pixel, we have n values that store the distances to the boundary of each
input.

(a) Implement simple blending where, for each pixel, you use the color of
the input image with the biggest distance to the boundary. Instead of
being at the boundary like in the previous blending, artifacts will now
occur at pixels equidistant from the boundaries.

(b) Implement a smoother version where you use for each pixel the average
of the n inputs colors weighted by distance. Do not forget to divide
by the sum of the distance. The transition should be smoother, but
ghosting might occur.

(Extra credit) Generalize the above two distance-based blending to multi-
scale pyramid blending as in problem set 2.

Bells and whistles (extra credit)

Implement non-linear projections such as cylindrical and spherical panora-
mas.

Use multiscale Harris corner detection, feature vectors, and the RANSAC
algorithm to automatically stitch panoramas.

Implement ghost removal. Compute the variance of each pixel in the
warped frame to detect motion in the image. Try to group such pixels into
connected component to improve coherence. See http://research.microsoft.
com/users/mattu/pubs/Deghosting.pdf

Implement lens distortion correction. Use the formula in lecture 15. Mark
points on straight lines in the image and solve for the parameters under least
square.

Problem 2 Project Proposal

The deadline for the course final project is May 18, which is approaching
fast. We want you to begin working on your project now.

By Tuesday, April 25, you should have a partner for the project (or decide
to do the project by yourself; either is ok), and a subject area. We will ask
you for these in class.

By Thursday, April 27, you need to turn in your project proposal (this
homework problem). Please describe the project topic, goal, tasks needed



6.098/6.882 Computational Photography 5

for completion, along with a timeline for completing those tasks. Describe
any potential difficulties you might encounter, and your fall-back plans. We’d
like you to persuade us that your project is feasible, and let us know why
you find it exciting (which we hope you do).

We will review your proposals and give you feedback on them by May 2.


