

The RenderMan Interface

Version 3.1

September 1989

(with typographical corrections through May 1995)

Stephan R. Keith
rispec31.4.pdfCourse 04ApodacaThis is a secured document.PDF document was created and linksimplemented by the course organizer.SIGGRAPH 95 CN CD-ROM

Stephan R. Keith
Duplicate of letter, on file with Director for Publications, ACM SIGGRAPHMay 24, 1995Steve KeithACM Siggraph '95[address deleted]Dear Mr. Keith: Pixar hereby grants permission for ACM Siggraph to distribute the online electronic version of our copyrighted "RenderMan Interface Specifications, Version 3.1" document on the 1995 Siggraph Course Notes CD/ROM. No other rights, including those of distribution of printed copies of the document, and rights for the on-line version to be distributed on any other electronic media (such as, but not limited to, the Siggraph Proceedings CD/ROM, future course notes CD/ROMS, or via Internet file transfer), are granted.Sincerely,[signature]Pamela Kerwin, Vice President and General ManagerPixar1001 W. Cutting Blvd.Richmond, CA 94084(510) 236-4000Fax: (510) 236-0388

Stephan R. Keith
ATTENTION ATTENTION ATTENTION ATTENTION ATTENTION ATTENTIONPlease read the red postit note above. Permission, but no license, is granted to the owner of this CD-ROM to use this document for personal educational purposes. This is a copyrighted document, and you may not copy this file to a server or FTP it to another site. It is strictly for the use by the original owner of this CD-ROM. Should you wish to do anything with the document, the telephone, FAX and address is included, and you must acquire written permission from PIXAR. Simply put, you may not redistribute this document in any manner.Should a friend or colleague desire a copy of this manual, original and up-to-date hard copies may be obtained from PIXAR at a very reasonable price.Sincerely,Stephan R. KeithProduction EditorSIGGRAPH 95 Course Notes CD-ROM

Stephan R. Keith
COPYRIGHT NOTICE:Please Read All Post Notes

ii

Copyright 1987, 1988, 1989, 1995 Pixar.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or other-
wise, without the prior permission of Pixar.

The information in this publication is furnished for informational use only, is subject to
change without notice, and should not be construed as a commitment by Pixar. Pixar as-
sumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication.

RenderMan

 is a registered trademark of Pixar.

Pixar
1001 W. Cutting Blvd.
Richmond, CA 94804

(510) 236-4000
Fax: (510) 236-0388

Table of Contents iii

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS ... vii

LIST OF TABLES ... viii

PREFACE .. ix

Part I The RenderMan Interface

Section 1 INTRODUCTION.. 3

Features and Capabilities ... 5
Required features ... 5
Optional capabilities .. 6

Structure of this Document .. 7

Section 2 LANGUAGE BINDING SUMMARY... 9

C Binding .. 9
Bytestream Protocol .. 11
Additional Information... 12

Section 3 RELATIONSHIP TO THE RenderMan SHADING LANGUAGE.......................... 13

Section 4 GRAPHICS STATE ... 15

Options.. 18
Camera ... 18
Displays ... 27
Additional options ... 33
Implementation-specific options.. 35

Attributes .. 36
Color and opacity ... 37
Texture coordinates.. 38
Light sources ... 40
Surface shading... 42
Volume shading.. 43
Shading rate... 45
Shading interpolation .. 46

iv Table of Contents

Matte objects.. 46
Bound ... 47
Detail .. 48
Geometric approximation ... 49
Orientation and sides... 50

Transformations... 52
Named coordinate systems... 57
Transformation stack ... 57

Implementation-specific Attributes .. 58

Section 5 GEOMETRIC PRIMITIVES.. 59

Polygons.. 60
Patches... 65
Quadrics.. 72
Procedural Primitives ... 78
Implementation-specific Geometric Primitives... 79
Solids and Spatial Set Operations ... 80
Retained Geometry.. 81

Section 6 MOTION... 83

Section 7 EXTERNAL RESOURCES .. 87

Texture Map Utilities .. 87
Making texture maps ... 87
Making bump maps ... 88
Making environment maps... 89
Making shadow maps.. 91

Errors ... 92
Archive Files... 93

Part II The RenderMan Shading Language

Section 8 INTRODUCTION TO THE SHADING LANGUAGE.. 97

Section 9 OVERVIEW OF THE SHADING PROCESS... 99

Section 10 RELATIONSHIP TO THE RenderMan INTERFACE... 103

Section 11 TYPES .. 105

Floats.. 105
Colors .. 105
Points ... 106
Strings.. 107
Uniform and Varying Variables .. 107

Section 12 SHADER EXECUTION ENVIRONMENT .. 109

Surface Shaders .. 109
Light Source Shaders... 111

Table of Contents v

Volume Shaders ... 112
Displacement Shaders... 112
Transformation Shaders ... 113
Imager Shaders .. 113

Section 13 LANGUAGE CONSTRUCTS .. 115

Expressions ... 115
Standard Control Flow Constructs ... 115
Illuminance and Illuminate Statements ... 116

Section 14 SHADERS AND FUNCTIONS.. 119

Shaders .. 119
Functions... 120

Section 15 BUILT-IN FUNCTIONS ... 121

Mathematical Functions ... 121
Geometric Functions ... 123
Color Functions.. 126
Shading and Lighting Functions ... 126
Texture Mapping Functions... 128

Basic texture maps.. 129
Environment maps... 130
Bump maps ... 130
Shadow depth maps .. 131

Volume Variable Access Functions... 131
Print Function... 132

Section 16 EXAMPLE SHADERS .. 133

Surface Shaders .. 133
Turbulence... 133
Ray tracer... 134

Light Sources .. 135
Volume Shader... 136
Displacement and Transformation Shaders .. 136
Imager Shaders .. 136

Appendix A STANDARD RenderMan INTERFACE SHADERS.. 137

Null Shader... 137
Surface Shaders .. 137

Constant surface ... 137
Matte surface... 137
Metal surface ... 137
Shiny metal surface .. 138
Plastic surface.. 138
Painted plastic surface ... 139

Light Source Shaders... 139

vi Table of Contents

Ambient light source.. 139

Distant light source .. 139

Point light source.. 140

Spotlight source .. 140

Volume Shaders ... 140

Depth cue shader.. 140

Fog shader ... 141

Displacement Shaders... 141

Bumpy shader ... 141

Transformation and Imager Shaders .. 141

Appendix B RenderMan SHADING LANGUAGE SYNTAX SUMMARY........................... 143

Declarations.. 143

Statements... 144

Expressions ... 145

Preprocessor ... 146

Appendix C LANGUAGE BINDING DETAILS ... 149

1: C Binding .. 149

2: ANSI C Binding ... 153

3: RIB Binding... 160

Syntax rules ... 160

Error handling... 164

Appendix D RenderMan INTERFACE BYTESTREAM CONVENTIONS............................. 169

RIB File Structuring Conventions ... 169

Conforming files ... 169

RIB File structure conventions.. 170

Conventions for structural hints .. 171

RIB File structuring example .. 173

RIB Entity Files... 174

RIB Entity File example ... 175

RenderMan Renderer Resource Files ... 175

Format of Renderer Resource Files .. 175

Renderer Resource File example .. 176

Appendix E RenderMan INTERFACE QUICK REFERENCE ... 179

Interface Routines .. 179

Shading Language Routines .. 185

Appendix F LIST OF RenderMan INTERFACE PROCEDURES.. 191

List of Illustrations vii

LIST OF ILLUSTRATIONS

Figure 4.1 Camera-to-raster projection geometry ... 22
Figure 4.2 Imaging pipeline ... 29
Figure 5.1 Bicubic patch vertex ordering ... 67
Figure 5.2 Patch meshes.. 69
Figure 5.3 Quadric surface primitives .. 77
Figure 5.3 Quadric surface primitives (continued)... 78
Figure 9.1 The ray tracing paradigm .. 100
Figure 9.2 Shader evaluation pipeline .. 101
Figure 12.1 Surface shader state .. 110
Figure 12.2 Light source shader state.. 111
Figure C1 Example encoded RIB byte stream ... 165

viii List of Tables

LIST OF TABLES

Table 4.1 Camera Options... 19
Table 4.2 Point Coordinate Systems.. 20
Table 4.3 Display Options... 27
Table 4.4 Additional RenderMan Interface Options... 33
Table 4.5 Shading Attributes .. 37
Table 4.6 Standard Light Source Shader Parameters.. 40
Table 4.7 Standard Surface Shader Parameters ... 43
Table 4.8 Standard Volume Shader Parameters .. 44
Table 4.9 Geometry Attributes ... 47
Table 4.10 Standard Displacement Shader Parameters .. 56
Table 5.1 Standard Geometric Primitive Variables ... 60
Table 6.2 Moving Commands .. 85
Table 10.1 Standard Shaders .. 104
Table 11.1 Color Coordinate Systems ... 106
Table 11.2 Point Coordinate Systems.. 106
Table 12.1 Predefined Surface Shader Variables ... 110
Table 12.2 Predefined Light Source Variables ... 112
Table 12.3 Predefined Volume Shader Variables .. 112
Table 12.4 Predefined Displacement Shader Variables .. 113
Table 12.5 Predefined Transformation Shader Variables... 113
Table 12.6 Predefined Imager Shader Variables.. 114
Table 15.1 Texture Access Parameters .. 129
Table C1 Binary Encoding .. 162
Table C2 RIB Errors ... 166

Preface ix

PREFACE

This document is version 3.1 of the RenderMan Interface Specification of September, 1989.
It supersedes version 3.0, originally published in May, 1988. Version 3.1 corrects various
typographical and syntactic errors, and a small number of semantic errors present in ver-
sion 3.0; however, there are no fundamental changes to the structure, concepts or compli-
ance requirements.

In addition, version 3.1 introduces a second binding for the RenderMan Interface: the Ren-
derMan Interface Bytestream Protocol (RIB). RIB provides both an archive file format and
a network transport protocol for a sequence of RenderMan Interface library calls.

This electronic edition of the document, prepared for inclusion on the 1995 Siggraph
Course Notes CD/ROM, corrects all known typographical and syntactic errors in earlier
printings, through May, 1995. There are some clarifications in the descriptive text, but the
syntax and semantics of the specification are unchanged from earlier printings.

This document is the official technical specification for the RenderMan Interface. It is quite
terse and requires substantial prior knowledge of computer graphics in general and pho-
torealistic image synthesis in particular. For a more casual reference to the RenderMan In-
terface, the reader is directed to

The RenderMan Companion: A Programmer’s Guide to Realistic
Computer Graphics

 (Steve Upstill 1989). The first and second printings of

The RenderMan
Companion

 (August 1989) corresponds (except for minor errata) to version 3.1 of the Ren-
derMan Interface Specification.

x Preface

1

Part I

The RenderMan Interface

2 Part I: The RenderMan Interface

3

Section 1

INTRODUCTION

The RenderMan Interface is a standard interface between modeling programs and ren-
dering programs capable of producing photorealistic quality images. A rendering pro-
gram implementing the RenderMan Interface differs from an implementation of earlier
graphics standards in that:

• A photorealistic rendering program must simulate a real camera and its many at-
tributes besides just position and direction of view. High quality implies that the
simulation does not introduce artifacts from the computational process. Expressed
in the terminology of computer graphics, this means that a photorealistic rendering
program must be capable of:

— hidden surface removal so that only visible objects appear in the computed im-
age,

— spatial filtering so that aliasing artifacts are not present,

— dithering so that quantization artifacts are not noticeable,

— temporal filtering so that the opening and closing of the shutter causes moving
objects to be blurred,

— and depth of field so that only objects at the current focal distance are sharply
in focus.

• A photorealistic rendering program must also accept curved geometric primitives
so that not only can geometry be accurately displayed, but also so that the basic
shapes are rich enough to include the diversity of man-made and natural objects.
This requires patches, quadrics, and representations of solids, as well as the ability
to deal with complicated scenes containing on the order of 10,000 to 1,000,000 geo-
metric primitives.

• A photorealistic rendering program must be capable of simulating the optical prop-
erties of different materials and light sources. This includes surface shading models
that describe how light interacts with a surface made of a given material, volume
shading models that describe how light is scattered as it traverses a region in space,
and light source models that describe the color and intensity of light emitted in dif-
ferent directions. Achieving greater realism often requires that the surface proper-
ties of an object vary. These properties are often controlled by texture mapping an
image onto a surface. Texture maps are used in many different ways: direct image
mapping to change the surface’s color, transparency mapping, bump mapping for
changing its normal vector, displacement mapping for modifying position, envi-

4 Section 1: Introduction

ronment or reflection mapping for efficiently calculating global illumination, and
shadow maps for simulating the presence of shadows.

The RenderMan Interface is designed so that the information needed to specify a pho-
torealistic image can be passed to different rendering programs compactly and effi-
ciently. The interface itself is designed to drive different hardware devices, software
implementations and rendering algorithms. Many types of rendering systems are ac-
commodated by this interface, including z-buffer-based, scanline-based, ray tracing,
terrain rendering, molecule or sphere rendering and the Reyes rendering architecture.
In order to achieve this, the interface does not specify

how

 a picture is rendered, but in-
stead specifies

what

 picture is desired. The interface is designed to be used by both
batch-oriented and real-time interactive rendering systems. Real-time rendering is ac-
commodated by ensuring that all the information needed to draw a particular geomet-
ric primitive is available when the primitive is defined. Both batch and real-time ren-
dering is accommodated by making limited use of inquiry functions and call-backs.

The RenderMan Interface is meant to be complete, but minimal, in its transfer of scene
descriptions from modeling programs to rendering programs. The interface usually
provides only a single way to communicate a parameter; it is expected that the model-
ing front end will provide other convenient variations. An example is color coordinate
systems — the RenderMan Interface supports multiple-component color models be-
cause a rendering program intrinsically computes with an

n

-component color model.
However, the RenderMan Interface does not support all color coordinate systems be-
cause there are so many and because they must normally be immediately converted to
the color representation used by the rendering program. Another example is geometric
primitives — the primitives defined by the RenderMan Interface are considered to be

rendering primitives

, not

modeling primitives

. The primitives were chosen either because
special graphics algorithms or hardware is available to draw those primitives, or be-
cause they allow for a compact representation of a large database. The task of convert-
ing higher-level modeling primitives to rendering primitives must be done by the mod-
eling program.

The RenderMan Interface is not designed to be a complete three-dimensional interac-
tive programming environment. Such an environment would include many capabili-
ties not addressed in this interface. These include: 1) screen space or two-dimensional
primitives such as annotation text, markers, and 2-D lines and curves, 2) non-surface
primitives such as 3-D lines and curves, and 3) user-interface issues such as window
systems, input devices, events, selecting, highlighting, and incremental redisplay.

The RenderMan Interface is a collection of procedures to transfer the description of a
scene to the rendering program. These procedures are described in Part I. A rendering
program takes this input and produces an image. This image can be immediately dis-
played on a given display device or saved in an image file. The output image may con-
tain color as well as coverage and depth information for postprocessing. Image files are
also used to input texture maps. This document does not specify a ‘‘standard format’’
for image files.

The RenderMan Shading Language is a programming language for extending the pre-
defined functionality of the RenderMan Interface. New materials and light sources can
be created using this language. This language is also used to specify deformations, spe-
cial camera projections, and simple image processing functions. All required shading
functionality is also expressed in this language. A shading language is an essential part
of a high-quality rendering program. No single material lighting equation can ever

Features and Capabilities 5

hope to model the complexity of all possible material models. The RenderMan Shading
Language is described in Part II of this document.

Features and Capabilities

The RenderMan Interface was designed in a top-down fashion by asking what infor-
mation is needed to specify a scene in enough detail so that a photorealistic image can
be created. Photorealistic image synthesis is quite challenging and many rendering
programs cannot implement all of the features provided by the RenderMan Interface.
This section describes which features are required and which are considered optional

capabilities

. The set of required features is extensive in order that application writers
and end-users may reasonably expect basic compatibility between, and a high level of
performance from, all implementations of the RenderMan Interface. Capabilities are
optional only in situations where it is reasonable to expect that some rendering pro-
grams are algorithmically incapable of supporting that capability, or where the capa-
bility is so advanced that it is reasonable to expect that most rendering implementa-
tions will not be able to provide it.

Required features

All rendering programs which implement the RenderMan Interface must implement
the interface as specified in this document. Implementations which are provided as a
linkable C library must provide entry points for all of the subroutines and functions,
accepting the parameters as described in this specification. All of the predefined types,
variables and constants (including the entire set of constant

RtToken

 variables for the
predefined string arguments to the various RenderMan Interface subroutines) must be
provided. The C header file

ri.h

 (see Appendix C,

Language Binding Details

) describes
these data items.

Implementations which are provided as prelinked standalone applications must accept
as input the complete RenderMan Interface Bytestream (RIB). Such implementations
may also provide a complete RenderMan Interface library as above, which contains
subroutine stubs whose only function is to generate RIB.

All rendering programs which implement the RenderMan Interface must:

• provide the complete hierarchical graphics state, including the attribute and trans-
formation stacks and the active light list.

• perform orthographic and perspective viewing transformations.

• perform depth-based and "Painter’s algorithm" hidden-surface elimination.

• perform pixel filtering and antialiasing.

• perform gamma correction and dithering before quantization.

• produce picture files containing any combination of RGB, A, and Z. The resolutions
of these files must be as specified by the user.

• provide all of the geometric primitives described in the specification, and provide
all of the standard primitive variables applicable to each primitive.

• provide the fourteen standard light source, surface, volume, and displacement
shaders required by the specification. Any additional shaders, and any deviations
from the standard shaders presented in this specification, must be documented by
providing the equivalent shader expressed in the RenderMan Shading Language.

6 Section 1: Introduction

Rendering programs which implement the RenderMan Interface receive all of their
data through the interface. There will be no additional subroutines required to control
or provide data to the rendering program. Data items which are substantially similar
to items already described in this specification will be supplied through the normal
mechanisms, and not through any of the implementation-specific extension mecha-
nisms (

RiAttribute

,

RiGeometry

 or

RiOption

). Rendering programs will not provide non-
standard alternatives to the existing mechanisms, such as any alternate language for
programmable shading.

Optional capabilities

Rendering programs may also provide one or more of the following optional capabili-
ties. If a capability is not provided by an implementation, a specific default is required
(as described in the individual sections). A subset of the full functionality of a capabil-
ity may be provided by a rendering program. For example, a rendering program might
implement Motion Blur, but only of simple transformations, or only using a limited
range of shutter times. Rendering programs should describe their implementation of
the following optional capabilities using the terminology in the following list.

Solid Modeling.

 The ability to define solid models as collections of surfaces and com-
bine them using the set operations intersection, union and difference. (See the sec-
tion on

Solids and Spatial Set Operations

, p. 80.)

Trim Curves.

 The ability to specify a subset of a parametric surface by giving a region
in parameter space. (See the section on

Patches

, p. 65.)

Level of Detail.

 The ability to specify several definitions of the same model and have
one selected based on the estimated screen size of the model. (See the section on

Detail

, p. 48.)

Motion Blur.

 The ability to process moving primitives and antialias them in time. (See
Section 6,

Motion

, p. 83.)

Depth of Field.

 The ability to simulate focusing at different depths. (See the section on

Camera

, p. 18.)

Programmable Shading.

 The ability to perform shading calculations using user-sup-
plied RenderMan Shading Language programs. (See Part II,

The RenderMan Shading
Language

, p. 95.)

Special Camera Projections.

 The ability to perform nonstandard camera projections
such as spherical or

Omnimax

 projections. (See the section on

Camera

, p. 18.)

Deformations.

 The ability to handle nonlinear transformations such as bends and
twists. (See the section on

Transformations

, p. 52.)

Displacements.

 The ability to handle displacements. (See the section on

Transforma-
tions

, p. 52.)

Spectral Colors.

 The ability to calculate colors with an arbitrary number of spectral
color samples. (See the section on

 Additional options

, p. 33.)

Texture Mapping.

 The ability to index a texture map with the surface’s texture coor-
dinates. (See the section on

Basic texture maps

, p. 129.)

Environment Mapping.

 The ability to model the environmental illumination by index-
ing a texture map with a direction vector. (See the section on

 Environment maps

, p.
130.)

Structure of this Document 7

Bump Mapping.

 The ability to perturb just surface normals by giving a displacement
map. (See the section on

Bump maps

, p. 130.)

Shadow Depth Mapping.

 The ability to index a shadow map with a position. (See the
section on

Shadow depth maps

, p. 131.)

Volume Shading.

 The ability to attach and evaluate volumetric shading procedures.
(See the section on

Volume shading

, p. 43.)

Ray Tracing.

 The ability to evaluate global illumination models using ray tracing. (See
the section on

Shading and Lighting Functions

, p. 126.)

Radiosity.

 The ability to evaluate global illumination models using radiosity. (See the
section on

Illuminance and Illuminate Statements

, p. 116.)

Area Light Sources.

 The ability to illuminate surfaces with area light sources. (See the
section on

Light sources

, p. 40.)

In order to accommodate modeling application writers who require more compatibility
between rendering programs, Programmable Shading and Texture Mapping will be-
come required features of photorealistic rendering programs in the RenderMan Inter-
face Specification Version 4.0.

Structure of this Document

Part I of this document describes the scene description interface. Section 2 describes the
language binding and conventions used in this document. Section 3 provides a brief in-
troduction to the RenderMan Shading Language and its relationship to the RenderMan
Interface. Section 4 describes the graphics state maintained by the interface. The state
is divided into

options

 which control the overall rendering process, and

attributes

 which
describe the properties of individual geometric primitives. Rendering options include
camera and display options as well as the type of hidden surface algorithm being used.
Rendering attributes include shading (light sources, surface shading functions, colors,
etc.) and geometric attributes including transformations. Section 5 describes the basic
geometric surfaces and solid modeling representations used by the RenderMan Inter-
face. Section 6 describes the specification of moving geometry and time-varying shad-
ing parameters. Finally, Section 7 describes the process of generating texture maps from
standard image files, reporting errors, and manipulating archive files.

8 Section 1: Introduction

9

Section 2

LANGUAGE BINDING SUMMARY

In this document, the RenderMan Interface is described in the C language, as originally
specified by Kernighan and Ritchie. Other language bindings will be proposed in the
future.

C Binding

All types, procedures, tokens, predefined variables and utility procedures mentioned
in this document are required to be present in all C implementations that conform to
this specification. The C header file which declares all of these required names,

ri.h

, is
listed in Appendix C,

Language Binding

Details

.

The RenderMan Interface requires the following types:

typedef short

RtBoolean

;
typedef long

RtInt

;
typedef float

RtFloat

;

typedef char *

RtToken

;

typedef

RtFloat RtColor

[3];
typedef

RtFloat RtPoint

[3];
typedef

RtFloat RtMatrix

[4][4];
typedef

RtFloat RtBasis

[4][4];
typedef

RtFloat RtBound

[6];
typedef char *

RtString

;

typedef void *

RtPointer

;

typedef void

RtVoid

;
typedef

 RtFloat

(*

RtFloatFunc

)();
typedef

RtVoid

(*

RtFunc

)();

typedef

RtPointer

RtObjectHandle

;
typedef

RtPointer

RtLightHandle

;

All procedures and values defined in the interface are prefixed with

Ri

 (for RenderMan
Interface). All types are prefixed with

Rt

 (for RenderMan type). Boolean values are ei-
ther

RI_FALSE

 or

RI_TRUE

. Special floating point values

RI_INFINITY

 and

RI_EPSILON

 are
defined. The expression –

RI_INFINITY

 has the obvious meaning. The number of compo-
nents in a color is initially three, but can be changed (See the section

Additional options

,

10 Section 2: Language Binding Summary

p. 33). A bound is a bounding box and is specified by 6 floating point values in the order

xmin, xmax, ymin, ymax, zmin, zmax

. A matrix is an array of 16 numbers describing a 4
by 4 transformation matrix. All multidimensional arrays are specified in row-major or-
der. For example, a 4 by 4 translation matrix to the location (2,3,4) is specified with

{{ 1.0, 0.0, 0.0, 0.0},
 { 0.0, 1.0, 0.0, 0.0},
 { 0.0, 0.0, 1.0, 0.0},
 { 2.0, 3.0, 4.0, 1.0} }

Tokens are strings that have a special meaning to procedures implementing the inter-
face. These meanings are described with each procedure. The capabilities of the Ren-
derMan Interface can be extended by defining new tokens and passing them to various
procedures. The most important of these are the tokens identifying variables defined
by procedures called

shaders

, written in the Shading Language. Variables passed
through the RenderMan Interface are bound by name to shader variables. To make the
standard predeclared tokens and user-defined tokens similar, RenderMan Interface to-
kens are represented by strings. Associated with each of the standard predefined to-
kens, however, is a predefined string constant that the RenderMan Interface procedures
can use for efficient parsing. The names of these string constants are derived from the
token names used in this document by prepending an

RI_

 to a capitalized version of the
string. For example, the predefined constant token for

"rgb"

 is

RI_RGB

. The special pre-
defined token

RI_NULL

 is used to specify a

null

 token.

In the C binding presented in this document, parameters are passed by value or by ref-
erence. C implementations of the RenderMan Interface are expected to make copies of
any parameters whose values are to be retained across procedure invocations.

Many procedures in the RenderMan Interface have variable length parameter lists.
These are indicated by the syntactical construct

parameterlist

 in the procedure’s argu-
ment list. In the C binding described,

parameterlist

 is a sequence of pairs of arguments,
the first being an

RtToken

 and the second being an

RtPointer

, an untyped pointer to an
array of either

RtFloat

,

RtString

 or other values. The list is terminated by the special to-
ken

RI_NULL

.

In addition, each such procedure has an alternate vector interface, which passes the

pa-
rameterlist

 as three arguments: an

RtInt indicating the length of the parameter list; an
array of that length that contains the RtTokens; and another array of the same length
that contains the RtPointers. This alternate procedure is denoted by appending an up-
percase V to the procedure name.

For example the procedure RiFoo declared as

RiFoo(parameterlist)

could be called in the following ways:

RtColor colors;
RtPoint points;
RtFloat one_float;
RtToken tokens[3];
RtPointer values[3];

RiFoo(RI_NULL);
RiFoo((RtToken)"P", (RtPointer)points, (RtToken)"Cs", (RtPointer)colors,

(RtToken)"Kd", (RtPointer)&one_float, RI_NULL);

Bytestream Protocol 11

RiFoo(RI_P, (RtPointer)points, RI_CS, (RtPointer)colors,
RI_KD, (RtPointer)&one_float, RI_NULL);

tokens[0] = RI_P; values[0] = (RtPointer)points;
tokens[1] = RI_CS; values[1] = (RtPointer)colors;
tokens[2] = RI_KD; values[2] = (RtPointer)&one_float;
RiFooV(3, tokens, values);

It is not the intent of this document to propose that other language bindings use an
identical mechanism for passing parameter lists. For example, a Fortran or Pascal bind-
ing might pass parameters using four arguments: an integer indicating the length of the
parameter list, an array of that length that contains the tokens, an array of the same
length containing integer indices into the final array containing the real values. A Com-
mon Lisp binding would be particularly simple because it has intrinsic support for
variable length argument lists.

The ANSI Standard C binding of RenderMan Interface is different from the K&R C
binding presented in the document only in the normally expected ways. The semantics
of the types, procedures and predefined variables are identical, and the necessary func-
tion prototype modifications are presented in a version of ri.h also listed in Appendix
C, Language Binding Details.

Bytestream Protocol
This document also describes a byte stream representation of the RenderMan Interface,
known as the RenderMan Interface Bytestream, or RIB. This byte stream serves as both
a network transport protocol for modeling system clients to communicate requests to
a remote rendering service, and an archive file format to save requests for later submis-
sion to a renderer.

The RIB protocol provides both an ASCII and binary encoding of each request, in order
to satisfy needs for both an understandable (potentially) interactive interface to a ren-
dering server and a compact encoded format which minimizes transmission time and
file storage costs. Some requests have multiple versions, for efficiency or to denote spe-
cial cases of the request.

The semantics of each RIB request are identical to the corresponding C entry point, ex-
cept as specifically noted in the text. In Part I of this document, each RIB request is pre-
sented in its ASCII encoding, using the following format:

RIB BINDING

Request parameter1 parameter2... parameterN

Explanation of the special semantics of the RIB protocol for this request.

At the top of the description, parameter1 through parameterN are the parameters that the
request requires. The notation ‘–’ in the parameter position indicates that the request
expects no parameters. Normally the parameter names suggest their purpose, e.g., x, y,
or angle.

In RIB, square brackets ([and]) delimit arrays. Integers will be automatically promoted
if supplied for parameters which require floating point values. A parameter list is sim-
ply a sequence of string-array pairs. There is no explicit termination symbol as in the C
binding. Example parameter lists are:

12 Section 2: Language Binding Summary

"P" [0 1 2 3 4 5 6 7 8 9 10 11]
"distance" [.5] "roughness" [1.2]

The details of the lexical syntax of both the ASCII and binary encodings of the RIB pro-
tocol are presented in Appendix C, Language Binding Details.

Additional Information
Finally, the description of each RenderMan Interface request provides an example and
cross-reference in the following format:

EXAMPLE

Request 7 22.9

SEE ALSO

RiOtherRequest

Some examples are presented in C, others in RIB, and a few are presented in both bind-
ings (for comparison). It should be obvious from the syntax which binding is which.

13

Section 3

RELATIONSHIP TO THE RenderMan SHADING LANGUAGE

The capabilities of the RenderMan Interface can be extended by using the Shading Lan-
guage. The Shading Language is described in Part II of this document. This section de-
scribes the interaction between the RenderMan Interface and the Shading Language.

Special procedures, called shaders, are declared in this language. The argument list of a
shader declares variables that can be passed through the RenderMan Interface to a
shader. For example, in the shading language a shader called weird might be declared
as follows:

surface
weird(float f = 1.0; point p = (0,0,0))
{

Cs = Ci * mod(length(P-p)*f - s + t, 1.0);
}

The shader weird is referred to by name and so are its variables.

RtFloat foo;
RtPoint bar;

RiSurface("weird", "f", (RtPointer)&foo, "p", (RtPointer)bar, RI_NULL);

passes the value of foo to the Shading Language variable f and the value bar to the vari-
able p. Note that since all parameters are passed as arrays, the single float must be
passed by reference.

In order to pass shading language variables, the RenderMan Interface must know the
type of each variable defined in a shader. All predefined shaders predeclare the types
of the variables that they use. Certain other variables, such as position, are also prede-
clared. Additional variables are declared with:

RtToken
RiDeclare(name, declaration)

char *name;
char *declaration;

Declare the name and type of a variable. The declaration indicates the size and
semantics of values associated with the variable, or may be RI_NULL if there are
no associated values. This information is used by the renderer in processing the

14 Section 3: Relationship to the RenderMan

variable argument list semantics of the RenderMan Interface. The syntax of
declaration is exactly as described for variables in the Shading Language.

RiDeclare also installs name into the set of known tokens and returns a constant
token which can be used to indicate that variable. This constant token will gen-
erally have the same efficient parsing properties as the ‘RI_’ versions of the pre-
defined tokens.

RIB BINDING

Declare name declaration

RiDeclare only needs to be powerful enough to support the declarations which
a user needs: declaring shader variables and his own geometric primitive vari-
ables. The RIB stream declaration facility needs to be more powerful because it
must be able to handle both predefined symbols and implementation-specific
predefined option and attribute values which might be impossible to declare
using the limited facility described above. Therefore, the exact syntax for dec-
laration in RIB is more general:

[class] [type] [‘[’ n ‘]’]

where class may be uniform, varying (as in the shading language), or vertex (po-
sition data, such as bicubic control points), and type may be one of: float, integer,
string, point, and color. The optional bracket notation indicates an array of n type
items, where n is a positive integer. If no array is specified, one item is assumed.
If a class is not specified, the identifier is assumed to be uniform.

EXAMPLE

RiDeclare("Np", "uniform point");
RiDeclare("Cs", "varying color");
Declare "st" "varying float[2]"

The storage modifiers varying and uniform are discussed in the section on Uniform and
Varying Variables in Part II (p. 107) and in Section 5, Geometric Primitives (p. 59). All pro-
cedure parameter tokens and shader variable name tokens named in this document are
standard and are predefined by all implementations of the RenderMan Interface. In ad-
dition, a particular implementation may predeclare other variables for use with imple-
mentation-specific options, geometry, etc.

Whenever a point variable is passed through the RenderMan Interface to shaders, the
points are assumed to be in the current coordinate system. This is sometimes referred
to as object coordinates. Different coordinate systems are discussed in the Camera sec-
tion (p. 18). Normals ("N" and "Np") are also assumed to be in object coordinates.

Whenever colors are passed through the RenderMan Interface, they are expected to
have a number of floats equal to the number of color samples being used by the inter-
face. This defaults to 3, but can be changed by the user (see the section on Additional
options, p. 33).

15

Section 4

GRAPHICS STATE

The RenderMan Interface is similar to other graphics packages in that it maintains a
graphics state. The graphics state contains all the information needed to render a geo-
metric primitive. RenderMan Interface commands either change the graphics state or
render a geometric primitive. The graphics state is divided into two parts: a global state
that remains constant while rendering a single image or frame of a sequence, and a cur-
rent state that changes from geometric primitive to geometric primitive. Parameters in
the global state are referred to as options, whereas parameters in the current state are
referred to as attributes. Options include the camera and display parameters, and other
parameters that affect the quality or type of rendering in general (e.g., global level of
detail, number of color samples, etc.). Attributes include the parameters controlling ap-
pearance or shading (e.g., color, opacity, surface shading model, light sources, etc.),
how geometry is interpreted (e.g., orientation, subdivision level, bounding box, etc.),
and the current modeling matrix. To aid in specifying hierarchical models, the at-
tributes in the graphics state may be pushed and popped on a graphics state stack.

The graphics state also maintains the interface mode. The different modes of the inter-
face are entered and exited by matching Begin-End command sequences.

RiBegin(name)
RtToken name;

RiEnd()

The bracketed set of commands RiBegin-RiEnd initialize and terminate a render-
ing session. name is used to select between various implementations that may
be available. RI_NULL indicates that the default implementation should be
used. When the interface is initialized all graphics state variables are set to their
default values. When the interface is terminated any cleanup operations that
need to be done are performed. All other RenderMan Interface procedures
must be called within a RiBegin-RiEnd block (the only exceptions are RiErrorHan-
dler and RiOption).

RiFrameBegin(frame)
RtInt frame;

RiFrameEnd()

16 Section 4: Graphics State

The bracketed set of commands RiFrameBegin-RiFrameEnd mark the beginning
and end of a single frame of an animated sequence. frame is the number of this
frame. The values of all of the rendering options are saved when RiFrameBegin
is called, and these values are restored when RiFrameEnd is called.

All lights and retained objects defined inside the RiFrameBegin-RiFrameEnd
frame block are removed and their storage reclaimed when RiFrameEnd is called
(thus invalidating their handles).

All of the information that changes from frame to frame should be inside a
frame block. In this way, all of the information that is necessary to produce a
single frame of an animated sequence may be extracted from a command
stream by retaining only those commands within the appropriate frame block
and any commands outside all of the frame blocks. This command need not be
used if the application is producing a single image.

RIB BINDING

FrameBegin –
FrameBegin int
FrameEnd –

EXAMPLE

RiFrameBegin(14);

SEE ALSO

RiWorldBegin

RiWorldBegin()

RiWorldEnd()

When RiWorldBegin is invoked, all rendering options are frozen and cannot be
changed until the picture is finished. The world-to-camera transformation is set to
the current transformation and the current transformation is reinitialized to the
identity. Inside an RiWorldBegin-RiWorldEnd block, the current transformation is
interpreted to be the object-to-world transformation. After an RiWorldBegin, the
interface can accept geometric primitives that define the scene. (The only other
mode in which geometric primitives may be defined is inside a RiObjectBegin-
RiObjectEnd block.) Some rendering programs may immediately begin render-
ing geometric primitives as they are defined, whereas other rendering pro-
grams may wait until the entire scene has been defined.

RiWorldEnd does not normally return until the rendering program has complet-
ed drawing the image. If the image is to be saved in a file, this is done automat-
ically by RiWorldEnd.

All lights and retained objects defined inside the RiWorldBegin-RiWorldEnd
world block are removed and their storage reclaimed when RiWorldEnd is
called (thus invalidating their handles).

Additional Information 17

RIB BINDING

WorldBegin –

WorldEnd –

EXAMPLE

RiWorldEnd();

SEE ALSO

RiFrameBegin

The following is an example of the use of these procedures, showing how an applica-
tion constructing an animation might be structured. In the example, an object is defined
once and instanced in subsequent frames at different positions.

RtObjectHandle BigUglyObject;

RiBegin();
BigUglyObject = RiObjectBegin();

...
RiObjectEnd();

/* Display commands */
RiDisplay(...):
RiFormat(...);
RiFrameAspectRatio(1.0);
RiScreenWindow(...);

RiFrameBegin(0);
/* Camera commands */
RiProjection(RI_PERSPECTIVE,...);
RiRotate(...);
RiWorldBegin();
 ...

RiColor(...);
RiTranslate(...);
RiObjectInstance(BigUglyObject);

 ...
RiWorldEnd();

RiFrameEnd();

RiFrameBegin(1);
/* Camera commands */
RiProjection(RI_PERSPECTIVE,...);
RiRotate(...);
RiWorldBegin();
 ...

RiColor(...);
RiTranslate(...);

18 Section 4: Graphics State

RiObjectInstance(BigUglyObject);
 ...
RiWorldEnd();

RiFrameEnd();

 ·
 ·
 ·
RiEnd();

The following begin-end pairs also place the interface into special modes.

RiSolidBegin()
RiSolidEnd()

RiMotionBegin()
RiMotionEnd()

RiObjectBegin()
RiObjectEnd()

The properties of these modes are described in the appropriate sections (see the sec-
tions on Solids and Spatial Set Operations, p. 80; Motion, p. 83; and Retained Geometry, p.
81).

Two other begin-end pairs:

RiAttributeBegin()
RiAttributeEnd()

RiTransformBegin()
RiTransformEnd()

save and restore the attributes in the graphics state, and save and restore the current
transformation, respectively.

All begin-end pairs (except RiTransformBegin-RiTransformEnd and RiMotionBegin-RiMo-
tionEnd), implicitly save and restore attributes. Begin-end blocks of the various types
may be nested to any depth, subject to their individual restrictions, but it is never legal
for the blocks to overlap.

Options
The graphics state has various options that must be set before rendering a frame. The
complete set of options includes: a description of the camera, which controls all aspects
of the imaging process (including the camera position and the type of projection); a de-
scription of the display, which controls the output of pixels (including the types of im-
ages desired, how they are quantized and which device they are displayed on); as well
as renderer run-time controls (such as the hidden surface algorithm to use).

Camera

The graphics state contains a set of parameters that define the properties of the camera.
The complete set of camera options is described in Table 4.1, Camera Options.

The viewing transformation specifies the coordinate transformations involved with im-
aging the scene onto an image plane and sampling that image at integer locations to
form a raster of pixel values. A few of these procedures set display parameters such as
resolution and pixel aspect ratio. If the rendering program is designed to output to a par-

Options 19

ticular display device these parameters are initialized in advance. Explicitly setting
these makes the specification of an image more device dependent and should only be
used if necessary. The defaults given in the Camera Options table characterize a hypo-
thetical framebuffer and are the defaults for picture files.

* Interrelated defaults

Table 4.1 Camera Options

The camera model also supports near and far clipping planes. Depth of field is specified
by setting an f-stop, focal length, and focal distance just as in a real camera. Objects lo-
cated at the focal distance will be sharp and in focus while other objects will be out of
focus. The shutter is specified by giving opening and closing times. Moving objects will
blur while the camera shutter is open.

The imaging transformation proceeds in several stages. Geometric primitives are spec-
ified in the object coordinate system. This canonical coordinate system is the one in
which the object is most naturally described. The object coordinates are converted to
the world coordinate system by a sequence of modeling transformations. The world co-
ordinate system is converted to the camera coordinate system by the camera transfor-

Camera Option Type Default Description

Horizontal Resolution
Vertical Resolution

integer
integer

640*
480*

The horizontal and vertical
resolution in the output
image.

Pixel Aspect Ratio float 1.0* The ratio of the width to the
height of a single pixel.

Crop Window 4 floats (0,1,0,1) The region of the raster that
is actually rendered.

Frame Aspect Ratio float 4/3* The aspect ratio of the
desired image.

Screen Window 4 floats (–4/3,4/3,–1,1)* The screen coordinates (coor-
dinates after the projection)
of the area to be rendered.

Camera Projection token "orthographic" The camera to screen projec-
tion.

World to Camera trans-
form

identity The world to camera trans-
formation.

Clipping Planes 2 floats (epsilon, infinity) The positions of the near and
far clipping planes.

f-Stop
Focal Length
Focal Distance

float
float
float

infinity
–
–

Parameters controlling depth
of field.

Shutter Open
Shutter Close

float
float

0
0

The times when the shutter
opens and closes.

20 Section 4: Graphics State

mation. Once in camera coordinates, points are projected onto the image plane or
screen coordinate system by the projection and its following screen transformation.
Points on the screen are finally mapped to a device dependent, integer coordinate sys-
tem in which the image is sampled. This is referred to as the raster coordinate system
and this transformation is referred to as the raster transformation. These various coor-
dinate systems are summarized in Table 4.2 Point Coordinate Systems.

Table 4.2 Point Coordinate Systems

These various coordinate systems are established by camera and transformation com-
mands. The order in which camera parameters are set is the opposite of the order in
which the imaging process was described above. When RiBegin is executed it establish-
es a complete set of defaults. If the rendering program is designed to produce pictures
for a particular piece of hardware, display parameters associated with that piece of
hardware are used. If the rendering program is designed to produce picture files, the
parameters are set to generate a video-size image. If these are not sufficient, the resolu-
tion and pixel aspect ratio can be set to generate a picture for any display device. RiBe-
gin also establishes default screen and camera coordinate systems as well. The default
projection is orthographic and the screen coordinates assigned to the display are rough-
ly between ± 1.0. The initial camera coordinate system is mapped onto the display such
that the +x axis points right, the +y axis points up, and the +z axis points inward, per-
pendicular to the display surface. Note that this is left-handed.

Before any transformation commands are made, the current transformation matrix con-
tains the identity matrix as the screen transformation. Usually the first transformation
command is an RiProjection, which appends the projection matrix onto the screen trans-
formation, saves it, and reinitializes the current transformation matrix as the identity

Coordinate
System

Description

"object" The coordinate system in which the current geometric primi-
tive is defined. The modeling transformation converts from
object coordinates to world coordinates.

"world" The standard reference coordinate system. The camera trans-
formation converts from world coordinates to camera coordi-
nates.

"camera" A coordinate system with the vantage point at the origin and
the direction of view along the positive z-axis. The projection
and screen transformation convert from camera coordinates to
screen coordinates.

"screen" The 2-D normalized coordinate system corresponding to the
image plane. The raster transformation converts to raster coor-
dinates.

"raster" The raster or pixel coordinate system. An area of 1 in this coor-
dinate system corresponds to the area of a single pixel. This
coordinate system is either inherited from the display or set by
selecting the resolution of the image desired.

Options 21

camera transformation. This marks the current coordinate system as the camera coor-
dinate system. After the camera coordinate system is established, future transforma-
tions move the world coordinate system relative to the camera coordinate system.
When an RiWorldBegin is executed, the current transformation matrix is saved as the cam-
era transformation, and thus the world coordinate system is established. Subsequent
transformations inside of an RiWorldBegin-RiWorldEnd establish different object coordi-
nate systems.

The following example shows how to position a camera:

RiBegin();
RiFormat(xres, yres, 1.0); /* Raster coordinate system*/
RiFrameAspectRatio(4.0/3.0); /* Screen coordinate system*/
RiFrameBegin(0);

RiProjection("perspective", ...);/* Camera coordinate system*/
RiRotate(...);
RiWorldBegin(); /* World coordinate system*/
 ...

RiTransform(...);/* Object coordinate system*/
RiWorldEnd();

RiFrameEnd();
RiEnd();

The various camera procedures are described below, with some of the concepts illus-
trated in Figure 4.1, Camera-to-Raster Projection Geometry.

RiFormat(xresolution, yresolution, pixelaspectratio)
RtInt xresolution, yresolution;
RtFloat pixelaspectratio;

Set the horizontal (xresolution) and vertical (yresolution) resolution (in pixels) of
the image to be rendered. The upper left hand corner of the image has coordi-
nates (0,0) and the lower right hand corner of the image has coordinates (xres-
olution, yresolution). If the resolution is greater than the maximum resolution of
the device, the desired image is clipped to the device boundaries (rather than
being shrunk to fit inside the device). This command also sets the pixel aspect
ratio. The pixel aspect ratio is the ratio of the physical width to the height of a
single pixel. The pixel aspect ratio should normally be set to 1 unless a picture
is being computed specifically for a display device with non-square pixels.

Implicit in this command is the creation of a display viewport with a

The viewport aspect ratio is the ratio of the physical width to the height of the
entire image.

An image of the desired aspect ratio can be specified in a device independent
way using the procedure RiFrameAspectRatio described below. The RiFormat
command should only be used when an image of a specified resolution is need-
ed or an image file is being created.

viewportaspectratio = xresolution ⋅ pixelaspectratio
yresolution

22 Section 4: Graphics State

If this command is not given, the resolution defaults to that of the display de-
vice being used (see the Displays section, p. 27). Also, if xresolution, yresolution
or pixelaspectratio is specified as a nonpositive value, the resolution defaults to
that of the display device for that particular parameter.

RIB BINDING

Format xresolution yresolution pixelaspectratio

EXAMPLE

Format 512 512 1

SEE ALSO

RiDisplay, RiFrameAspectRatio

RiFrameAspectRatio(frameaspectratio)
RtFloat frameaspectratio;

Figure 4.1 Camera-to-raster perspective projection geometry

xresolution

xresolution * pixel-a.r.

frame-a.r.

yresolution

X

Y

Crop Window

Output im
age resolution

Display maximum resolution

Display device

(Raster coordinates)
X

Y

Image plane

(Screen coordinates)

left

right

top

bottom

Screen Window

X

Y

Z

Camera

coordinates

Perspective Viewing

Frustum (Pyramid)

Screen-to-Raster

Mapping

Options 23

frameaspectratio is the ratio of the width to the height of the desired image. The
picture produced is adjusted in size so that it fits into the display area specified
with RiDisplay or RiFormat with the specified frame aspect ratio and is such that
the upper left corner is aligned with the upper left corner of the display.

If this procedure is not called, the frame aspect ratio defaults to that determined
from the resolution and pixel aspect ratio.

RIB BINDING

FrameAspectRatio frameaspectratio

EXAMPLE

RiFrameAspectRatio (4.0/3.0);

SEE ALSO

RiDisplay, RiFormat

RiScreenWindow(left, right, bottom, top)
RtFloat left, right, bottom, top;

This procedure defines a rectangle in the image plane that gets mapped to the
raster coordinate system and that corresponds to the display area selected. The
rectangle specified is in the screen coordinate system. The values left, right, bottom,
and top are mapped to the respective edges of the display.

The default values for the screen window coordinates are:

(−frameaspectratio, frameaspectratio, −1, 1).

if frameaspectratio is greater than or equal to one, or

(−1, 1, −1/frameaspectratio, 1/frameaspectratio).

if frameaspectratio is less than or equal to one. For perspective projections, this
default gives a centered image with the smaller of the horizontal and vertical
fields of view equal to the field of view specified with RiProjection. Note that if
the camera transformation preserves relative x and y distances, and if the ratio

abs (right – left)
abs (top – bottom)

is not the same as the frame aspect ratio of the display area, the displayed im-
age will be distorted.

RIB BINDING

ScreenWindow left right bottom top
ScreenWindow [left right bottom top]

EXAMPLE

ScreenWindow –1 1 –1 1

24 Section 4: Graphics State

SEE ALSO

RiCropWindow, RiFormat, RiFrameAspectRatio, RiProjection

RiCropWindow(xmin, xmax, ymin, ymax)
RtFloat xmin, xmax, ymin, ymax;

Render only a subrectangle of the image. This command does not affect the
mapping from screen to raster coordinates. This command is used to facilitate
debugging regions of an image, and to help in generating panels of a larger im-
age. These values are specified as fractions of the raster window defined by Ri-
Format and RiFrameAspectRatio, and therefore lie between 0 and 1. By default
the entire raster window is rendered. The integer image locations correspond-
ing to these limits are given by

rxmin = clamp (ceil (xresolution*xmin),0, xresolution–1);
rxmax = clamp (ceil (xresolution*xmax –1),0, xresolution–1);
rymin = clamp (ceil (yresolution*ymin),0, yresolution–1);
rymax = clamp (ceil (yresolution*ymax –1),0, yresolution–1);

These regions are defined so that if a large image is generated with tiles of abut-
ting but non-overlapping crop windows, the subimages produced will tile the
display with abutting and non-overlapping regions.

RIB BINDING

CropWindow xmin xmax ymin ymax
CropWindow [xmin xmax ymin ymax]

EXAMPLE

RiCropWindow (0.0, 0.3, 0.0, 0.5);

SEE ALSO

RiFrameAspectRatio, RiFormat

RiProjection(name, parameterlist)
RtToken name;

The projection determines how camera coordinates are converted to screen co-
ordinates, using the type of projection and the clipping planes to generate a
projection matrix. It appends this projection matrix to the current transformation
matrix and stores this as the screen transformation, then marks the current co-
ordinate system as the camera coordinate system and reinitializes the current
transformation matrix to the identity camera transformation. The required types
of projection are "perspective", "orthographic", and RI_NULL.

"perspective" builds a projection matrix that does a perspective projection along
the z-axis, using the RiClipping values, so that points on the near clipping plane
project to z=0 and points on the far clipping plane project to z=1. "perspective"
takes one optional parameter, "fov", a single RtFloat that indicates the full angle

Options 25

perspective field of view (in degrees) between screen space coordinates (–1,0)
and (1,0) (equivalently between (0,–1) and (0,1)). The default is 90 degrees.

Note that there is a redundancy in the focal length implied by this procedure
and the one set by RiDepthOfField. The focal length implied by this command is:

focallength = / tan ()

"orthographic" builds a simple orthographic projection that scales z using the
RiClipping values as above. "orthographic" takes no parameters.

RI_NULL uses an identity projection matrix, and simply marks camera space in
situations where the user has generated his own projection matrices himself us-
ing RiPerspective or RiTransform.

This command can also be used to select implementation-specific projections or
special projections written in the Shading Language. If a particular implemen-
tation does not support the special projection specified, it is ignored and an or-
thographic projection is used. If RiProjection is not called, the screen transfor-
mation defaults to the identity matrix, so screen space and camera space are
identical.

RIB BINDING

Projection "perspective" parameterlist
Projection "orthographic"
Projection name parameterlist

EXAMPLE

RiProjection (RI_ORTHOGRAPHIC, RI_NULL);

SEE ALSO

RiPerspective, RiClipping

RiClipping(near, far)
RtFloat near, far;

Sets the position of the near and far clipping planes along the direction of view.
near and far must both be positive numbers. near must be greater than or equal
to RI_EPSILON and less than far. far must be greater than near and may be equal
to RI_INFINITY. These values are used by RiProjection to generate a screen pro-
jection such that depth values are scaled to equal zero at z=near and one at z=far.
Notice that the rendering system will actually clip geometry which lies outside
of z=(0,1) in the screen coordinate system, so non-identity screen transforms
may affect which objects are actually clipped.

For reasons of efficiency, it is generally a good idea to bound the scene tightly
with the near and far clipping planes.

RIB BINDING

Clipping near far

EXAMPLE

Clipping .1 10000

horizontalscreenwidth
verticalscreenwidth

fov
2

26 Section 4: Graphics State

SEE ALSO

RiBound, RiProjection

RiDepthOfField(fstop, focallength, focaldistance)
RtFloat fstop;
RtFloat focallength;
RtFloat focaldistance;

focaldistance sets the distance along the direction of view at which objects will
be in focus. focallength sets the focal length of the camera. These two parame-
ters should have the units of distance along the view direction in camera coor-
dinates. fstop, or aperture number, determines the lens diameter:

If fstop is RI_INFINITY, a pin-hole camera is used and depth of field is effectively
turned off. If the Depth of Field capability is not supported by a particular im-
plementation, a pin-hole camera model is always used.

If depth of field is turned on, points at a particular depth will not image to a
single point on the view plane but rather a circle. This circle is called the circle
of confusion. The diameter of this circle is equal to

Note that there is a redundancy in the focal length as specified in this procedure
and the one implied by RiProjection.

RIB BINDING

DepthOfField fstop focallength focaldistance
DepthOfField -

The second form specifies a pin-hole camera with infinite fstop, for which the
focallength and focaldistance parameters are meaningless.

EXAMPLE

DepthOfField 22 45 1200

SEE ALSO

RiProjection

RiShutter(min, max)
RtFloat min, max;

This procedure sets the times at which the shutter opens and closes. min should
be less than max. If min==max, no motion blur is done.

lensdiameter =
focallength

fstop

focaldistance – focallength
focaldistance ⋅ focallength

C =
focallength

fstop ⋅ ⋅ ��
 1

depth 1
focaldistance–

Options 27

RIB BINDING

Shutter min max

EXAMPLE

RiShutter(0.1, 0.9);

SEE ALSO

RiMotionBegin

Displays

The graphics state contains a set of parameters that control the properties of the display
process. The complete set of display options is given in Table 4.3, Display Options.

* Implementation-specific

Table 4.3 Display Options

Display Option Type Default Description

Pixel Variance float – Estimated variance of the computed
pixel value from the true pixel val-
ue.

Sampling Rates 2 floats 2, 2 Effective sampling rate in the hori-
zontal and vertical directions.

Filter function RiGaussianFilter Type of filtering and the width of
Filter Widths 2 floats 2, 2 the filter in the horizontal and

vertical directions.
Exposure
 gain float 1.0 Gain and gamma of the exposure
 gamma float 1.0 process.
Imager shader "null" A procedure defining an image or

pixel operator.
Color Quantizer Color and opacity quantization pa-
 one int 255 rameters.
 minimum int 0
 maximum int 255
 dither amplitude float 0.5
Depth Quantizer Depth quantization parameters.
 one int 0
 minimum int –
 maximum int –
 dither amplitude float –

Display Type token * Whether the display is a framebuffer
or a file.

Display Name string * Name of the display device or file.
Display Mode token * Image output type.

28 Section 4: Graphics State

Rendering programs must be able to produce color, opacity (alpha), and depth images.
Display parameters control how the values in these images are converted into a dis-
playable form. Many times it is possible to use none of the procedures described in this
section. If this is done, the rendering process and the images it produces are described
in a completely device-independent way. If a rendering program is designed for a spe-
cific display, it has appropriate defaults for all display parameters. The defaults given
in Table 4.3, Display Options characterize a file to be displayed on a hypothetical video
framebuffer.

The output process is different for color, alpha, and depth information. (See Figure 4.2,
Imaging Pipeline). The hidden-surface algorithm will produce a representation of the
light incident on the image plane. This color image is either continuous or sampled at
a rate that may be higher than the resolution of the final image. The minimum sampling
rate can be controlled directly, or can be indicated by the estimated variance of the pixel
values. These color values are filtered with a user-selectable filter and filterwidth, and
sampled at the pixel centers. The resulting color values are then multiplied by the gain
and passed through an inverse gamma function to simulate the exposure process. The
resulting colors are then passed to a quantizer which scales the values and optionally
dithers them before converting them to a fixed-point integer. It is also possible to inter-
pose a programmable imager (written in the Shading Language) between the exposure
process and quantizer. This imager can be used to perform special effects processing,
to compensate for non-linearities in the display media, and to convert to device depen-
dent color spaces (such as CMYK or pseudocolor).

Final output alpha is computed by multiplying the coverage of the pixel (i.e., the sub-
pixel area actually covered by a geometric primitive) by the average of the color opacity
components. If an alpha image is being output, the color values will be multiplied by
this alpha before being passed to the quantizer. Color and alpha use the same quantizer.

Output depth values are the screen-space z values, which lie in the range 0 to 1. Gener-
ally, these correspond to camera-space values between the near and far clipping planes.
Depth values bypass all the above steps except for the imager and quantization. The
depth quantizer has an independent set of parameters from those of the color quantiz-
er.

RiPixelVariance(variation)
RtFloat variation;

The color of a pixel computed by the rendering program is an estimate of the
true pixel value: the convolution of the continuous image with the filter speci-
fied by RiPixelFilter. This routine sets the upper bound on the acceptable esti-
mated variance of the pixel values from the true pixel values.

RIB BINDING

PixelVariance variation

EXAMPLE

RiPixelVariance(.01);

Options 29

 SEE ALSO

RiPixelFilter, RiPixelSamples

Figure 4.2 Imaging pipeline

Fixed-Point
Depth Values

Floating-Point
Depth Values

Floating-Point
Pixels

Floating-Point
Pixels

Floating-Point
Colors and Coverage

Imager

Exposure

Fixed-Point
Pixels

Floating-Point
Pixels

Image
File/Device

Color
Quantizer

Depth
Quantizer

Depthmap
File/Device

Filter,
Sample

Hidden Surface
Algorithm

30 Section 4: Graphics State

RiPixelSamples(xsamples, ysamples)
RtFloat xsamples, ysamples;

Set the effective hider sampling rate in the horizontal and vertical directions.
The effective number of samples per pixel is xsamples*ysamples. If an analytic
hidden surface calculation is being done, the effective sampling rate is
RI_INFINITY. Sampling rates less than 1 are clamped to 1.

RIB BINDING

PixelSamples xsamples ysamples

EXAMPLE

PixelSamples 2 2

SEE ALSO

RiPixelFilter, RiPixelVariance

RiPixelFilter(filterfunc, xwidth, ywidth)
RtFloatFunc filterfunc;
RtFloat xwidth, ywidth;

Antialiasing is performed by filtering the geometry (or supersampling) and
then sampling at pixel locations. The filterfunc controls the type of filter, while
xwidth and ywidth specify the width of the filter in pixels. A value of 1 indicates
that the support of the filter is one pixel. RenderMan supports nonrecursive,
linear shift-invariant filters. The type of the filter is set by passing a reference
to a function that returns a filter kernel value; i.e.,

filterkernelvalue = (*filterfunc)(x, y, xwidth, ywidth);

(where (x,y) is the point at which the filter should be evaluated). The rendering
program only requests values in the ranges –xwidth/2 to xwidth/2 and –ywidth/2
to ywidth/2. The values returned need not be normalized.

The following standard filter functions are available:

RtFloat RiBoxFilter();
RtFloat RiTriangleFilter();
RtFloat RiCatmullRomFilter();
RtFloat RiGaussianFilter();
RtFloat RiSincFilter();

A high-resolution picture is often computed in sections or panels. Each panel
is a subrectangle of the final image. It is important that separately computed
panels join together without a visible discontinuity or seam. If the filter width
is greater than 1 pixel, the rendering program must compute samples outside
the visible window to properly filter before sampling.

RIB BINDING

PixelFilter type xwidth ywidth

The type is one of: "box", "triangle", "catmull-rom" (cubic), "sinc" and "gaussian".

Options 31

EXAMPLE

RiPixelFilter(RiGaussianFilter, 2.0, 1.0);

PixelFilter "gaussian" 2 1

SEE ALSO

RiPixelSamples, RiPixelVariance

RiExposure(gain, gamma)
RtFloat gain;
RtFloat gamma;

This function controls the sensitivity and non-linearity of the exposure process.
Each component of color is passed through the following function:

color = (color ⋅ gain)

RIB BINDING

Exposure gain gamma

EXAMPLE

Exposure 1.5 2.3

SEE ALSO

RiImager

RiImager(name, parameterlist)
RtToken name;

Select an imager function programmed in the Shading Language. name is the
name of an imager shader. If name is RI_NULL, no imager shader is used.

RIB BINDING

Imager name parameterlist

EXAMPLE

RiImager("cmyk", RI_NULL);

SEE ALSO

RiExposure

RiQuantize(type, one, min, max, ditheramplitude)
RtToken type;

gamma 1

32 Section 4: Graphics State

RtInt one, min, max;
RtFloat ditheramplitude;

Set the quantization parameters for colors or depth. If type is "rgba", then color
and opacity quantization are set. If type is "z", then depth quantization is set.
The value one defines the mapping from floating-point values to fixed point
values. If one is 0, then quantization is not done and values are output as float-
ing point numbers.

Dithering is performed by adding a random number to the floating-point val-
ues before they are rounded to the nearest integer. The added value is scaled to
lie between plus and minus the dither amplitude. If ditheramplitude is 0, dither-
ing is turned off.

Quantized values are computed using the following formula:

value = round(one * value + ditheramplitude * random());
value = clamp(value, min, max);

where random returns a random number between ± 1.0, and clamp clips its first
argument so that it lies between min and max.

By default color pixel values are dithered with an amplitude of .5 and quanti-
zation is performed for an 8-bit display with a one of 255. Quantization and
dithering and not performed for depth values (by default).

RIB BINDING

Quantize type one min max ditheramplitude

EXAMPLE

RiQuantize(RI_RGBA, 2048, –1024, 3071, 1.0);

SEE ALSO

RiDisplay, RiImager

RiDisplay(name, type, mode, parameterlist)
char *name;
RtToken type;
RtToken mode;

Choose a display by name and set the type of output being generated. The type
of display is either "framebuffer" or "file". name is either the name of a picture file
or the name of the framebuffer, depending on type. A rendering program may
output any combination of color, opacity and depth (z) values. Output image
selection is controlled by giving any combination (string concatenation) of "rgb"
for color (usually red, green and blue intensities unless there are more or less
than 3 color samples; see the next section, Additional options), "a" for alpha, and
"z" for depth values, in that order.

Display options or device-dependent display modes or functions may be set
using the parameterlist. One such option is required: "origin", which takes an ar-
ray of two RtInts, sets the x and y position of the upper left hand corner of the

Options 33

image in the display’s coordinate system; by default the origin is set to (0,0).
The default display device is renderer implementation-specific.

RIB BINDING

Display name type mode parameterlist

EXAMPLE

RtInt origin[2] = { 10, 10 };

RiDisplay("pixar0", "framebuffer", "rgba", "origin", (RtPointer)origin, RI_NULL);

SEE ALSO

RiFormat, RiQuantize

Additional options

Table 4.4 Additional RenderMan Interface Options

The hider type and parameters control the hidden-surface algorithm.

RiHider(type, parameterlist)
RtToken type;

The standard types are "hidden", "paint", and "null". "hidden" performs standard
hidden-surface computations. "paint" draws the objects in the order in which
they are defined. The hider "null" performs no pixel computation and hence
produces no output. Other implementation-specific hidden-surface algorithms
can also be selected using this routine.

RIB BINDING

Hider type parameterlist

EXAMPLE

RiHider "paint"

Option Type Default Description

Hider token "hidden" The type of hidden surface algorithm that is
performed.

Color Samples int 3 Number of color components in colors. The
default is 3 for RGB

Relative Detail float 1.0 A multiplicative factor that can be used to in-
crease or decrease the effective level of detail
used to render an object.

34 Section 4: Graphics State

Rendering programs compute color values in some spectral color space. This implies that
multiplying two colors corresponds to interpreting one of the colors as a light and the
other as a filter and passing light through the filter. Adding two colors corresponds to
adding two lights. The default color space is NTSC-standard RGB; this color space has
three samples. Color values of 0 are interpreted as black (or transparent) and values of
1 are interpreted as white (or opaque), although values outside this range are allowed.

RiColorSamples(n, nRGB, RGBn)
RtInt n;
RtFloat nRGB[], RGBn[];

This function controls the number of color components or samples to be used
in specifying colors. By default, n is 3, which is appropriate for RGB color val-
ues. Setting n to 1 forces the rendering program to use only a single color com-
ponent. The array nRGB is an n by 3 transformation matrix that is used to con-
vert n component colors to 3 component NTSC-standard RGB colors. This is
needed if the rendering program cannot handle multiple components. The ar-
ray RGBn is a 3 by n transformation matrix that is used to convert 3 component
NTSC-standard RGB colors to n component colors. This is mainly used for
transforming constant colors specified as color triples in the Shading Language
to the representation being used by the RenderMan Interface.

Calling this procedure effectively redefines the type RtColor to be

typedef RtFloatRtColor[n];

After a call to RiColorSamples, all subsequent color arguments are assumed to
be this size.

If the Spectral Color capability is not supported by a particular implementation,
that implementation will still accept multiple component colors, but will im-
mediately convert them to RGB color space and do all internal calculations
with 3 component colors.

RIB BINDING

ColorSamples nRGB RGBn

The number of color components, n, is derived from the lengths of the nRGB
and RGBn arrays, as described above.

EXAMPLE

ColorSamples [.3.3 .4] [1 1 1]

RtFloat frommonochr[] = {.3, .3, .4};
RtFloat tomonochr[] = {1., 1., 1.};
RiColorSamples(1, frommonochr, tomonochr);

SEE ALSO

RiColor, RiOpacity

Options 35

The method of specifying and using level of detail is discussed in the section on Detail,
p. 48.

RiRelativeDetail(relativedetail)
RtFloat relativedetail;

The relative level of detail scales the results of all level of detail calculations.
The level of detail is used to select between different representations of an ob-
ject. If relativedetail is greater than 1, the effective level of detail is increased,
and a more detailed representation of all objects will be drawn. If relativedetail
is less than 1, the effective level of detail is decreased, and a less detailed rep-
resentation of all objects will be drawn.

RIB BINDING

RelativeDetail relativedetail

EXAMPLE

RelativeDetail 0.6

SEE ALSO

RiDetail, RiDetailRange

Implementation-specific options

Rendering programs may have additional implementation-specific options that control
parameters that affect either their performance or operation. These are all set by the fol-
lowing procedure.

RiOption(name, parameterlist)
RtToken name;

Sets the named implementation-specific option. A rendering system may have
certain options that must be set before the renderer is initialized. In this case,
RiOption may be called before RiBegin to set those options only.

RIB BINDING

Option name parameterlist

EXAMPLE

Option "limits" "gridsize" [32] "bucketsize" [12 12]

SEE ALSO

RiAttribute

36 Section 4: Graphics State

Attributes
Attributes are parameters in the graphics state that may change while geometric prim-
itives are being defined. The complete set of standard attributes is described in two ta-
bles: Table 4.5, Shading Attributes, and Table 4.9, Geometry Attributes.

Attributes can be explicitly saved and restored with the following commands. All be-
gin-end blocks implicitly do a save and restore.

RiAttributeBegin()
RiAttributeEnd()

Push and pop the current set of attributes. Pushing attributes also pushes the
current transformation. Pushing and popping of attributes must be properly
nested with respect to various begin-end constructs.

RIB BINDING

AttributeBegin –

AttributeEnd –

EXAMPLE

RiAttributeBegin();

SEE ALSO

RiFrameBegin, RiTransformBegin, RiWorldBegin

The process of shading is described is detail in Part II: The RenderMan Shading Language.
The complete list of attributes related to shading are in Table 4.5, Shading Attributes.

The graphics state maintains a list of attributes related to shading. Associated with the
shading state are a current color and a current opacity. The graphics state also contains a
current surface shader, a current atmosphere shader, a current interior volume shader, and a
current exterior volume shader.

All geometric primitives use the current surface shader for computing the color (shading)
of their surfaces and the current atmosphere shader for computing the attenuation of light
towards the viewer. Solid primitives attach the current interior and exterior volume shad-
ers to their interior and exterior. The graphics state also contains a current list of light
sources that are used to illuminate the geometric primitive. Finally, there is a current area
light source. Geometric primitives can be added to a list of primitives defining this light
source.

Attributes 37

Table 4.5 Shading Attributes

Color and opacity

All geometric primitives inherit the current color and opacity from the graphics state,
unless color or opacity are defined as part of the primitive. Colors are passed in arrays
that are assumed to contain the number of color samples being used (see the section on
Additional options, p. 33).

Shading Attribute Type Default Description

Color color color "rgb" (1,1,1) The reflective color of the
object.

Opacity color color "rgb" (1,1,1) The opacity of the object.
Texture Coordinates 8 floats (0,0)(1,0),(0,1),(1,1) The texture coordinates (s, t)

at the 4 corners of a para-
metric primitive.

Light Sources shader list "null" A list of light source shaders
that illuminate subsequent
primitives.

Area Light Source shader "null" An area light source which
is being defined.

Surface shader default surface A shader controlling the
surface shading model.

Atmosphere shader "null" A volume shader that speci-
fies how the color of light is
changed as it travels from a
visible surface to the eye.

Interior Volume shader "null"
Exterior Volume shader "null" A volume shader that speci-

fies how the color of light is
changed as it traverses a
volume in space.

Effective Shading Rate float .25 Minimum rate of surface
shading.

Shading Interpolation token "constant" How the results of shading
are interpolated across a
polygon.

Matte Surface Flag boolean false A flag indicating the surfac-
es of the subsequent primi-
tives are opaque to the ren-
dering program, but trans-
parent on output.

38 Section 4: Graphics State

RiColor(color)
RtColor color;

Set the current color to color. Normally there are three components in the color
(red, green, and blue), but this may be changed with the colorsamples request.

RIB BINDING

Color c0 c1... cn

Color [c0 c1... cn]

EXAMPLE

RtColor blue = { .2, .3, .9};
RiColor(blue);

Color [.2 .3 .9]

SEE ALSO

RiOpacity, RiColorSamples

RiOpacity(color)
RtColor color;

Set the current opacity to color. The color component values must be in the
range [0,1]. Normally there are three components in the color (red, green, and
blue), but this may be changed with RiColorSamples. If the opacity is 1, the object
is completely opaque; if the opacity is 0, the object is completely transparent.

RIB BINDING

Opacity c0 c1... cn

Opacity [c0 c1... cn]

EXAMPLE

Opacity .5 1 1

SEE ALSO

RiColorSamples, RiColor

Texture coordinates

The Shading Language allows precalculated images to be accessed by a set of two-di-
mensional texture coordinates. This general process is referred to as texture mapping.
Texture access in the Shading Language is very general since the coordinates are al-
lowed to be any legal expression. However, the texture and bump access functions (in
Part II, see the sections on Basic texture maps, p. 129, and Bump maps, p. 130) often use
default texture coordinates related to the surface parameters.

Attributes 39

All the parametric geometric primitives have surface parameters (u,v) that can be used
as their texture coordinates (s,t). Surface parameters for different primitives are nor-
mally defined to lie in the range 0 to 1. This defines a unit square in parameter space.
The section on Geometric Primitives (p. 59) defines the position on each surface primitive
that the corners of this unit square lie. The texture coordinates at each corner of this unit
square are given by providing a corresponding set of (s,t) values. This correspondence
uniquely defines a 3x3 homogeneous two-dimensional mapping from parameter space
to texture space. Special cases of this mapping occur when the transformation reduces
to a scale and an offset, which is often used to piece patches together, or to an affine
transformation, which is used to map a collection of triangles onto a common planar
texture.

The graphics state maintains a current set of texture coordinates. The correspondence be-
tween these texture coordinates and the corners of the unit square is given by the fol-
lowing table.

By default, the texture coordinates at each corner are the same as the surface parame-
ters (s=u, t=v). Note that texture coordinates can also be explicitly attached to geometric
primitives. Note also that polygonal primitives are not parametric, and the current set
of texture coordinates do not apply to them.

RiTextureCoordinates(s1,t1,s2,t2,s3,t3,s4,t4)
RtFloat s1, t1;
RtFloat s2, t2;
RtFloat s3, t3;
RtFloat s4, t4;

Set the current set of texture coordinates to the values passed as arguments ac-
cording to the above table.

RIB BINDING

TextureCoordinates s1 t1 s2 t2 s3 t3 s4 t4

TextureCoordinates [s1 t1 s2 t2 s3 t3 s4 t4]

EXAMPLE

RiTextureCoordinates(0.0,0.0, 2.0,-0.5, -0.5,1.75, 3.0,3.0);

SEE ALSO

texture() and bump() in the Shading Language

Surface Parameters Texture Coordinates
(u,v) (s,t)

(0,0) (s1,t1)
(1,0) (s2,t2)
(0,1) (s3,t3)
(1,1) (s4,t4)

40 Section 4: Graphics State

Light sources

The graphics state maintains a current light source list. The lights in this list illuminate
subsequent surfaces. By making this list an attribute different light sources can be used
to illuminate different surfaces. Light sources can be added to this list by turning them
on and removed from this list by turning them off. Note that popping to a previous
graphics state also has the effect of returning the current light list to its previous value.
Initially the graphics state does not contain any lights.

An area light source is defined by a shader and a collection of geometric primitives. The
association between the shader and the geometric primitives is done by having the
graphics state maintain a single current area light source. Each time a primitive is defined
it is added to the list of primitives that define the current area light source. current light
source list or turned on and off just like other light sources.

The RenderMan Interface includes four standard types of light sources: "ambientlight",
"pointlight", "distantlight", and "spotlight". The definition of these light sources are given
in Appendix A, Standard RenderMan Interface Shaders. The parameters controlling these
light sources are given in Table 4.6, Standard Light Source Shader Parameters.

Table 4.6 Standard Light Source Shader Parameters

RtLightHandle
RiLightSource(shadername, parameterlist)

RtToken shadername;

Light Source Parameter Type Default Description

ambientlight intensity float 1.0 Light intensity
lightcolor color color "rgb" (1,1,1) Light color

distantlight intensity float 1.0 Light intensity
lightcolor color color "rgb" (1,1,1) Light color
from point point "shader" (0,0,0) Light position
to point point "shader" (0,0,1) Light direction is

from-to
pointlight intensity float 1.0 Light intensity

lightcolor color color "rgb" (1,1,1) Light color
from point point "shader" (0,0,0) Light position

spotlight intensity float 1.0 Light intensity
lightcolor color color "rgb" (1,1,1) Light color
from point point "shader" (0,0,0) Light position
to point point "shader" (0,0,1) Light direction is

from-to
coneangle float radians(30) Light cone angle
conedeltaangle float radians(5) Light soft edge angle
beamdistribution float 2.0 Light beam distribu-

tion

Attributes 41

shadername is the name of a light source shader. This procedure creates a non-
area light, turns it on, and adds it to the current light source list. An RtLightHandle
value is returned that can be used to turn the light off or on again.

RIB BINDING

LightSource name sequencenumber parameterlist

The sequencenumber is a unique light identification number which is provided
by the RIB client to the RIB server. Both client and server maintain independent
mappings between the sequencenumber and their corresponding RtLightHan-
dles. The number must be in the range 0 to 65535.

EXAMPLE

LightSource "spotlight" 2 "coneangle" [5]
LightSource "ambientlight" 3 "lightcolor" [.5 0 0] "intensity" [.6]

SEE ALSO

RiAreaLightSource, RiIlluminate, RiFrameEnd, RiWorldEnd

RtLightHandle
RiAreaLightSource(shadername, parameterlist)

RtToken shadername;

shadername is the name of a light source shader. This procedure creates an area
light and makes it the current area light source. Each subsequent geometric prim-
itive is added to the list of surfaces that define the area light. RiAttributeEnd
ends the assembly of the area light source.

The light is also turned on and added to the current light source list. An RtLight-
Handle value is returned which can be used to turn the light off or on again.

If the Area Light Source capability is not supported by a particular implementa-
tion, this subroutine is equivalent to RiLightSource.

RIB BINDING

AreaLightSource name sequencenumber parameterlist

The sequencenumber is a unique light identification number which is provided
by the RIB client to the RIB server. Both client and server maintain independent
mappings between the sequencenumber and their corresponding RtLightHan-
dles. The number must be in the range 0 to 65535.

EXAMPLE

RtFloat decay = .5, intensity = .6;
RtColor color = {.5,0,0};

RiAreaLightSource("finite", "decayexponent", (RtPointer)&decay, RI_NULL);
RiAreaLightSource "ambientlight", "lightcolor", (RtPointer)color, "intensity",

(RtPointer)&intensity, RI_NULL);

42 Section 4: Graphics State

SEE ALSO

RiFrameEnd, RiLightSource, RiIlluminate, RiWorldEnd

RiIlluminate(light, onoff)
RtLightHandle light;
RtBoolean onoff;

If onoff is RI_TRUE and the light source referred to by the RtLightHandle is not
currently in the current light source list, add it to the list. If onoff is RI_FALSE and
the light source referred to by the RtLightHandle is currently in the current light
source list, remove it from the list. Note that popping the graphics state restores
the onoff value of all lights to their previous values.

RIB BINDING

Illuminate sequencenumber onoff

The sequencenumber is the integer light handle defined in a LightSource or Ar-
eaLightSource request.

EXAMPLE

LightSource "main" 3

Illuminate 3 0

SEE ALSO

RiAttributeEnd, RiAreaLightSource, RiLightSource

Surface shading

The graphics state maintains a current surface shader. The current surface shader is used
to specify the surface properties of subsequent geometric primitives. Initially the cur-
rent surface shader is set to an implementation-dependent default surface shader (but
not "null").

The RenderMan Interface includes six standard types of surfaces: "constant", "matte",
"metal", "shinymetal", "plastic", and "paintedplastic". The definitions of these surface shad-
ing procedures are given in Appendix A, Standard RenderMan Interface Shaders. The pa-
rameters controlling these surfaces are given in Table 4.7, Standard Surface Shader Pa-
rameters.

RiSurface(shadername, parameterlist)
RtToken shadername;

shadername is the name of a surface shader. This procedure sets the current sur-
face shader to be shadername. If the surface shader shadername is not defined,
some implementation-dependent default surface shader (but not "null") is used.

RIB BINDING

Surface shadername parameterlist

Attributes 43

EXAMPLE

RtFloat rough = 0.3, kd = 1.0;

RiSurface("wood", "roughness", (RtPointer)&rough, "Kd", (RtPointer)&kd, RI_NULL);

SEE ALSO

RiAtmosphere, RiDisplacement

Table 4.7 Standard Surface Shader Parameters

Volume shading

The graphics state contains a current interior volume shader, a current exterior volume shad-
er, and a current atmosphere shader. These shaders are used to modify the colors of rays
traveling through volumes in space. The interior and exterior shaders define the mate-
rial properties on the interior and exterior volumes adjacent to the surface of a geomet-
ric primitive. The exterior volume relative to a surface is the region into which the nor-
mal points; the interior is the opposite side. Interior volume shaders are only applied
to closed solids created with RiSolidBegin-RiSolidEnd (see the section on Solids and Spa-
tial Set Operations, p. 80). Exterior volume shaders are applied to all primitives. An at-

Surface Name Parameter Type Default Description

constant – – – –
matte Ka float 1.0 Ambient coefficient

Kd float 1.0 Diffuse coefficient
metal Ka float 1.0 Ambient coefficient

Ks float 1.0 Specular coefficient
roughness float 0.1 Surface roughness

shinymetal Ka float 1.0 Ambient coefficient
Ks float 1.0 Specular coefficient
Kr float 1.0 Reflection coefficient
roughness float 0.1 Surface roughness
texturename string "" Environment mapname

plastic Ka float 1.0 Ambient coefficient
Kd float 0.5 Diffuse coefficient
Ks float 0.5 Specular coefficient
roughness float 0.1 Surface roughness
specularcolor color color "rgb" (1,1,1) Specular color

paintedplastic Ka float 1.0 Ambient coefficient
Kd float 0.5 Diffuse coefficient
Ks float 0.5 Specular coefficient
roughness float 0.1 Surface roughness
specularcolor color color "rgb" (1,1,1) Specular color
texturename string "" Texture map name

44 Section 4: Graphics State

mosphere shader is a special shader which is used to modify rays traveling towards the
eye.

The RenderMan Interface includes two standard volume shaders: "fog" and "depthcue".
The definitions of these volume shaders are given in Appendix A, Standard RenderMan
Interface Shaders. The parameters controlling these volumes are given in Table 4.8, Stan-
dard Volume Shader Parameters.

RiAtmosphere(shadername, parameterlist)
RtToken shadername;

This procedure sets the current atmosphere shader. shadername is the name of an
atmosphere shader. If shadername is RI_NULL, no atmosphere shader is used.

RIB BINDING

Atmosphere shadername parameterlist

EXAMPLE

Atmosphere "fog"

SEE ALSO

RiDisplacement, RiSurface

Table 4.8 Standard Volume Shader Parameters

RiInterior(shadername, parameterlist);
 RtToken shadername;

This procedure sets the current interior volume shader. shadername is the name of
a volume or atmosphere shader. If shadername is RI_NULL, the surface will not
have an interior shader.

RIB BINDING

Interior shadername parameterlist

EXAMPLE

Interior "water"

Volume Name Parameter Type Default Description

depthcue mindistance float 0.0 Distance where brightest
maxdistance float 1.0 Distance where dimmest
background color color "rgb" (0,0,0) Background color

fog distance float 1.0 Exponential extinction
distance

background color color "rgb" (0,0,0) Background color

Attributes 45

SEE ALSO

RiExterior, RiAtmosphere

RiExterior(shadername, parameterlist);
RtToken shadername;

This procedure sets the current exterior volume shader. shadername is the name of
a volume or atmosphere shader. If shadername is RI_NULL, the surface will not
have an exterior shader.

RIB BINDING

Exterior shadername parameterlist

EXAMPLE

RiExterior("fog", RI_NULL);

SEE ALSO

RiInterior, RiAtmosphere

If a particular implementation does not support the Volume Shading capability, RiInteri-
or and RiExterior are ignored; however, RiAtmosphere will be available in all implemen-
tations.

Shading rate

The number of shading calculations per primitive is controlled by the current shading
rate. The shading rate is expressed in pixel area. If geometric primitives are being bro-
ken down into polygons and each polygon is shaded once, the shading rate is interpret-
ed as the maximum size of a polygon in pixels. A rendering program will shade at least
at this rate, although it may shade more often. Whatever the value of the shading rate,
at least one shading calculation is done per vertex or surface.

RiShadingRate(size)
RtFloat size;

Set the current shading rate to size. The current shading rate is specified as an area
in pixels. A shading rate of RI_INFINITY specifies that shading need only be
done once per polygon. A shading rate of 1 specifies that shading is done at
least once per pixel. This second case is often referred to as Phong shading.

RIB BINDING

ShadingRate size

EXAMPLE

RiShadingRate(1.0);

46 Section 4: Graphics State

SEE ALSO

RiGeometricApproximation

Shading interpolation

Shading calculations are performed on individual surface elements. The results can
then either be interpolated or constant over the interior of the surface element. This is
controlled by the following procedure:

RiShadingInterpolation(type)
RtToken type;

This function controls how values are interpolated between shading samples
(usually across a polygon). If type is "constant", the color and opacity of all the
pixels inside the polygon are the same. This is often referred to as flat or facetted
shading. If type is "smooth", the color and opacity of all the pixels between shad-
ed values are interpolated from the calculated values. This is often referred to
as Gouraud shading.

RIB BINDING

ShadingInterpolation "constant"
ShadingInterpolation "smooth"

EXAMPLE

ShadingInterpolation "smooth"

Matte objects

Matte objects are the functional equivalent of three-dimensional hold-out mattes. Matte
objects are not shaded and are set to be completely opaque so that they hide objects be-
hind them. However, regions in the output image where a matte object is visible are
treated as transparent.

RiMatte(onoff)
RtBoolean onoff;

Indicates whether subsequent primitives are matte objects.

RIB BINDING

Matte onoff

EXAMPLE

RiMatte(RI_TRUE);

Attributes 47

SEE ALSO

RiSurface

Table 4.9 Geometry Attributes

Bound

The graphics state maintains a bounding box called the current bound. The rendering
program may clip or cull primitives to this bound.

RiBound(bound)
RtBound bound;

Attribute Type Default Description

Object to World transform identity Transformation from object
or model coordinates to
world coordinates.

Bound 6 floats infinite Subsequent geometric primi-
tives lie inside this box.

Detail Range 4 floats (0,0,infinity,infinity) Current range of detail. If the
current detail is in this range,
geometric primitives are ren-
dered.

Geometric token value – The largest deviation of an
Approximation approximation of a surface

from the true surface in ras-
ter coordinates.

Cubic Basis Matrices 2 matrices Bezier Bezier Basis matrices for bicubic
patches. There is a separate
basis matrix for both the u
and the v directions.

Cubic Basis Steps 2 ints 3, 3 Patchmesh basis increments.
Trim Curves – – A list of trim curves which

bound NURBS.
Orientation token "outside" Whether primitives are de-

fined in a left-handed or
right-handed coordinate sys-
tem.

Number of Sides integer 2 Whether subsequent surfac-
es are considered to have one
or two sides.

Displacement shader "null" A displacement shader that
specifies small changes in
surface geometry.

48 Section 4: Graphics State

This procedure sets the current bound to bound. The bounding box bound is
specified in the current object coordinate system. Subsequent output primitives
should all lie within this bounding box. This allows the efficient specification
of a bounding box for a collection of output primitives.

RIB BINDING

Bound xmin xmax ymin ymax zmin zmax
Bound [xmin xmax ymin ymax zmin zmax]

EXAMPLE

Bound [0 0.5 0 0.5 0.9 1]

SEE ALSO

RiDetail

Detail

The graphics state maintains a relative detail, a current detail, and a current detail range.
The current detail is used to select between multiple representations of objects each
characterized by a different range of detail. The current detail range is given by 4 values.
These four numbers define transition ranges between this range of detail and the neigh-
boring representations. If the current detail lies inside the current detail range, geometric
primitives comprising this representation will be drawn.

Suppose there are two object definitions, foo1 and foo2, for an object. The first contains
more detail and the second less. These are communicated to the rendering program us-
ing the following sequence of calls.

RiDetail(bound);
RiDetailRange(0., 0., 10., 20.);

RiObjectInstance(foo1);
RiDetailRange(10., 20., RI_INFINITY, RI_INFINITY);

RiObjectInstance(foo2);

The current detail is set by RiDetail. The detail ranges indicate that object foo1 will be
drawn when the current detail is below 10 (thus it is the low detail detail representation)
and that object foo2 will be drawn when the current detail is above 20 (thus it is the high
detail representation). If the current detail is between 10 and 20, the rendering program
will provide a smooth transition between the low and high detail representations.

RiDetail(bound)
RtBound bound;

Set the current bound to bound. The bounding box bound is specified in the cur-
rent coordinate system. The current detail is set to the area of this bounding box
as projected into the raster coordinate system, times the relative detail. Before com-
puting the raster area, the bounding box is clipped to the near clipping plane
but not to the edges of the display or the far clipping plane. The raster area out-

Attributes 49

side the field of view is computed so that if the camera zooms in on an object
the detail will increase smoothly. Detail is expressed in raster coordinates so
that increasing the resolution of the output image will increase the detail.

RIB BINDING

Detail minx maxx miny maxy minz maxz
Detail [minx maxx miny maxy minz maxz]

EXAMPLE

RtBound box = { 10.0, 20.0, 42.0, 69.0, 0.0, 1.0 };

RiDetail(box);

SEE ALSO

RiBound, RiDetailRange, RiRelativeDetail

RiDetailRange(minvisible, lowertransition, uppertransition, maxvisible)
RtFloat minvisible, lowertransition;
RtFloat uppertransition, maxvisible;

Set the current detail range. Primitives are never drawn if the current detail is less
than minvisible or greater than maxvisible. Primitives are always drawn if the
current detail is between lowertransition and uppertransition. All these numbers
should be non-negative and satisfy the following ordering:

minvisible ≤ lowertransition ≤ uppertransition ≤ maxvisible.

RIB BINDING

DetailRange minvisible lowertransition uppertransition maxvisible
DetailRange [minvisible lowertransition uppertransition maxvisible]

EXAMPLE

DetailRange [0 0 10 20]

SEE ALSO

RiDetail, RiRelativeDetail

If the Detail capability is not supported by a particular implementation, RiDetail is
equivalent to RiBound, and all object representations which include RI_INFINITY in their
detail ranges are rendered.

Geometric approximation

Geometric primitives are typically approximated by using small surface elements or
polygons. The size of these surface elements affects the accuracy of the geometry since
large surface elements may introduce straight edges at the silhouettes of curved surfac-
es or cause particular points on a surface to be projected to the wrong point in the final
image.

50 Section 4: Graphics State

RiGeometricApproximation(type, value)
RtToken type;
RtFloat value;

The predefined geometric approximation is "flatness". Flatness is expressed as a
distance from the true surface to the approximated surface in pixels. Flatness is
sometimes called chordal deviation.

RIB BINDING

GeometricApproximation "flatness" value
GeometricApproximation type value

EXAMPLE

GeometricApproximation "flatness" 2.5

SEE ALSO

RiShadingRate

Orientation and sides

The handedness of a coordinate system is referred to as its orientation. The initial "cam-
era" coordinate system is left-handed: x points right, y point up, and z points in. Trans-
formations, however, can flip the orientation of the current coordinate system. An ex-
ample of a transformation that does not preserve orientation is a reflection. (More gen-
erally, a transformation does not preserve orientation if its Jacobian is negative.)

Similarly, geometric primitives have an orientation, which determines whether their
surface normals are defined using a right-handed or left-handed rule in their object co-
ordinate system. Defining the orientation of a primitive to be opposite that of the object
coordinate system causes it to be turned inside-out. If a primitive is inside-out, its nor-
mal will be computed so that it points in the opposite direction. This has implications
for culling, shading, and solids (see the section on Solids and Spatial Set Operations, p.
80). The outside surface of a primitive is the side from which the normal points out-
ward; the inside surface is the opposite side. The interior of a solid is the volume that
is adjacent to the inside surface and the exterior is the region adjacent to the outside.
This is discussed further in the section on Geometric Primitives (p. 59).

The current orientation of primitives is maintained as part of the graphics state indepen-
dent of the orientation of the current coordinate system.The current orientation is initial-
ly set to match the orientation of the initial coordinate system, and always flips when-
ever the orientation of the current coordinate system flips. It can also be modified di-
rectly with RiOrientation and RiReverseOrientation. If the current orientation is not the
same as the orientation of the current coordinate system, geometric primitives are
turned inside out, and their normals are automatically flipped.

RiOrientation(orientation)
RtToken orientation;

This procedure sets the current orientation to be either "outside" (to match the
current coordinate system), "inside" (to be the inverse of the current coordinate

Attributes 51

system), "lh" (for explicit left-handed orientation) or "rh" (for explicit right-
handed orientation).

RIB BINDING

Orientation orientation

EXAMPLE

Orientation "lh"

SEE ALSO

RiReverseOrientation

RiReverseOrientation()

Causes the current orientation to be toggled. If the orientation was right-handed
it is now left-handed, and vice versa.

RIB BINDING

ReverseOrientation –

EXAMPLE

RiReverseOrientation();

SEE ALSO

RiOrientation

Objects can be two-sided or one-sided. Both the inside and the outside surface of two-
sided objects are visible, whereas only the outside surface of a one-sided object is visi-
ble. If the outside of a one-sided surface faces the viewer, the surface is said to be front-
facing, and if the outside surface faces away from the viewer, the surface is backfacing.
Normally closed surfaces should be defined as one-sided and open surfaces should be
defined as two-sided. The major exception to this rule is transparent closed objects,
where both the inside and the outside are visible.

RiSides(sides)
RtInt sides;

If sides is 2, subsequent surfaces are considered two-sided and both the inside
and the outside of the surface will be visible. If sides is 1, subsequent surfaces
are considered one-sided and only the outside of the surface will be visible.

RIB BINDING

Sides sides

EXAMPLE

Sides 1

52 Section 4: Graphics State

SEE ALSO

RiOrientation

Transformations
Transformations are used to transform points between coordinate systems. At various
points when defining a scene the current transformation is used to define a particular co-
ordinate system. For example, RiProjection establishes the camera coordinate system,
and RiWorldBegin establishes the world coordinate system.

The current transformation is maintained as part of the graphics state. Commands exist
to set and to concatenate specific transformations onto the current transformation. These
include the basic linear transformations translation, rotation, skew, scale and perspec-
tive, and non-linear transformations programmed in the Shading Language. Concaten-
ating transformations implies that the current transformation is updated in such a way
that the new transformation is applied to points before the old current transformation.
Standard linear transformations are given by 4x4 matrices. These matrices are premul-
tiplied by 4-vectors in row format to transform them. Nonlinear transformations are
programmed in the RenderMan Shading Language.

The following three transformation commands set or concatenate a 4x4 matrix onto the
current transformation:

RiIdentity()

Set the current transformation to the identity.

RIB BINDING

Identity –

EXAMPLE

RiIdentity();

SEE ALSO

RiTransform

RiTransform(transform)
RtMatrix transform;

Set the current transformation to the transformation transform.

RIB BINDING

Transform transform

EXAMPLE

Transform [.5 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

Transformations 53

SEE ALSO

RiIdentity, RiConcatTransform

RiConcatTransform(transform)
RtMatrix transform;

Concatenate the transformation transform onto the current transformation. The
transformation is applied before all previously applied transformations, that is,
before the current transformation.

RIB BINDING

ConcatTransform transform

EXAMPLE

RtMatrix foo = { 2.0, 0.0, 0.0, 0.0,0.0, 2.0, 0.0, 0.0,
0.0, 0.0, 2.0, 0.0,0.0, 0.0, 0.0, 1.0 };

RiConcatTransform (foo);

SEE ALSO

RiIdentity, RiTransform, RiRotate, RiScale, RiSkew

The following commands perform local concatenations of common linear transforma-
tions onto the current transformation.

RiPerspective(fov)
RtFloat fov;

Concatenate a perspective transformation onto the current transformation. The
focal point of the perspective is at the origin and its direction is along the z-axis.
The field of view angle, fov, specifies the full horizontal field of view.

The user must exercise caution when using this transformation, since points be-
hind the eye will generate invalid perspective divides which are dealt with in
a renderer-specific manner.

To request a perspective projection from camera space to screen space, an
RiProjection request should be used; RiPerspective is used to request a perspec-
tive modeling transformation from object space to world space, or from world
space to camera space.

RIB BINDING

Perspective fov

EXAMPLE

Perspective 90

54 Section 4: Graphics State

SEE ALSO

RiConcatTransform, RiDepthOfField, RiProjection

RiTranslate(dx, dy, dz)
RtFloat dx, dy, dz;

Concatenate a translation onto the current transformation.

RIB BINDING

Translate dx dy dz

EXAMPLE

RiTranslate(0.0, 1.0, 0.0);

SEE ALSO

RiConcatTransform, RiRotate, RiScale

RiRotate(angle, dx, dy, dz)
RtFloat angle;
RtFloat dx, dy, dz;

Concatenate a rotation of angle degrees about the given axis onto the current
transformation.

RIB BINDING

Rotate angle dx dy dz

EXAMPLE

RiRotate(90.0, 0.0, 1.0, 0.0);

SEE ALSO

RiConcatTransform, RiScale, RiTranslate

RiScale(sx, sy, sz)
RtFloat sx, sy, sz;

Concatenate a scaling onto the current transformation.

RIB BINDING

Scale sx sy sz

EXAMPLE

Scale .5 1 1

Transformations 55

SEE ALSO

RiConcatTransform, RiRotate, RiSkew, RiTranslate

RiSkew(angle, dx1, dy1, dz1, dx2, dy2, dz2)
RtFloat angle;
RtFloat dx1, dy1, dz1;
RtFloat dx2, dy2, dz2;

Concatenate a skew onto the current transformation. This operation shifts all
points along lines parallel to the axis vector (dx2, dy2, dz2). Points along the
axis vector (dx1, dy1, dz1) are mapped onto the vector (x, y, z), where angle spec-
ifies the angle (in degrees) between the vectors (dx1, dy1, dz1) and (x, y, z), The
two axes are not required to be perpendicular, however it is an error to specify
an angle that is greater than or equal to the angle between them. A negative an-
gle can be specified, but it must be greater than 180 degrees minus the angle be-
tween the two axes.

RIB BINDING

Skew angle dx1 dy1 dz1 dx2 dy2 dz2

Skew [angle dx1 dy1 dz1 dx2 dy2 dz2]

EXAMPLE

RiSkew(45.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0);

SEE ALSO

RiRotate, RiScale, RiTransform

All non-linear transformations are concatenated onto the current transformation. They
are not representable as 4x4 transformation matrices, but they act as though they were,
that is, they deform the current coordinate system and hold their place in the overall
transformation hierarchy.

RiDeformation(shadername, parameterlist)
RtToken shadername;

Concatenate the named transformation onto the current transformation. shader-
mname is the name of a deformation shader and parameterlist contain variables
determining the transformation.

If a particular implementation does not support the Deformations capability,
this shader is ignored.

RIB BINDING

Deformation shadername parameterlist

56 Section 4: Graphics State

EXAMPLE

Deformation "warpit"

SEE ALSO

RiConcatTransform, RiDisplacement, RiSurface

The graphics state maintains a current displacement shader. Displacement shaders are
procedures that can be used to modify geometry before the lighting stage. A displace-
ment transformation is different from a deformation in that it only affects shape of sur-
face geometry, not all facets of the current coordinate system.

The RenderMan Interface includes one standard displacement shader: "bumpy". The
definition of this displacement shader is given in Appendix A, Standard RenderMan In-
terface Shaders. The parameters controlling this displacement is given in Table 4.10.

RiDisplacement(shadername, parameterlist)
RtToken shadername;

Set the current displacement shader to the named shader. shadername is the name
of a displacement shader.

If a particular implementation does not support the Displacements capability,
displacement shaders can only change the normal vectors to generate bump
mapping, and the surface geometry itself is not modified (see Displacement
Shaders, p. 112).

RIB BINDING

Displacement shadername parameterlist

EXAMPLE

RiDisplacement("displaceit", RI_NULL);

SEE ALSO

RiDeformation, RiMakeBump, RiSurface

Table 4.10 Standard Displacement Shader Parameters

Shader Name Parameter Type Default Description

bumpy amplitude float 1.0 Bump scaling factor
texturename string "" Displacement map name

Transformations 57

Named coordinate systems

Shaders often need to perform calculations in non-standard coordinate systems. The
coordinate systems with predefined names are: "raster", "screen", "camera", "world", and
"object". At any time, the current coordinate system can be marked for future reference.

RiCoordinateSystem(space)
RtToken space;

This function marks the coordinate system defined by the current transformation
with the name space and saves it. This coordinate system can then be referred
to by name in subsequent shaders, or in RiTransformPoints. A shader cannot re-
fer to a coordinate system that has not already been named. The list of named
coordinate systems is global.

RIB BINDING

CoordinateSystem space

EXAMPLE

CoordinateSystem "lamptop"

SEE ALSO

RiTransformPoints

RtPoint *
RiTransformPoints(fromspace, tospace, n, points)

RtToken fromspace, tospace;
RtInt n;
RtPoint points[];

This procedure transforms the array of points from the coordinate system from-
space to the coordinate system tospace. This array contains n points. If the transfor-
mation is successful, the array points is returned. If the transformation cannot be
computed for any reason (e.g., one of the space names is unknown or the transfor-
mation requires the inversion of a noninvertable transformation), NULL is returned.

 EXAMPLE

RtPoint four_points[4];
RiTransformPoints("current", "lamptop", 4, four_points);

SEE ALSO

RiCoordinateSystem, RiProjection, RiWorldBegin

Transformation stack

Transformations can be saved and restored recursively. Note that pushing and popping
the attributes also pushes and pops the current transformation.

58 Section 4: Graphics State

RiTransformBegin()
RiTransformEnd()

Push and pop the current transformation. Pushing and popping must be prop-
erly nested with respect to the various begin-end constructs.

RIB BINDING

TransformBegin –

TransformEnd –

EXAMPLE

RiTransformBegin();

SEE ALSO

RiAttributeBegin

Implementation-specific Attributes
Rendering programs may have additional implementation-specific attributes that con-
trol parameters that affect primitive appearance or interpretation. These are all set by
the following procedure.

RiAttribute(name, parameterlist);
RtToken name;

Set the parameters of the attribute name, using the values specified in the to-
ken-value list parameterlist.

RIB BINDING

Attribute name parameterlist

EXAMPLE

Attribute "bound" "displacement" [2.0]

SEE ALSO

RiAttributeBegin

59

Section 5

GEOMETRIC PRIMITIVES

The RenderMan Interface supports only surface- and solid-defining geometric primi-
tives. Solid primitives are created from surfaces and combined using set operations.
The geometric primitives include:

• planar convex polygons,

• general planar concave polygons with holes,

• collections of planar convex or general planar concave polygons with holes which
share vertices (polyhedra),

• bilinear patches and patch meshes,

• bicubic patches and patch meshes with an arbitrary basis,

• non-uniform rational B-spline surfaces of arbitrary degree (NURBS),

• quadric surfaces, tori, and disks.

Points are used to construct polygons, patches and NURBS. Point positions can be ei-
ther an (

x,y,z

) triplet (

"P"

) or an (

x,y,z,w

) 4-vector (

"Pw"

). If the vertex is part of a patch
mesh, the position may be used to define a height field. In this case the vertex point con-
tains only a (

z

) coordinate (

"Pz"

), and the (

x,y

)s of points of the height field are set equal
to the parametric surface parameters of the mesh.

All primitives have well-defined geometric surface normals, so normals need not be
provided with any primitive. The surface normal for a polygon is the perpendicular to
the plane containing the polygon. The surface normal for a parametric curved surface
is computed by taking the cross product of the surface’s parametric derivatives: (

δ

P

/

δ

u

)x(

δ

P

/

δ

v

). As mentioned in the section

Orientation and sides

 (p. 50), if the

current ori-
entation

 does not match the orientation of the current coordinate system, normals will
be flipped.

The geometric plane normal of a polygon or bilinear patch can be supplied explicitly
(

"Np"

), in which case that normal is used, and the normals are not computed. It is also
possible to provide additional shading normals (

"N"

) at polygon and bilinear patch ver-
tices to help make the surface appear smooth.

All primitives have well-defined two-dimensional surface parameters. All the points
on the surface of each primitive are functions of these parameters (

u

,

v

). Except for
NURBS and polygons, the domain of the surface parameters is the unit square from 0
to 1. Texture coordinates may be attached to primitives by assigning four sets of texture
coordinates, one set to each corner of this unit square. This is done by setting the

current

60 Geometric Primitives

set of texture coordinates

 or by defining texture coordinates with the geometric primi-
tives as described below.

All geometric primitives normally inherit their color and opacity from the graphics
state. However, explicit colors and opacities can be provided when defining the prim-
itive (

"Cs"

 and

"Os"

).

Associated with each geometric primitive definition are additional

primitive variables

that are passed to their shaders. These variables may define quantities that are constant
over the surface (class

uniform

), or are bilinearly interpolated (class

varying

). If the
primitive variable is uniform, there is one value per surface facet. If the primitive vari-
able is varying, there are four values per surface facet, one for each corner of the unit
square in parameter space (except polygons, which are a special case). On parametric
primitives (quadrics and patches), varying primitive variables are bilinearly interpolat-
ed across the surface of the primitive. Colors, opacities, and shading normals are all ex-
amples of varying primitive variables.

The standard predefined primitive variables are defined in Table 5.1,

Standard Geometric
Primitive Variables

. Other primitive variables may be predefined by specific implemen-
tations or defined by the user with the

RiDeclare

 function. Primitive variables which are
declared to be of type

point

 (including the three predefined position variables) are spec-
ified in object space, and will be transformed by the current transformation matrix. If
point variables in another space are desired,

RiTransformPoints

 may be used. The two
predefined normal variables will be transformed by the equivalent transformation ma-
trix for normal vectors. Primitive variables which are declared to be of type

color

 must
contain the correct number of floating point values as defined in

RiColorSamples

. More
information about how to use primitive variables is contained in Part II:

The RenderMan
Shading Language

.

Table 5.1

 Standard Geometric Primitive Variables

Polygons

The RenderMan Interface supports two basic types of polygons: a convex polygon and
a general concave polygon with holes. In both cases the polygon must be planar. Col-
lections of polygons can be passed by giving a list of points and an array that indexes
these points.

Information Name Type Class Floats

Position "P" point varying 3
"Pz" point varying 1
"Pw" point varying 4

Normal "N" point varying 3
"Np" point uniform 3

Color "Cs" color varying (3)

Opacity "Os" color varying (3)

Texture Coordinates "s" float varying 1
"t" float varying 1
"st" 2 float varying 2

Polygons 61

The geometric normal of the polygon is computed by computing the normal of the
plane containing the polygon (unless it is explicitly specified). If the

current orientation

is left-handed, then a polygon whose vertices were specified in clockwise order (from
the point of view of the camera) will be a front-facing polygon (that is, will have a nor-
mal vector which points toward the camera). If the

current orientation

 is right-handed,
then polygons whose vertices were specified in counterclockwise order will be front-
facing. The shading normal is set to the geometric normal unless it is explicitly speci-
fied at the vertices.

The surface parameters of a polygon are its (

x

,

y

) coordinates. This is because the height

z

 of a plane is naturally parameterized by its (

x

,

y

) coordinates, unless it is vertical. Tex-
ture coordinates are set equal to the surface parameters unless texture coordinates are
given explicitly, one set per vertex. Polygons do

not

 inherit texture coordinates from the
graphics state.

The rules for primitive variable interpolation and texture coordinates are different for
polygons than for all other geometric primitives. Uniform primitive variables are sup-
plied for each polygon. Varying primitive variables are supplied for each polygon ver-
tex, and are interpolated across the interior without regard to the artificial surface pa-
rameters defined above. Note that interpolating values across polygons is inherently
ill-defined. However, linearly interpolating values across a triangle is always well de-
fined. Thus, for the purposes of interpolation, polygons are always decomposed into
triangles. However, the details of how this decomposition is done is implementation-
dependent and may depend on the view.

RiPolygon

(nvertices, parameterlist)

RtInt

nvertices;

nvertices

 is the number of vertices in a single closed planar convex polygon.

pa-
rameterlist

 is a list of token-array pairs where each token is one of the standard
geometric primitive variables or a variable which has been defined with

RiDe-
clare

. The parameter list must include at least position (

"P"

) information. If a
primitive variable is varying, the array contains

nvertices

 elements of the type
corresponding to the token. If the variable is uniform, the array contains a sin-
gle element. The number of floats associated with each type is given in Table
5.1,

Standard Geometric Primitive Variables

.

No checking is done by the RenderMan Interface to ensure that polygons are
planar, convex and nondegenerate. The rendering program will attempt to ren-
der invalid polygons but the results are unpredictable.

RIB BINDING

Polygon

 parameterlist

The number of vertices in the polygon is determined implicitly by the number
of elements in the required position array.

62 Geometric Primitives

EXAMPLE

RtPoint

 points[4] = (0.0, 1.0, 0.0, 0.0, 1.0, 1.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0);

RiPolygon

(4, RI_P, (

RtPointer

)points, RI_NULL);

SEE ALSO

RiGeneralPolygon, RiPointsGeneralPolygons, RiPointsPolygons

An example of the definition of a “Gouraud-shaded” polygon is:

RtPoint

points[4];

RtColor

colors[4];

RiPolygon

(4, "P", (

RtPointer

)points, "Cs", (

RtPointer

)colors, RI_NULL);

A “Phong-shaded” polygon is given by:

RtPoint

points[4];

RtPoint

normals[4];

RiPolygon

(4, "P", (

RtPointer

)points, "N", (

RtPointer

)normals, RI_NULL);

A “Phong-shaded” polygon with a precomputed plane normal is:

RtPoint

points[4];

RtPoint

normals[4];

RtPoint

plane_normal;

RiPolygon

(4,"P", (

RtPointer

)points, "N", (

RtPointer

)normals,
"Np", (

RtPointer

)plane_normal, RI_NULL);

RiGeneralPolygon

(nloops, nvertices, parameterlist)

RtInt

nloops;

RtInt

nvertices[];

Define a general planar concave polygon with holes. This polygon is specified
by giving

nloops

 lists of vertices. The first loop is the outer boundary of the
polygon; all additional loops are holes. The array

nvertices

 contains the number
of vertices in each loop, and has length

nloops

. The vertices in all the loops are
concatenated into a single vertex array. The length of this array,

n

, is equal to
the sum of all the values in the array

nvertices

.

parameterlist

 is a list of token-array pairs where each token is one of the stan-
dard geometric primitive variables or a variable that has been defined with

RiDeclare

. The parameter list must include at least position (

"P"

) information. If
a primitive variable is varying, the array contains

n

 elements of the type corre-
sponding to the token. If the variable is uniform, there is a single element of
that type. The number of floats associated with each type is given in Table 5.1,

Standard Geometric Primitive Variables

. The interpretation of these variables is
the same as for a convex polygon.

Polygons 63

No checking is done by the RenderMan Interface to ensure that polygons are
planar and nondegenerate. The rendering program will attempt to render in-
valid polygons but the results are unpredictable.

RIB BINDING

GeneralPolygon

 nvertices parameterlist

The number of loops in the general polygon is determined implicitly by the
length of the

nvertices

 array.

EXAMPLE

GeneralPolygon

 [4 3] "P" [
0 0 0 0 1 0 0 1 1 0 0 1
0 0.25 0.5 0 0.75 0.75 0 0.75 0.25]

SEE ALSO

RiPolygon, RiPointsPolygons, RiPointsGeneralPolygons

RiPointsPolygons

(npolys, nvertices, vertices, parameterlist)

RtInt

npolys;

RtInt

nvertices[];

RtInt vertices[];

Define npolys planar convex polygons that share vertices. The array nvertices
contains the number of vertices in each polygon and has length npolys. The ar-
ray vertices contains, for each polygon vertex, an index into the varying primi-
tive variable arrays. The varying arrays are 0-based. vertices has length equal to
the sum of all of the values in the nvertices array. Individual vertices in the pa-
rameterlist are thus accessed indirectly through the indices in the array vertices.

parameterlist is a list of token-array pairs where each token is one of the stan-
dard geometric primitive variables or a variable that has been defined with
RiDeclare. The parameter list must include at least position ("P") information. If
a primitive variable is varying, the array contains n elements of the type corre-
sponding to the token, where the number n is equal to the maximum value in
the array vertices plus one. If the variable is uniform, the array contains npolys
elements of the associated type. The number of floats associated with each type
is given in Table 5.1, Standard Geometric Primitive Variables. The interpretation
of these variables is the same as for a convex polygon.

No checking is done by the RenderMan Interface to ensure that polygons are
planar, convex and nondegenerate. The rendering program will attempt to ren-
der invalid polygons but the results are unpredictable.

RIB BINDING

PointsPolygons nvertices vertices parameterlist

The number of polygons is determined implicitly by the length of the nvertices
array.

64 Geometric Primitives

EXAMPLE

PointsPolygons [3 3 3] [0 3 2 0 1 3 1 4 3]
 "P" [0 1 1 0 3 1 0 0 0 0 2 0 0 4 0]
 "Cs" [0 .3 .4 0 .3 .9 .2 .2 .2 .5 .2 0 .9 .8 0]

SEE ALSO

RiGeneralPolygon, RiPointsGeneralPolygons, RiPolygon

RiPointsGeneralPolygons(npolys, nloops, nvertices, vertices, parameterlist)
RtInt npolys;
RtInt nloops[];
RtInt nvertices[];
RtInt vertices[];

Define npolys general planar concave polygons, with holes, that share vertices.
The array nloops indicates the number of loops comprising each polygon and
has a length npolys. The array nvertices contains the number of vertices in each
loop and has a length equal to the sum of all the values in the array nloops. The
array vertices contains, for each loop vertex, an index into the varying primitive
variable arrays. All of the arrays are 0-based. vertices has a length equal to the
sum of all the values in the array nvertices. Individual vertices in the parameter-
list are thus accessed indirectly through the indices in the array vertices.

parameterlist is a list of token-array pairs where each token is one of the stan-
dard geometric primitive variables or a variable that has been defined with
RiDeclare. The parameter list must include at least position ("P") information. If
a primitive variable is varying, the array contains n elements of the type corre-
sponding to the token. The number n is equal to the maximum value in the ar-
ray vertices plus one. If the variable is uniform, the array contains npolys ele-
ments of the associated type. The number of floats associated with each type is
given in Table 5.1, Standard Geometric Primitive Variables. The interpretation of
these variables is the same as for a convex polygon.

No checking is done by the RenderMan Interface to ensure that polygons are
planar and nondegenerate. The rendering program will attempt to render in-
valid polygons but the results are unpredictable.

RIB BINDING

PointsGeneralPolygons nloops nvertices vertices parameterlist

The number of polygons is determined implicitly by the length of the nloops ar-
ray.

EXAMPLE

PointsGeneralPolygons [2 2] [4 3 4 3] [0 1 3 4 6 7 8 1 2 5 4 9 10 11]
"P" [0 0 1 0 1 1 0 2 1 0 0 0 0 1 0 0 2 0
0 0.25 0.5 0 .75 .75 0 1.75 .25
0 1.25 0.5 0 1.75 .75 0 1.75 .25]

Patches 65

SEE ALSO

RiGeneralPolygon, RiPointsPolygons, RiPolygon

Patches
Patches can be either uniform or non-uniform (contain different knot values). Patches can
also be rational or non-rational depending on whether the control points are (x,y,z) or
(x,y,z,w). Patches may also be bilinear or bicubic. The graphics state maintains two 4x4
matrices that define the bicubic patch basis matrices. One of these is the current u-basis
and the other is the current v-basis. Basis matrices are used to transform from the power
basis to the preferred basis.

RiBasis(ubasis, ustep, vbasis, vstep)
RtBasis ubasis, vbasis;
RtInt ustep, vstep;

Set the current u-basis to ubasis and the current v-basis to vbasis. Predefined basis
matrices exist for the common types:

RtBasis RiBezierBasis;
RtBasis RiBSplineBasis;
RtBasis RiCatmullRomBasis;
RtBasis RiHermiteBasis;
RtBasis RiPowerBasis;

The variables ustep and vstep specify the number of control points that should
be skipped in the u and v directions, respectively, to get to the next patch in a
bicubic patch mesh. The appropriate step values for the predefined cubic basis
matrices are:

The default basis matrix is RiBezierBasis in both directions.

RIB BINDING

Basis uname ustep vname vstep
Basis uname ustep vbasis vstep
Basis ubasis ustep vname vstep
Basis ubasis ustep vbasis vstep

Basis Step

RiBezierBasis 3
RiBSplineBasis 1
RiCatmullRomBasis 1
RiHermiteBasis 2
RiPowerBasis 4

66 Geometric Primitives

For each basis, either the name of a predefined basis (as a string) or a matrix
may be supplied. If a basis name specified, it must be one of: "bezier", "b-spline",
"catmull-rom", "hermite", or "power".

EXAMPLE

Basis "b-spline" 1 [–1 3 –3 1 3 –6 3 0 –3 3 0 0 1 0 0 0] 1

SEE ALSO

RiPatch, RiPatchMesh

Note that the geometry vector used with the RiHermiteBasis basis matrix must be
(point0, vector0, point1, vector1), which is a permutation of the Hermite geometry vec-
tor often found in mathematics texts. Using this formulation permits a step value of 2
to correctly increment over data in Hermite patch meshes.

RiPatch(type, parameterlist)
RtToken type;

Define a single patch. type can be either "bilinear" or "bicubic". parameterlist is a
list of token-array pairs where each token is one of the standard geometric
primitive variables or a variable which has been defined with RiDeclare. The
parameter list must include at least position ("P", "Pw" or "Pz") information.
Patch arrays are specified such that u varies faster than v.

Four points define a bilinear patch, and 16 define a bicubic patch. The order of
vertices for a bilinear patch is (0,0),(1,0),(0,1),(1,1). Note that the order of points
defining a quadrilateral is different depending on whether it is a bilinear patch
or a polygon. The vertices of a polygon would normally be in clockwise
(0,0),(0,1),(1,1),(1,0) order.

Patch primitive variables which are uniform should supply one value, which is
constant over the patch. Primitive variables which are varying should supply
four values, one for each parametric corner of the patch. The actual size of each
array is this number of values times the size of the type associated with the
variable.

RIB BINDING

Patch type parameterlist

EXAMPLE

Patch "bilinear" "P" [–0.08 0.04 0.05 0 0.04 0.05
–0.08 0.03 0.05 0 0.03 0.05]

SEE ALSO

RiBasis, RiNuPatch, RiPatchMesh

Patches 67

RiPatchMesh(type, nu, uwrap, nv, vwrap, parameterlist)
RtToken type;
RtToken uwrap, vwrap;
RtInt nu, nv;

This primitive is a compact way of specifying a quadrilateral mesh of patches.
Each individual patch behaves as if it had been specified with RiPatch. type can
be either "bilinear" or "bicubic". parameterlist is a list of token-array pairs where
each token is one of the geometric primitive variables or a variable which has
been defined with RiDeclare. The parameter list must include at least position
("P", "Pw" or "Pz") information. Patch mesh vertex data is supplied in first u and
then v order just as for patches. The number of control points in a patch mesh
is (nu)∗ (nv).

Meshes can wrap around in the u or v direction, or in both directions. If meshes
wrap, they close upon themselves at the ends and the first control points will
be automatically repeated. As many as three control points may be repeated,
depending on the basis matrix of the mesh. The way in which meshes wrap is
indicated by giving a wrap mode value of either "periodic" or "nonperiodic".

The actual number of patches produced by this request depends on the type of
the patch and the wrap modes specified. For bilinear patches, the number of
patches in the u direction, nupatches, is given by

nupatches =

while for bicubic patches,

Figure 5.1 Bicubic patch vertex ordering

V

U

Typical Left-Handed
Bezier Bicubic Patch

0 1
2

3

4 5 6 7

8 9 10 11

12 13
14 15

V

U
0 1

2

3

4 5 6
7

8 9
10 11

12 13
14

15

Typical Right-Handed
Bezier Bicubic Patch

nu
nu–1

if uwrap = "periodic"

if uwrap = "nonperiodic"

68 Geometric Primitives

nupatches =

The same rules hold in the v direction. The total number of patches produced
is equal to the product of the number of patches in each direction.

If a variable other than position varies, it contains n values, one for each patch
corner, where n is defined by:

(with nupatches and nvpatches defined as given above). If a variable is uniform,
it contains nupatches∗ nvpatches elements of its type, one for each patch. (See Fig-
ure 5.2)

A patch mesh is parameterized by a (u,v) which goes from 0 to 1 for the entire
mesh. Texture maps that are assigned to meshes that wrap should also wrap so
that filtering at the seams can be done correctly (see the section on Texture Map
Utilities, p. 87). If texture coordinates are inherited from the graphics state, they
correspond to the corners of the mesh.

Height fields can be specified by giving just a z coordinate at each vertex (using
"Pz"); the x and y coordinates are set equal to the parametric surface parameters.
Height fields cannot be periodic.

RIB BINDING

PatchMesh type nu uwrap nv vwrap parameterlist

EXAMPLE

RtPoint pts[28]
RtFloat foos[2];
RtFloat bars[6];

RiBasis(RiBezierBasis, 3, RiBezierBasis, 3);
RiDeclare("foo", "uniform float");
RiDeclare("bar", "varying float");
RiPatchMesh("bicubic", 7, "nonperiodic", 4, "nonperiodic",

"P", (RtPointer)pts, "foo", (RtPointer)foos,
"bar", (RtPointer)bars, RI_NULL);

 if uwrap = "periodic"nu
nustep

+ 1 if uwrap = "nonperiodic"(nu–4)
nustep

uwrap vwrap

n = (nupatches + 1) ⋅ nvpatches "nonperiodic" "periodic"
n = (nupatches + 1) ⋅ (nvpatches + 1) "nonperiodic" "nonperiodic"
n = nupatches ⋅ (nvpatches + 1) "periodic" "nonperiodic"
n = nupatches ⋅ nvpatches "periodic" "periodic"

Patches 69

SEE ALSO

RiBasis, RiNuPatch, RiPatch

Non-uniform B-spline patches are also supported by the RenderMan Interface. Ratio-
nal quadratic B-splines provide exact representations of many different surfaces in-
cluding general quadrics, tori, surfaces of revolution, tabulated cylinders, and ruled
surfaces.

RiNuPatch(nu, uorder, uknot, umin, umax, nv, vorder, vknot, vmin, vmax,
parameterlist)

RtInt nu, nv;

Figure 5.2 Patch meshes

10 x 7 Aperiodic Bezier Bicubic Patch Mesh
3 x 2 Subpatches

4 x 3 Varying Variable Positions

9 x 5 U-Periodic Catmull-Rom Bicubic Patch Mesh
9 x 2 Subpatches

9 x 3 Varying Variable Positions

70 Geometric Primitives

RtInt uorder, vorder;
RtFloat uknot[], vknot[];
RtFloat umin, umax, vmin, vmax;

This procedure creates a tensor product rational or polynomial non-uniform B-
spline surface patch mesh. parameterlist is a list of token-array pairs where each
token is one of the standard geometric primitive variables or a variable that has
been defined with RiDeclare. The parameter list must include at least position
("P" or "Pw") information.

The surface specified is rational if the positions of the vertices are 4-vectors
(x,y,z,w), and polynomial if the positions are 3-vectors (x,y,z). The number of
control points in the u direction equals nu and the number in the v direction
equals nv. The total number of vertices is thus equal to (nu)∗ (nv). The order must
be positive and is equal to the degree of the polynomial basis plus 1. There may
be different orders in each parametric direction. The number of control points
should be at least as large as the order of the polynomial basis. If not, a spline
of order equal to the number of control points is computed. The knot vectors
associated with each control point (uknot[], vknot[]) must also be specified. Each
value in these arrays must be greater than or equal to the previous value. The
number of knots is equal to the number of control points plus the order of the
spline. The surface is defined in the range umin to umax and vmin to vmax. This
is different from other geometric primitives where the parameter values are al-
ways assumed to lie between 0 and 1. Each min must be less than its max. min
must also be greater than or equal to the corresponding (order–1)th knot value.
max must be less than or equal to the nth knot value.

If texture coordinates primitive variables are not present, the current texture co-
ordinates are assigned to corners defined by the rectangle (umin,umax) and
(vmin,vmax) in parameter space.

RIB BINDING

NuPatch nu uorder uknot umin umax nv vorder vknot vmin vmax
parameterlist

EXAMPLE
NuPatch 9 3 [0 0 0 1 1 2 2 3 3 4 4 4] 0 4

2 2 [0 0 1 1] 0 1
"Pw" [1 0 0 11 1 0 1 0 2 0 2

−1 1 0 1−1 0 0 1−1−1 0 1
0 −2 0 21 −1 0 1 1 0 0 1
1 0 −3 11 1 −3 1 0 2 −62

−1 1 −3 1−1 0 −3 1−1−1 −31
0 −2 −6 21 −1 −3 1 1 0 −31]

SEE ALSO

RiPatch, RiPatchMesh

NURBS may contain holes that are specified by giving a single closed curve in param-
eter space.

Patches 71

RiTrimCurve(nloops, ncurves, order, knot, min, max, n, u, v, w)
RtInt nloops
RtInt ncurves[];
RtInt order[];
RtFloat knot[];
RtFloat min[], max[];
RtInt n[];
RtFloat u[], v[], w[];

Set the current trim curve. The trim curve contains nloops loops, and each of
these loops contains ncurves curves. The total number of curves is equal to the
sum of all the values in ncurves. Each of the trimming curves is a non-uniform
rational B-spline curve in homogeneous parameter space (u,v,w). The curves of
a loop connect in head-to-tail fashion and must be explicitly closed. The arrays
order, knot, min, max, n, u, v, w contain the parameters describing each trim
curve. All the trim curve parameters are concatenated together into single large
arrays. The meanings of these parameters are the same as the corresponding
meanings for a non-uniform B-spline surface.

Trim curves exclude certain areas from the non-uniform B-spline surface defi-
nition. The inside must be specified consistently using two rules: an odd wind-
ing rule that states that the inside consists of all regions for which an infinite
ray from any point in the region will intersect the trim curve an odd number of
times, and a curve orientation rule that states that the inside consists of the re-
gions to the “left” as the curve is traced.

Trim curves are typically used to specify boundary representations of solid
models. Since trim curves are approximations and not exact, some artifacts may
occur at the boundaries between intersecting output primitives. A more accu-
rate method is to specify solids using spatial set operators or constructive solid
geometry (CSG). This is described in the section on Solids and Spatial Set Oper-
ations (p. 80).

If the particular implementation does not support Trim Curves, all trim curves
are ignored and the entire NURB surface is always rendered.

RIB BINDING

TrimCurve ncurves order knot min max n u v w

The number of loops is determined implicitly by the length of the ncurves array.

EXAMPLE

RtInt nloops = 1;
RtInt ncurves[1] = { 1 };
RtInt order[1] = { 3 };
RtFloat knot[12] = { 0,0,0,1,1,2,2,3,3,4,4,4 };
RtFloat min[1] = { 0 };
RtFloat max[1] = { 4 };
RtInt n[1] = { 9 };

72 Geometric Primitives

RtFloat u[9] = { 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0 };
RtFloat v[9] = { 0.5, 1.0, 2.0, 1.0, 0.5, 0.0, 0.0, 0.0, 0.5 };
RtFloat w[9] = { 1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0 };

RiTrimCurve(nloops, ncurves, order, knot, min, max, n, u, v, w);

SEE ALSO

RiNuPatch, RiSolidBegin

Quadrics
Many common shapes can be modeled with quadrics. Although it is possible to convert
quadrics to patches, they are defined as primitives because special-purpose rendering
programs render them directly and because their surface parameters are not necessar-
ily preserved if they are converted to patches. Quadric primitives are particularly use-
ful in solid and molecular modeling applications.

All the following quadrics are rotationally symmetric about the z axis (see Figure 5.3
on p. 77). In all the quadrics u and v are assumed to run from 0 to 1. These primitives
all define a bounded region on a quadric surface. It is not possible to define infinite
quadrics. Note that each quadric is defined relative to the origin of the object coordi-
nate system. To position them at another point or with their symmetry axis in another
direction requires the use of a modeling transformation. The geometric normal to the
surface points “outward” from the z-axis, if the current orientation matches the orienta-
tion of the current transformation and “inward” if they don’t match. The sense of a quad-
ric can be reversed by giving negative parameters. For example, giving a negative
thetamax parameter in any of the following definitions will turn the quadric inside-out.

Each quadric has a parameterlist. This is a list of token-array pairs where each token is
one of the standard geometric primitive variables or a variable which has been defined
with RiDeclare. Position variables should not be given with quadrics. All angular argu-
ments to these functions are given in degrees. The trigonometric functions used in their
definitions are assumed to also accept angles in degrees.

RiSphere(radius, zmin, zmax, thetamax, parameterlist)
RtFloat radius;
RtFloat zmin, zmax;
RtFloat thetamax;

Requests a sphere defined by the following equations:

 φmin =

φmax =

asin zmin
radius

–90.0

if zmin > –radius

if zmin ≤ –radius

asin zmax
radius

90.0

if zmax < radius

if zmax ≥ radius

Quadrics 73

φ = φmin + v ⋅ (φmax − φ min)

θ = u ⋅ thetamax
x = radius ⋅ cos (θ) ⋅ cos (φ)
y = radius ⋅ sin (θ) ⋅ cos (φ)
z = radius ⋅ sin (φ)

Note that if zmin > –radius or zmax < radius, the bottom or top of the sphere is
open, and that if thetamax is not equal to 360 degrees, the sides are also open.

RIB BINDING

Sphere radius zmin zmax thetamax parameterlist
Sphere [radius zmin zmax thetamax] parameterlist

EXAMPLE

RiSphere(0.5, 0.0, 0.5, 360.0, RI_NULL);

SEE ALSO

RiTorus

RiCone(height, radius, thetamax, parameterlist)
RtFloat height;
RtFloat radius;
RtFloat thetamax;

Requests a cone defined by the following equations:

θ = u ⋅ thetamax
x = radius ⋅ (1–v) ⋅ cos (θ)
y = radius ⋅ (1–v) ⋅ sin (θ)
z = v ⋅ height

Note that the bottom of the cone is open, and if thetamax is not equal to 360 de-
grees, the sides are open.

RIB BINDING

Cone height radius thetamax parameterlist
Cone [height radius thetamax] parameterlist

EXAMPLE

RtColor four_colors[4];
RiCone(0.5, 0.5, 270.0, "Cs", (RtPointer)four_colors, RI_NULL);

SEE ALSO

RiCylinder, RiDisk, RiHyperboloid

74 Geometric Primitives

RiCylinder(radius, zmin, zmax, thetamax, parameterlist)
RtFloat radius;
RtFloat zmin, zmax;
RtFloat thetamax;

Requests a cylinder defined by the following equations:

θ = u ⋅ thetamax
x = radius ⋅ cos (θ)
y = radius ⋅ sin (θ)
z = zmin + v ⋅ (zmax – zmin)

Note that the cylinder is open at the top and bottom, and if thetamax is not equal
to 360 degrees, the sides also are open.

RIB BINDING

Cylinder radius zmin zmax thetamax parameterlist
Cylinder [radius zmin zmax thetamax] parameterlist

EXAMPLE

Cylinder .5 .2 1 360

SEE ALSO

RiCone, RiHyperboloid

RiHyperboloid(point1, point2, thetamax, parameterlist)
RtPoint point1, point2;
RtFloat thetamax;

Requests a hyperboloid defined by the following equations:

θ = u ⋅ thetamax
xr = (1 – v) x1 + v ⋅ x2
yr = (1 – v) y1 + v ⋅ y2
zr = (1 – v) z1 + v ⋅ z2
x = xr ⋅ cos (θ) – yr ⋅ sin (θ)

y = xr ⋅ sin (θ) + yr ⋅ cos (θ)

z = zr

assuming that point1 = (x1,y1, z1) and point2 = (x2, y2, z2).

The cone, disk and cylinder are special cases of this surface. Note that the top
and bottom of the hyperboloid are open when point1 and point2, respectively,
are not on the z-axis. Also, if thetamax is not equal to 360 degrees, the sides are
open.

Quadrics 75

RIB BINDING

Hyperboloid x1 y1 z1 x2 y2 z2 thetamax parameterlist

Hyperboloid [x1 y1 z1 x2 y2 z2 thetamax] parameterlist

EXAMPLE

Hyperboloid 0 0 0 .5 0 0 270 "Cs" [1 1 1 .5 .9 1 .2 .9 0 .5 .2 0]

SEE ALSO

RiCone, RiCylinder, RiDisk

RiParaboloid(rmax, zmin, zmax, thetamax, parameterlist)
RtFloat rmax;
RtFloat zmin, zmax;
RtFloat thetamax;

Requests a paraboloid defined by the following equations:

θ = u ⋅ thetamax
z = zmin + v ⋅ (zmax – zmin)

r = rmax ⋅ √z / zmax

x = r ⋅ cos (θ)
y = r ⋅ sin (θ)

Note that the top of the paraboloid is open, and if thetamax is not equal to 360
degrees, the sides are also open.

RIB BINDING

Paraboloid rmax zmin zmax thetamax parameterlist
Paraboloid [rmax zmin zmax thetamax] parameterlist

EXAMPLE

Paraboloid .5 .2 .7 270

SEE ALSO

RiHyperboloid

RiDisk(height, radius, thetamax, parameterlist)
RtFloat height
RtFloat radius;
RtFloat thetamax;

Requests a disk defined by the following equations:

θ = u ⋅ thetamax
x = radius ⋅ (1–v) ⋅ cos (θ)

76 Geometric Primitives

y = radius ⋅ (1–v) ⋅ sin (θ)
z = height

Note that the surface normal of the disk points in the positive z direction when
thetamax is positive.

RIB BINDING

Disk height radius thetamax parameterlist
Disk [height radius thetamax] parameterlist

EXAMPLE

RiDisk(1.0, 0.5, 270.0, RI_NULL);

SEE ALSO

RiCone, RiHyperboloid

RiTorus(majorradius, minorradius, phimin, phimax, thetamax, parameterlist)
RtFloat majorradius, minorradius;
RtFloat phimin, phimax;
RtFloat thetamax;

Requests a torus defined by the following equations:

θ = u ⋅ thetamax
φ = phimin + v ⋅ (phimax – phimin)
r = minorradius ⋅ cos (φ)
z = minorradius ⋅ sin (φ)
x = (majorradius + r) ⋅ cos(θ)
y = (majorradius + r) ⋅ sin(θ)

Note that if phimax–phimin or thetamax is not equal to 360 degrees, the torus is
open.

RIB BINDING

Torus rmajor rminor phimin phimax thetamax parameterlist
Torus [rmajor rminor phimin phimax thetamax] parameterlist

EXAMPLE

Torus 1 .3 60 90 360

SEE ALSO

RiSphere

Quadrics 77

Figure 5.3 Quadric surface primitives

z

x

y

height

radius

U

V

RiCone

z

x

y

zmax

U

V

RiCylinder

zmin

radius

0max
0max

z

x

zmax

U

V

RiSphere

zmin

radius

0max

y

z

x

zmax

RiParaboloid

zmin

y
0max

rmax

U

V

78 Geometric Primitives

Procedural Primitives
Procedural primitives can be specified as follows:

RiProcedural(data, bound, subdividefunc, freefunc)
RtPointer data;
RtBound bound;
RtFunc subdividefunc;
RtFunc freefunc;

Figure 5.3 Quadric surface primitives (continued)

U
V

RiHyperboloid

0max

z

x

U

V

RiDisk

radius

0max
y

z

x

y

point2

point1

N

z x

y
0max

0max

0min

major
radius

minor
radius

RiTorus

height

U

V

Implementation-specific Geometric Primitives 79

This defines a procedural primitive. The data parameter is a pointer to an
opaque data structure that defines the primitive. (The rendering program does
not “look inside” data, it simply records it for later use by the procedural prim-
itive.) bound is an array of floats that define the bounding box of the primitive
in object space. subdividefunc is the routine that the renderer should call (when
necessary) to have the primitive subdivided. A bucket-based rendering scheme
can potentially save memory space by delaying this call until the bounding box
overlaps a bucket that must be rendered. The calling sequence for subdividefunc
is:

(*subdividefunc)(data, detail)
RtPointer data;
RtFloat detail;

where data is the parameter that was supplied in defining the primitive, and de-
tail is the screen area of the bound of the primitive. When subdividefunc is called,
it is expected to subdivide the primitive into other smaller procedural primi-
tives or into any number of non-procedural primitives. If the renderer can not
determine the true detail of the bound (e.g., if the geometric primitive data is
being archived to a file), subdividefunc may be called with a detail value equal
to RI_INFINITY. This should be interpreted by the subdividefunc as a request for
the immediate full generation of the procedural primitive.

freefunc is a procedure that the rendering program calls to free the primitive
when the data is no longer needed.. The calling sequence for freefunc is:

(*freefunc)(data)
RtPointer data;

Note that the rendering program may call back multiple times with the same
procedural primitive, so the data area should not be overwritten or freed until
the freefunc is called.

Implementation-specific Geometric Primitives
Additional geometric primitives can be specified using the following procedure.

RiGeometry(type, parameterlist)
RtToken type;

This procedure provides a standard way of defining an implementation-specif-
ic geometric primitive. The values supplied in the parameter list for each prim-
itive is implementation specific.

RIB BINDING

Geometry name parameterlist

EXAMPLE

RiGeometry("teapot", RI_NULL);

80 Geometric Primitives

Solids and Spatial Set Operations
All of the previously described geometric primitives can be used to define a solid by
bracketing a collection of surfaces with RiSolidBegin and RiSolidEnd. This is often re-
ferred to as the boundary representation of a solid. When specifying a volume it is impor-
tant that boundary surfaces completely enclose the interior. Normally it will take sev-
eral surfaces to completely enclose a volume since, except for the sphere, the torus, and
potentially a periodic patch or patch mesh, none of the geometric primitives used by
the rendering interface completely enclose a volume. A set of surfaces that are closed
and non-self-intersecting unambiguously defines a volume. However, the RenderMan
Interface performs no explicit checking to ensure that these conditions are met. The in-
side of the volume is the region or set of regions that have finite volume; the region with
infinite volume is considered outside the solid. For consistency the normals of a solid
should always point outwards.

RiSolidBegin(operation)
RtToken operation;

RiSolidEnd()

RiSolidBegin the definition of a solid. operation may be one of the following to-
kens: "primitive", "intersection", "union", "difference". Intersection and union oper-
ations form the set intersection and union of the specified solids. Difference op-
erations require at least 2 parameter solids and subtract the last n–1 solids from
the first (where n is the number of parameter solids).

When the innermost solid block is a "primitive" block, no other RiSolidBegin calls
are legal. When the innermost solid block uses any other operation, no geomet-
ric primitives are legal.

RiSolidEnd terminates the definition of the solid.

RIB BINDING

SolidBegin operation

SolidEnd –

EXAMPLE

SolidBegin "union"

SEE ALSO

RiInterior, RiTrimCurve

A single solid sphere can be created using

RiSolidBegin("primitive");
 RiSphere(1.0, –1.0, 1.0, 360.0, RI_NULL);
RiSolidEnd();

Note that if the same sphere is defined outside of a RiSolidBegin-RiSolidEnd block, it is
not treated as a volume-containing solid. A solid hemisphere can be created with

Retained Geometry 81

RiSolidBegin("primitive");
 RiSphere(1.0, 0.0, 1.0, 360.0, RI_NULL);
 RiDisk(0.0, 1.0, –360.0, RI_NULL);
RiSolidEnd();

(Note that the –360 causes the surface normal of the disk to point towards negative z.)

A composite solid is one formed using spatial set operations. The allowed set opera-
tions are "intersection", "union", and "difference". A spatial set operation has n operands,
each of which is either a primitive solid defined using RiSolidBegin("primitive")-RiSoli-
dEnd, or a composite solid that is the result of another set operation. For example, a
closed cylinder would be subtracted from a sphere as follows:

RiSolidBegin("difference");
 RiSolidBegin("primitive");

RiSphere(1.0, –1.0, 1.0, 360.0, RI_NULL);
 RiSolidEnd();
 RiSolidBegin("primitive");

RiDisk(2.0, 0.5, 360.0, RI_NULL);
RiCylinder(0.5, –2.0, 2.0, 360.0, RI_NULL);
RiDisk(–2.0, 0.5, –360.0, RI_NULL);

 RiSolidEnd();
RiSolidEnd();

When performing a difference the sense of the orientation of the surfaces being sub-
tracted is automatically reversed.

Attributes may be changed freely inside solids. Each section of a solid’s surface can
have a different surface shader and color. For consistency a single solid should have a
single interior and exterior volume shader.

If the Solid Modeling optional capability is not supported by a particular implementa-
tion, all primitives are rendered as a collection of surfaces, and the spatial set operators
are ignored.

Retained Geometry
A single geometric primitive or a list of geometric primitives (all of the same type) may
be retained by enclosing them with RiObjectBegin and RiObjectEnd. The RenderMan In-
terface allocates and returns an RtObjectHandle for each retained object defined in this
way. This handle can subsequently be used to reference the object when creating in-
stances with RiObjectInstance. Objects are not rendered when they are defined within
an RiObjectBegin-RiObjectEnd block; only an internal definition is created. All of an ob-
ject’s attributes are inherited at the time it is instanced, not at the time at which it is cre-
ated.

RtObjectHandle
RiObjectBegin()

RiObjectEnd()

82 Geometric Primitives

RiObjectBegin starts the definition of an object and return a handle for later use
with RiObjectInstance. If the handle returned is NULL, an object could not be
created.

RiObjectEnd ends the definition of the current object.

RIB BINDING

ObjectBegin sequencenumber

ObjectEnd –

The sequencenumber is a unique object identification number which is provided
by the RIB client to the RIB server. Both client and server maintain independent
mappings between the sequencenumber and their corresponding RtObject-
Handles. If sequencenumber has been used to define a previous object, that ob-
ject is replaced with the new definition. The number must be in the range 0 to
65535.

EXAMPLE

ObjectBegin 2
Sphere 1 –1 1 360

ObjectEnd

SEE ALSO

RiFrameEnd, RiObjectInstance, RiWorldEnd

RiObjectInstance(handle);
RtObjectHandle handle;

Create an instance of a previously defined object. The object inherits the current
set of attributes defined in the graphics state.

RIB BINDING

ObjectInstance sequencenumber

The object must have been defined to have a handle sequencenumber with a pre-
vious RiObjectBegin.

EXAMPLE

ObjectInstance 2

SEE ALSO

RiFrameEnd, RiObjectBegin, RiWorldEnd

83

Section 6

MOTION

Some rendering programs are capable of performing temporal antialiasing and motion
blur. Motion blur is specified through moving transformations and moving geometric prim-
itives. Appearance parameters, such as color, opacity, and shader variables can also be
changed during a frame. To specify objects that vary over time several copies of the
same object are created, each with different parameters at different times within a
frame. The times that actually contribute to the motion blur are set with the RiShutter
command. Parameter values change linearly over the intervals between knots. There is
no limit to the number of time values associated with a motion-blurred primitive, al-
though two is usually sufficient.

Rigid body motions and other transformation-based movements are modeled using
moving coordinate systems. Moving coordinate systems are created by giving a se-
quence of transformations at different times and can be concatenated and nested hier-
archically. All output primitives are defined in the current object coordinate system
and, if that coordinate system is moving, the primitives will also be moving. The ex-
treme case is when the camera is moving, since then all objects in the scene appear to
be moving. Moving lights also are handled by placing them in a moving coordinate sys-
tem. Deforming geometric primitives can also be modeled by giving their parameters
at different times.

Moving geometry is created by bracketing the definitions at different times between
RiMotionBegin and RiMotionEnd calls.

RiMotionBegin(n, t0, t1,..., tnminus1)
RtInt n;
RtFloat t0, t1,..., tnminus1;

RiMotionEnd()

RiMotionBegin starts the definition of a moving primitive. n is the number of
time steps associated with this moving primitive. The times should be in in-
creasing order. Only one type of RenderMan Interface command can be execut-
ed within this sequence and only numerical values may be interpolated.

RiMotionEnd terminates the definition of the moving primitive.

RIB BINDING

MotionBegin [t0 t1... tn–1]

84 Motion

MotionEnd –

SEE ALSO

RiShutter

For example, assume the following list of commands creates a static translated sphere:

RtFloat Kd = 0.8;
RiSurface("leather", "Kd", (RtPointer)&Kd, RI_NULL);
RiTranslate(1., 2., 3.);
RiSphere(1., –1., 1., 360., RI_NULL);

To create a moving, deforming sphere with changing surface qualities, the following
might be used:

RtFloat Kd[] = { 0.8, 0.7 };
RiMotionBegin(2, 0., 1.);
 RiSurface("leather", "Kd", (RtPointer)Kd, RI_NULL);
 RiSurface("leather", "Kd", (RtPointer)(Kd+1), RI_NULL);
RiMotionEnd();
RiMotionBegin(2, 0., 1.);
 RiTranslate(1., 2., 3.);
 RiTranslate(2., 3., 4.);
RiMotionEnd();
RiMotionBegin(2, 0., 1.);
 RiSphere(1., –1., 1., 360., RI_NULL);
 RiSphere(2., –2., 2., 360., RI_NULL);
RiMotionEnd();

Table 6.2, Moving Commands, shows which commands may be specified inside a RiMo-
tionBegin-RiMotionEnd block. If the Motion Blur capability is not supported by a partic-
ular implementation, only the transformations, geometry and shading parameters
from t0 are used to render each moving object.

Retained Geometry 85

 Table 6.2 Moving Commands

Transformations Geometry Shading

RiTransform RiBound RiColor
RiConcatTransform RiDetail RiOpacity

RiPerspective RiPolygon RiLightSource
RiTranslate RiGeneralPolygon RiAreaLightSource
RiRotate RiPointsPolygons RiSurface
RiScale RiPointsGeneralPolygons RiInterior
RiSkew RiPatch RiExterior

RiPatchMesh RiAtmosphere
RiProjection RiNuPatch RiDisplacement
RiDeformation RiSphere

RiCone
RiCylinder
RiHyperboloid
RiParaboloid
RiDisk
RiTorus

87

Section 7

EXTERNAL RESOURCES

Texture Map Utilities
The format of the various texture map files is implementation dependent. However,
there are standard utilities that convert image files into texture map files.

During two-dimensional texture access, texture coordinates (s, t) are mapped onto the
texture such that s=0 maps to xmin, s=1 maps to xmax+1, t=0 maps to ymin, and t=1
maps to ymax+1. To be precise, all accesses to the half-open interval [0,1) in s and t will
lie within the picture data.

A wrapmode describes how the texture is accessed if the texture coordinates are outside
the unit square (less than zero, or greater than or equal to one). The swrap and twrap
strings specify the wrapping behavior of the s and t coordinates. The standard wrap-
ping behavior for s and t, "black", is to return the value zero for all accesses outside the
unit square. (Thus an RGBα texture will be transparent black, zero on all four chan-
nels.) The keyword "periodic" indicates that values of s (or t) outside [0,1) will be
mapped into [0,1) by subtracting the largest integer less than or equal to the coordinate
(the “floor” of the coordinate). This will wrap the value 1 back to 0, the value 1.25 to
0.25, and the value –0.1 to 0.9. The result will be to repeat the texture as a tile that fills
texture space in the s (or t) direction. The keyword "clamp" indicates that values of s (or
t) outside [0,1) will be mapped into [0,1) by clamping them at their minimum and max-
imum values. All values below zero will be clamped to zero and all values greater than
or equal to one will be clamped to a value slightly less than one (at the last texture pix-
el).

Textures are often prefiltered so that subsequent antialiasing calculations can be done
more quickly at run-time. This is controlled by giving a filterfunc, which is the same as
the filterfunc used in RiPixelFilter, and an swidth and twidth.

Making texture maps

Surface textures are used to modify the properties of a surface, such as color and opac-
ity. A surface texture is accessed using the surface texture coordinates (see the section
on Texture coordinates, p. 38) or any other two-dimensional coordinates computed by a
user-defined shader. A surface texture consists of one or more channels. A single chan-
nel or a group of n channels (usually an RGB color) can be accessed using the texture

88 External Resources

function of the Shading Language. The texture function requires the name of a texture
file containing the texture.

RiMakeTexture(picturename, texturename, swrap, twrap,
filterfunc, swidth, twidth, parameterlist)

char *picturename;
char *texturename;
RtToken swrap, twrap;
RtFloatFunc filterfunc;
RtFloat swidth, twidth;

Convert an image in a standard picture file whose name is picturename into a texture
file whose name is texturename. All channels of the picture file will be converted (in or-
der) to texture channels. The storage format of the texture file and the precision of
stored texture channels are implementation-dependent.

The picture file used as input is not changed or otherwise affected by RiMakeTexture.

RIB BINDING

MakeTexture picturename texturename swrap twrap filter swidth twidth
parameterlist

The filter parameter should be one of "box", "triangle", "catmull-rom", "b-spline",
"gaussian" and "sinc". These correspond to the predefined filter functions de-
scribed in RiPixelFilter.

EXAMPLE

RiMakeTexture("globe.pic", "globe.tx", "periodic", "clamp",
RiGaussianFilter, 2.0, 2.0, RI_NULL);

SEE ALSO

RiTextureCoordinates, texture() in the Shading Language

Making bump maps

Bump maps are used to perturb surface normals to simulate a bumpy surface without
actually moving the points on the surface. A bump map is accessed using the surface
texture coordinates (see the section on Texture coordinates, p. 38) or any other two-di-
mensional coordinates computed by a user-defined shader. A bump map image con-
sists of one channel of data which indicates the relative displacement of the surface. A
bump map texture can be accessed using the bump function of the Shading Language.
The bump function requires the name of a texture file containing the texture.

RiMakeBump(picturename, texturename, swrap, twrap,
 filterfunc, swidth, twidth, parameterlist)

char *picturename;
char *texturename;
RtToken swrap, twrap;

Making Environment Maps 89

RtFloatFunc filterfunc;
RtFloat swidth, twidth;

Convert a height field image in a standard picture file whose name is picture-
name into a bump map file whose name is texturename. The storage format of
the texture file and the precision of stored texture channels are implementation-
dependent.

The picture file used as input is not changed or otherwise affected by RiMake-
Bump.

RIB BINDING

MakeBump picturename texturename swrap twrap filter swidth twidth
parameterlist

The filter parameter should be one of "box", "triangle", "catmull-rom", "b-spline",
"gaussian" and "sinc". These correspond to the predefined filter functions de-
scribed with RiPixelFilter.

EXAMPLE

Bump "hills.pic" "hills.tx" "periodic" "clamp" "catmull-rom" 3 3

SEE ALSO

RiTextureCoordinates, bump() in the Shading Language

Making environment maps

Environment maps are images representing the color of an environment in a particular
direction. An environment map is accessed using a point representing direction; this di-
rection is often the direction of a mirror reflection and hence environment maps are of-
ten referred to as reflection maps. However, any direction can be computed by a user-
defined shader. An environment map image consists of one or more channels. A single
channel or a group of n channels (usually an RGB color) can be accessed using the en-
vironment function in the Shading Language. Environment maps can be input in two
formats. The first is as a single latitude-longitude image. Environment maps in this
form are fairly easy to create using a paint system. The second format is a set of six cube
face projections. Environment maps in this form are naturally created by the rendering
program.

RiMakeLatLongEnvironment(picturename, texturename,
filterfunc, swidth, twidth, parameterlist);

char *picturename:
char *texturename:
RtFloatFunc filterfunc;
RtFloat swidth, twidth;

Convert an image in a standard picture file representing a latitude-longitude
map whose name is picturename into an environment map whose name is tex-

90 External Resources

turename. The storage format of the texture file and the precision of stored tex-
ture channels are implementation-dependent.

This image has longitude equal to 0 degrees at the left, and 360 degrees at the
right. The latitude at the bottom is –90 degrees and at the top is 90 degrees. The
bottom of the picture is at the south pole and the top the north pole. The direc-
tion in space corresponding to each of the points on the image is given by:

x = cos (longitude) ⋅ cos (latitude)
y = sin (longitude) ⋅ cos (latitude)
z = sin (latitude)

Notice that latitude-longitude environment maps are sensitive to the handed-
ness of the coordinate system in which they will be accessed. Environment
maps which are intended to be accessed in a right-handed coordinate system
will, if displayed, appear as a mirror image of those intended to be accessed in
a left-handed coordinate system.

RIB BINDING

MakeLatLongEnvironment picturename texturename filter swidth twidth
parameterlist

The filter parameter should be one of "box", "triangle", "catmull-rom", "b-spline",
"gaussian" and "sinc". These correspond to the predefined filter functions de-
scribed with RiPixelFilter.

EXAMPLE

MakeLatLongEnvironment "long.pic" "long.tx""catmull-rom" 3 3

SEE ALSO

RiMakeCubeFaceEnvironment, environment() in the Shading Language

RiMakeCubeFaceEnvironment(px, nx, py, ny, pz, nz, texturename, fov,
 filterfunc, swidth, twidth, parameterlist);

char *px, *nx, *py, *ny, *pz, *nz;
char *texturefile;
RtFloat fov;
RtFloatFunc filterfunc;
RtFloat swidth, twidth;

Convert six images in standard picture files representing six viewing directions
into an environment map whose name is texturename. The image pz (nz) is the
image as viewed in the positive (negative) z direction. The remaining images
are those viewed along the positive and negative x and y directions. The stor-
age format of the texture file and the precision of stored texture channels are
implementation-dependent.

Each image is normally produced by a rendering program by placing the eye at
the center of the environment (usually the origin) and generating a picture in
each of the six directions. These pictures are the projection of the environment
onto a set of cube faces. Each face is usually assumed to be unit distance from

Making Shadow Maps 91

the eye point. Cube face environment maps should be generated with the fol-
lowing orientations:

Notice that cube face environment maps are sensitive to the handedness of the
coordinate system in which they will be accessed. Environment maps which are
intended to be accessed in a right-handed coordinate system will, if displayed,
appear as a mirror image of those intended to be accessed in a left-handed co-
ordinate system.

The fov is the full horizontal field of view used to generate these images. A val-
ue of 90 degrees will cause the cube face edges to meet exactly. Using a slightly
larger value will cause the cube faces to intersect. Having a slight overlap helps
remove artifacts along the seams where the different pictures are joined.

RIB BINDING

MakeCubeFaceEnvironment px nx py ny pz nz texturename fov filter swidth twidth
parameterlist

The filter parameter should be one of "box", "triangle", "catmull-rom", "b-spline",
"gaussian" and "sinc". These correspond to the predefined filter functions de-
scribed with RiPixelFilter.

EXAMPLE

RiMakeCubeFaceEnvironment("foo.x", "foo.nx", "foo.y", "foo.ny",
"foo.z", "foo.nz", "foo.env", 95.0, RiTriangleFilter, 2.0, 2.0,
RI_NULL);

SEE ALSO

RiMakeLatLongEnvironment, environment() in the Shading Language

Making shadow maps

Shadow maps are depth buffer images from a particular view. They are generally used
in light source shaders to cast shadows onto objects. A shadow map is accessed by
point in the camera coordinate system corresponding to that view. This point must be
computed in the shader. A shadow map texture can be accessed using the shadow func-
tion of the Shading Language. The shadow function requires the name of a texture file
containing the texture.

Image Forward Axis Up Axis Right Axis

px +X +Y –Z
nx –X +Y +Z
py +Y –Z +X
ny –Y +Z +X
pz +Z +Y +X
nz –Z +Y –X

92 External Resources

RiMakeShadow(picturename, texturename, parameterlist)
char *picturename;
char *texturename;

Create a depth image file named picturename into a shadow map whose name
is texturename. The storage format of the shadow map texture file and the pre-
cision of stored texture channels are implementation-dependent.

RIB BINDING

MakeShadow picturename texturename parameterlist

EXAMPLE

MakeShadow "shadow.pic" "shadow.tex"

SEE ALSO

shadow() in the Shading Language

Errors
RenderMan Interface procedures do not return error status codes. Instead, the user
may specify an error handling routine that will be called whenever an error is encoun-
tered.

RiErrorHandler(handler)
RtFunc handler;

This procedure sets the error handling procedure invoked by the renderer
when an error is detected. Error handling procedures have the following form:

RtVoid handler(code, severity, message)
RtInt code, severity;
char *message;

code indicates the type of error, and severity indicates how serious the error is.
Values for code and severity are defined in <ri.h>. The message is a character
string containing an error message formatted by the renderer which can be
printed or displayed, as the handler desires.

The following standard error handlers are defined:

RtVoid RiErrorIgnore;
RtVoid RiErrorPrint;
RtVoid RiErrorAbort;
RtInt RiLastError;

If RiErrorIgnore is specified, all errors are ignored and no diagnostic messages
are generated. If RiErrorPrint is specified, a diagnostic message is generated for
each error. The rendering system will attempt to ignore the erroneous informa-
tion and continue rendering. If RiErrorAbort is specified, the first error will
cause a diagnostic message to be generated and the rendering system will im-

Archive Files 93

mediately terminate. Each of the standard error handlers saves the last error
code in the global variable RiLastError. This procedure can be called outside an
RiBegin-RiEnd block.

RIB BINDING

ErrorHandler "ignore"
ErrorHandler "print"
ErrorHandler "abort"

If "ignore", "print" or "abort" is specified, the equivalent predefined error han-
dling procedure will be invoked in the RIB server. Notice that the RIB parser
process may detect RIB stream syntax errors which make it impossible to cor-
rectly parse a request. In this case, the error procedure will be invoked and the
parser will do its best to resynchronize the input stream by scanning for the
next recognizable token.

EXAMPLE

ErrorHandler "ignore"

Archive Files
One important use of the RIB protocol is to store a scene description in an archive file
for rendering at a later time or in a remote location from the modeling application. Ap-
pendix D, RenderMan Interface Bytestream Conventions, outlines a structuring conven-
tions to make these archives as portable and useful as possible.

RiArchiveRecord(type, format [, arg ...])
RtToken type
char *format;

This call writes a user data record (data which is outside the scope of the requests de-
scribed in the rest of Part I of this document) into a RIB archive file or stream. type is
either "comment" or "structure". "comment" begins the user data record with a RIB com-
ment marker and terminates it with a newline. "structure" begins the user data record
with a RIB structuring convention preface and terminates it with a newline. The user
data record itself is supplied as a printf() format string with optional arguments. It is an
error to embed newline characters in the format or any of its string arguments.

94 External Resources

95

Part II

The RenderMan
Shading Language

96 Part II: The RenderMan Shading Language

97

Section 8

INTRODUCTION TO THE SHADING LANGUAGE

Remarkably realistic images can be produced with a few fairly simple shapes made from
interesting materials and lighted in a natural way. Creating a photorealistic image requires
the specification of these material and lighting properties. This part of the document
describes the Shading Language, which is used to write custom shading and lighting
procedures called

shaders

. Providing a language allows a user to extend shading models or
to create totally new ones. Models of light sources with special lenses, concentrators, flaps
or diffusers can be created. The physics of materials can be simulated or special materials
can be created. This is done by modeling the interaction of light at the surface and in the
interior of a region of space. Material types can also be combined, simulating the many
coats of paint or finish applied to a surface. Providing a shading language also allows many
of the tricks and shortcuts commonly performed during production rendering to be
accommodated without destroying the conceptual integrity of the shading calculations.
Visualizing the results of scientific simulations is also easier because shaders can be written
that produce a surface color that is based directly on the results of a computation. For
example, it is possible to write a shader that sets the surface color based on temperature
and surface curvature. Shaders can also be used to specify nonlinear geometric
transformations and to modify the final pixel values before they are written to the display.

The Shading Language is a C-like language with extensions for handling color and point
data types. A large number of trigonometric and mathematical functions, including
interpolation and noise functions, are provided. Color operators are provided that
simulate the mixing and filtering of light. Point operators perform common geometric
operations such as dot and cross product. A collection of commonly used geometric
functions is also provided. These include functions to transform points to specific
coordinate systems. Common lighting and shading formulas, such as

ambient

,

diffuse

,

specular

, or

phong

, are available as built-in functions. Built-in texture access functions return
values from images representing texture maps, environment maps, bump maps, and
shadow depth maps. The texture coordinates given to these functions can be either the
presupplied texture coordinates or values computed in the Shading Language. Since
texture map values are just like any other value in the language, they can be used to control
any aspect of the shading calculation. There is in principle no limit to the number of texture
maps per surface.

The Shading Language is also used for specifying special geometric transformations. These
include special camera projections such as fish eye or IMAX, nonlinear deformations such
as bends and twists, or surface displacement functions such as ripples or nubs. Shading

98 Section 8: Introduction

Language functions are also used for pixel operations. This type of shader is referred to as
an

imager

. Imagers are used to do special effects processing, to compensate for non-
linearities in display media, and to convert to device dependent color spaces (such as
CMYK or pseudocolor).

99

Section 9

OVERVIEW OF THE SHADING PROCESS

In this document,

shading

 includes the entire process of computing the color of a point on
a surface. The shading process requires the specification of

light sources

,

surface material
properties

, and

volume

 or

atmospheric effects

. The interpolation of color across a primitive, in
the sense of Gouraud or Phong interpolation, is not considered part of the shading process.
Each part of the shading process is controlled by giving a function which mathematically
describes that part of the shading process. Throughout this document the term

shader

 refers
to a procedure that implements one of these processes. There are thus three major types of
shaders:

•

Light source shaders

. Lights may exist alone or be attached to geometric primitives. A
light source shader calculates the color of the light emitted from a point on the light
source towards a point on the surface being illuminated. A light will typically have a
color or spectrum, an intensity, a directional dependency and a fall-off with distance.

•

Surface shaders

. Surface shaders are attached to all geometric primitives and are used to
model the optical properties of materials from which the primitive was constructed. A
surface shader computes the light reflected in a particular direction by summing over
the incoming light and considering the properties of the surface.

•

Volume shaders

. Volume shaders modulate the color of a light ray as it travels through
a volume. Volumes are defined as the insides of solid objects. The atmosphere is the
initial volume defined before any objects are created.

Conceptually, it is easiest to envision the shading process using ray tracing (see Figure 9.1).
In the classic recursive ray tracer, rays are cast from the eye through a point on the image
plane. Each ray intersects a surface which causes new rays to be spawned and traced
recursively. These rays are typically directed towards the light sources and in the
directions of maximum reflection and transmittance. Whenever a ray travels through
space, its color and intensity is modulated by the volume shader attached to that region of
space. If that region is inside a solid object, the volume shader is the one associated with
the interior of that solid; otherwise, the exterior shader of the spawning primitive is used.
Whenever an incident ray intersects a surface, the surface shader attached to that geometric
primitive is invoked to control the spawning of new rays and to determine the color and
intensity of the incoming or incident ray from the color and intensity of the outgoing rays
and the material properties of the surface. Finally, whenever a ray is cast to a light source,
the light source shader associated with that light source is evaluated to determine the color
and intensity of the light emitted. The shader evaluation pipeline is illustrated in Figure 9.2.

100 Section 9: Overview of the Shading Process

This description of the shading process in terms of ray tracing is done because ray tracing
provides a good metaphor for describing the optics of image formation and the properties
of physical materials. However, the Shading Language is designed to work with any
rendering algorithm, including scanline and z-buffer renderers, as well as radiosity
programs.

The Shading Language is also used to program two other processes:

•

Displacement and transformation shaders

. These shaders change the position and normals
of points on the surface. Displacements are used to place bumps on surfaces. Transfor-
mations are used to bend and twist objects, as well as to specify special camera projec-
tions.

•

Imager shader

. Imager shaders are used to program pixel operations that are done be-
fore the image is quantized and output.

Figure 9.1 The ray tracing paradigm

N

N

P

P

P

E

reflect

light

transmit

reflect

composite

transmit

light

incident

reflect

composite

101

Figure 9.2 Shader evaluation pipeline

Surface

Atmosphere

Displacement

Internal
Volume

External
Volume

Light
Sources

Light colors

Surface color

Displaced
surface

Attenuated
reflection color

Attenuated
transmission color

Reflected
ray color

Transmitted
ray color

Apparent
surface color

103

Section 10

RELATIONSHIP TO THE RenderMan INTERFACE

The Shading Language is designed to be used with the RenderMan Interface described in
Part I of this document. This interface is used by modeling systems to describe scenes to a
rendering system. Like most graphics systems, the RenderMan Interface maintains a

current graphics state

. This state contains all the information needed to render a geometric
primitive.

The graphics state contains a set of attributes that are attached to the surface of each
geometric primitive. These shading attributes include the

current color

 (set with

RiColor

and referred to as

Cs

) and

current opacity

 (set with

RiOpacity

 and referred to as

Os

). The
geometric primitive also contains a

current surface shader

 (

RiSurface

) and several volume
shaders: the

current atmosphere shader

 (

RiAtmosphere

),

current interior shader

 (

RiInterior

) and
a

current exterior shader

 (

RiExterior

). All geometric primitives use the

current surface shader

for computing the surface shading at their surfaces and the

current exterior shader

 for
computing the attenuation of light through the volume containing them. Light directed
toward the viewer is attenuated with the

current atmosphere shader

. Solid primitives define
an interior volume; the optical properties of this volume are described by the

current
interior shader

.

The graphics state also contains a

current list of light sources

 that contains the light sources
that illuminate the geometric primitives. Light sources may be added to this list using

RiIlluminate

. Light sources can be attached to geometric primitives to define area light
sources (

RiAreaLightSource

) or procedurally define their geometric properties
(

RiLightSource

). The

current area light source

 contains a list of geometric primitives that
define its geometry. Defining a geometric primitive adds that primitive to this list.

The graphics state also maintains the

current transformation

 that, in the most general case,
is a list of linear and nonlinear (deformations) transformations corresponding to the
hierarchy. A deformation is concatenated onto the current transformation using the

RiDeformation

 procedure. The graphics state also contains a

current displacement shader

(

RiDisplacement

) and an

imager

 (

RiImager

).

The RenderMan Interface predefines standard shaders for light sources, surfaces, and
volumes. These standard shaders are available in all rendering programs that implement
the RenderMan Interface, even if they do not support the optional capability for

Programmable Shaders

. Standard and implementation-dependent shaders should always be
specified in the Shading Language, even if they are built in. The predefined shaders
provided by the Shading Language are listed in Table 10.1,

Standard Shaders

. There is also

104 Section 10: Relationship to the RenderMan In-

a

null

 shader that is used as a placeholder. Shading Language definitions for these shaders
are given in Appendix A.

Table 10.1

 Standard Shaders

Shaders contain

instance

 variables that customize a particular shader of that type. For a
surface shader these variables may denote material properties; for a light source shader
these variables may control its intensity or directional properties. All instance variables
have default values that are specified in the definition of the shader. When a shader is
added to the graphics state, these default values may be overridden by user-supplied
values. This is done by giving a parameter list consisting of name-value pairs. The names
in this list are the same as the names of the instance variables in the shader definition. Note
that many different versions of the same shader can be instanced by giving different values
for its instance variables. The instance variables associated with a shader effectively
enlarge the current graphics state to include new appearance attributes. Because the
attributes in the graphics state are so easily extended in this way, the number of “built-in”
or “predefined” shading-related variables in the graphics state has been kept to a
minimum.

There are several steps involved in using a shader defined in the Shading Language. First,
a text file containing the source for the shader is created and edited. Second, this file is then
compiled using the Shading Language compiler to create an object file. Third, the object file
is placed in a standard place to make it available to the renderer. At this point, a shader
programmed in the Shading Language is equivalent to any other shader used by the
system. When a RenderMan Interface command involving a programmed shader (that is,
one that is not

built-in

) is invoked, the shader is looked up by name in the table of available
shaders, read into the rendering program, and initialized. This shader is then instanced
using the instance variables supplied in the RenderMan Interface procedure. Finally, when
a geometric primitive is being shaded, the shaders associated with it are executed.

Type Shader

Light sources ambientlight
distantlight
pointlight
spotlight

Surfaces constant
matte
metal
shinymetal
plastic
paintedplastic

Atmosphere fog
depthcue

Displacement bumpy

Floats 105

Section 11

TYPES

The Shading Language is strongly typed and supports the following basic types:

Floats

Floats

 are used for all scalar calculations. They are also used for integer calculations.

Floating-point variables are defined as follows:

float a, b=1;

The initialization value may be any scalar expression that contains only

uniform

 (see page
107) operands.

Colors

The Shading Language implements color as an abstract data type independent of the
number of samples and the color space. The major operations involving color are color
addition (‘+’ operator) corresponding to the mixing of two light sources, and color filtering
(‘*’ operator) corresponding to the absorption of light by a material. In each case these color
operations proceed on a component by component basis.

The number of color samples used in the rendering program is set through the RenderMan
Interface. Once the number of color samples has been specified, colors with the appropriate
number of samples must be passed to a shader. When setting the number of samples, the
user can also specify a transformation from RGB space to this

n

 sample color space. This
allows a shader to convert color constants to the specified color space.

Color component values of 0 correspond to minimum intensity, while values of 1
correspond to maximum intensity. A color constant of 0 is equivalent to black, and of 1 is
equivalent to white. However, values outside that range are allowed (values less than zero
decrement intensity from other sources).

Color variables may be declared with:

color c, d=1, e=color(1,0,0);

106 Section 11: Types

The initialization value may be any scalar or color expression that contains only

uniform

operands. If a scalar expression is used, its value is promoted to a color by duplicating its
value into each component.

Color constants are specified by:

color [

space

] (

u

,

v

,

w

)

The optional specifier

space

 indicates the color coordinate system of the 3-tuple. The default
color coordinate system is "

rgb

". Table 11.1,

Color Coordinate Systems

, lists the color
coordinate systems that are supported in the Shading Language.

Table 11.1

 Color Coordinate Systems

Points

Point

 variables are (

x,y,z

) triples of floats that are used to store locations and direction
vectors.

All calculations involving points are assumed to take place in an implementation-
dependent coordinate system, usually either the

camera

 or

world coordinate system

. A
procedure exists to transform a point from the shading coordinate system to various
named coordinate systems, or to define a point in one of several coordinate systems and
transform it to the shading coordinate system. It should be noted that sometimes direction
vectors do not transform in the same way as points, and therefore it is not always correct
to transform direction vectors.

A number of standard coordinate systems are known to a shader. These include: "

raster

",
"

screen

", "

camera

", "

world

", and "

object

". These are discussed in the section on

Camera

 in
Part I (p. 18). In addition, a shader knows the coordinate systems shown in Table 11.2,

Point
Coordinate Systems

.

Table 11.2

 Point Coordinate Systems

Coordinate System Description

"rgb" Red, green, and blue
"hsv" Hue, saturation, value
"hsl" Hue, saturation, lightness
"xyz", "XYZ" CIE XYZ coordinates
"xyY" CIE xy and Y
"YIQ" NTSC coordinates

Coordinate System Description

"shader" The coordinate system in which the shader was defined. This is
the “object” coordinate system when the shader is defined.

"current" The coordinate system in which the shading calculations are be-
ing performed. This is normally the “camera” or “world” coordi-
nate system.

string A named coordinate system established using RiCoordinateSys-
tem.

Strings 107

Point variables are declared:

point u, v=1, w=point(1,1,1);

The initialization value may be any scalar or point expression that contains only uniform
operands. If a scalar expression is used, the value is promoted to a point by duplicating its
value into each component.

Point constants default to be in the "current" coordinate system. Point constants can be
specified in any known coordinate system with:

point [space] (x,y,z)

For example,

point "world" (0,0,0)

defines a point at the position (0,0,0) in world coordinates. This point is implicitly
transformed to the "current" coordinate system. Points passed through the RenderMan
Interface are interpreted to be in "shader" or "object" space, depending on whether the point
variable was set using a shader command or a geometric primitive command, respectively.

Strings
Strings are used to name external objects (texture maps, for example). The only allowed
string expressions are constant strings and string equality tests.

Uniform and Varying Variables
Shaders contain two classes of variables: uniform variables are those whose values are
constant over a surface, while varying variables are those whose values change over the
surface. For example, shaders inherit a color and a transparency from the graphics state.
These values do not change from point to point on the surface and are thus uniform
variables. Color and opacity can also be specified at the vertices of geometric primitives
(see Section 5, Geometric Primitives, p. 59). In this case they are bilinearly interpolated across
the surface, and therefore are varying variables.

Local variables and arguments to shaders are declared to be either uniform or varying by
specifying a storage modifier:

varying point p;
uniform point q;

Variables declared in the argument list of a shader are assumed to be uniform variables by
default. These are sometimes referred to as instance variables. If a variable is provided only
when a shader is instanced, or if it is attached to the geometric primitive as a whole, it
should be declared a uniform variable. However, if a variable is to be attached to the
vertices of geometric primitive, it should be declared as a varying variable in the shader
argument list.

Variables declared locally in the body of a shader, as arguments to a function, or as local
variables are assumed to be varying. Declaring a variable to be uniform inside a shader or
function definition is never necessary, but may allow the compiler to generate more
efficient code.

If a uniform value (or a constant) is assigned to a varying variable or is used in a varying
expression, it will be promoted to varying by duplication. It is an error to assign a varying
value to a uniform variable or to use a varying value in a uniform expression.

108 Section 11: Types

Surface Shaders 109

Section 12

SHADER EXECUTION ENVIRONMENT

When a shader is attached to a geometric primitive it inherits a set of varying variables that
completely defines the environment in the neighborhood of the surface element being
shaded. These state variables are predefined and should not be declared in a Shading
Language program. It is the responsibility of the rendering program to properly initialize
these variables before a shader is executed.

All the predefined variables which are available to each type of shader are shown in Table
12.1, Predefined Surface Shader Variables through Table 12.6, Predefined Imager Shader
Variables. In these tables the top section describes state variables that can be read by the
shader. The bottom section describes the state variables that are the expected results of the
shader. By convention, capitalized variables refer to points and colors, while lower-case
variables are floats. If the first character of a variable’s name is a C or O, the variable refers
to a color or opacity, respectively. Colors and opacities are normally attached to light rays;
this is indicated by appending a lowercase subscript. A lowercase d prefixing a variable
name indicates a derivative.

All predefined variables are considered to be read-only, with the exception of the result
variables, which are read-write in the appropriate shader type, and Cs, Os, N, s and t, which
are read-write in any shader in which they are readable. Vectors are not normalized by
default.

Surface Shaders
The geometry is characterized by the surface position P which is a function of the surface
parameters (u,v). The rate of change of surface parameters are available as (du,dv). The
parametric derivatives of position are also available as dPdu and dPdv. The actual change
in position between points on the surface is given by P(u+du)=P+dPdu*du and
P(v+dv)=P+dPdv*dv. The calculated geometric normal perpendicular to the tangent plane
at P is Ng. The shading normal N is initially set equal to Ng unless normals are explicitly
provided with the geometric primitive. The shading normal can be changed freely; the
geometric normal is automatically recalculated by the renderer when P changes, and
cannot be changed by shaders. The texture coordinates are available as (s,t). Figure 12.1
shows a small surface element and its associated state.

The optical environment in the neighborhood of a surface is described by the incident ray
I and light rays L. The incoming rays come either directly from light sources or indirectly
from other surfaces. The direction of each of these rays is given by L; this direction points
from the surface towards the source of the light. A surface shader computes the outgoing
light in the direction –I from all the incoming light. The color and opacity of the outgoing
ray is Ci and Oi. (Rays have an opacity so that compositing can be done after shading. In a

110 Section 12: Shader Execution Environment

ray tracing environment, opacity is normally not computed.) If either Ci or Oi are not set,
they default to black and opaque, respectively.

* Available only inside illuminance statements.

Table 12.1 Predefined Surface Shader Variables

Figure 12.1 Surface shader state

N

P

dPdu

dPdv

I

L

Primitive Surface

Light Source

Vantage Point
E

(u,v)

Illuminance Cone

Name Type Storage Class Description

Cs color varying/uniform Surface color
Os color varying/uniform Surface opacity

P point varying Surface position
dPdu point varying Derivative of surface position along u
dPdv point varying Derivative of surface position along v
N point varying Surface shading normal
Ng point varying/uniform Surface geometric normal

u,v float varying Surface parameters
du,dv float varying/uniform Change in surface parameters
s,t float varying Surface texture coordinates

L point varying/uniform Incoming light ray direction*
Cl color varying/uniform Incoming light ray color*
Ol color varying/uniform Incoming light ray opacity*

E point uniform Position of the eye
I point varying Incident ray direction
ncomps float uniform Number of color components
time float uniform Current shutter time

Ci color varying Incident ray color
Oi color varying Incident ray opacity

Light Source Shaders 111

Light Source Shaders

A light source shader is slightly different (see Figure 12.2, Light source shader state). It
computes the amount of light cast along the direction L which arrives at some point in
space Ps. The color of the light is Cl while the opacity is Ol. The geometric parameters
described above (P, du, N, etc.) are available in light source shaders; however, they are the
parameters of the light emitting surface (e.g., the surface of an area light source)—not the
parameters of any primitive being illuminated. If the light source is a point light, P is the
origin of the light source shader space and the other geometric parameters are zero. If
either Cl or Ol are not set, they default to black and opaque, respectively.

Figure 12.2 Light source shader state

P

L

N

dPdu

dPdv

Surface Element
to Illuminate

Illuminate Cone

Area Light Primitive

(u,v)

angle

112 Section 12: Shader Execution Environment

* Only available inside solar or illuminate statements.

Table 12.2 Predefined Light Source Variables

Volume Shaders
A volume shader is not associated with a surface, but rather attenuates a ray color as it
travels through space. As such, it does not have access to any geometric surface
parameters, but only to the light ray I and its associated values. The shader computes the
new ray color at the ray origin P–I. The length of I is the distance traveled through the
volume from the origin of the ray to the point P.

Table 12.3 Predefined Volume Shader Variables

Displacement Shaders
The displacement shader environment is very similar to a surface shader, except that it
only has access to the geometric surface parameters. It computes a new P and/or a new N.
In rendering implementations that do not support the Displacement capability,

Name Type Storage Class Description

P point varying Position of light source
dPdu point varying Derivative of position along u
dPdv point varying Derivative of position along v
N point varying Surface shading normal
Ng point varying/uniform Surface geometric normal

u,v float varying Surface parameters
du,dv float varying/uniform Change in surface parameters
s,t float varying Surface texture coordinates

L point varying/uniform Outgoing light ray direction*
Ps point varying Position being illuminated
E point uniform Position of the eye

ncomps float uniform Number of color components
time float uniform Current shutter time

Cl color varying/uniform Outgoing light ray color
Ol color varying/uniform Outgoing light ray opacity

Name Type Storage Class Description

P point varying Ray destination
E point uniform Position of the eye
I point varying Ray direction
Ci color varying Ray color at destination
Oi color varying Ray opacity at destination

ncomps float uniform Number of color components
time float uniform Current shutter time

Ci color varying Attenuated ray color at origin
Oi color varying Attenuated ray opacity at origin

Transformation Shaders 113

modifications to P will not actually move the surface (change the hidden surface
elimination calculation); however, modifications to N will still occur correctly.

Table 12.4 Predefined Displacement Shader Variables

Transformation Shaders
A transformation shader transforms a point in space to another point in space. Because it
is not tied to any geometric primitive, it has no access to the geometric surface or lighting
parameters. It computes a new P and N from the existing P and N, analogously to a
transformation matrix.

Table 12.5 Predefined Transformation Shader Variables

Imager Shaders
An imager shader manipulates a final pixel color after all of the geometric and shading
processing has concluded. In the context of an imager shader, P is the position of the
surface closest to the camera in that pixel (i.e. the viewing ray intersection or the Z-buffer
entry).

Name Type Storage Class Description

P point varying Surface position
dPdu point varying Derivative of surface position along u
dPdv point varying Derivative of surface position along v
N point varying Surface shading normal
Ng point varying/uniform Surface geometric normal
E point uniform Position of the eye

u,v float varying Surface parameters
du,dv float varying/uniform Change in surface parameters
s,t float varying Surface texture coordinates

ncomps float uniform Number of color components
time float uniform Current shutter time

P point varying Displaced surface position
N point varying Displaced surface shading normal

Name Type Storage Class Description

P point varying Position
N point varying Normal at that point
time float uniform Current shutter time

P point varying Transformed position
N point varying Transformed normal

114 Section 12: Shader Execution Environment

Table 12.6 Predefined Imager Shader Variables

Name Type Storage Class Description

P point varying Surface position
Ci color varying Pixel color
Oi color varying Pixel opacity
alpha float uniform Fractional pixel coverage

ncomps float uniform Number of color components
time float uniform Current shutter time

Ci color varying Output pixel color
Oi color varying Output pixel opacity

Expressions 115

Section 13

LANGUAGE CONSTRUCTS

Expressions
Expressions are built from arithmetic operators, function calls and variables. The language
supports the common arithmetic operators, (+, –, ∗ , and /) plus the point operators ̂ (cross
product) and . (dot product), and the C conditional expression (binary relation ? expr1 :
expr2).

When operating on points or colors an arithmetic operation is performed in parallel on
each component. If a binary operator involves a point or color and a float, the float is
promoted to the appropriate type by duplicating its value into each component. It is illegal
to perform a binary operation between a point and a color. Cross products only apply to
points; dot products apply to both points and colors. Two points, two colors, or two strings
can be compared using == and !=. Points cannot be compared to colors.

Standard Control Flow Constructs
The basic explicit control flow constructs are:

• block-structured statement grouping,

• conditional execution,

• loops, and

• function calls.

These constructs are all modeled after C. Statement grouping allows a single statement to
be replaced with a sequence of statements.

{
stmt;
...
stmt;

}

Conditional execution is controlled by

if (boolean expression) stmt else stmt

There are two loop statements,

116 Section 13: Language Constructs

while (boolean expression) stmt

and

for (expr ; boolean expression ; expr) stmt

A boolean expression is an expression involving a relational operator, one of: <, >, <=, >=,
==, and !=. It is not legal to use an arbitrary float, point or color expression directly as a
boolean expression to control execution. A boolean expression can not be used as a floating
point expression.

The

break [n]

and

continue [n]

statements cause either the for or the while loop at level n to be exited or to begin the next
iteration. The default value for n is 1 and refers to the immediately enclosing loop.

Built-in and user-progrmamed functions are called just as in C. The

return expr

statement is used to return a value to the caller. Unlike C, where functions are assumed to
return an integer if the type returned is not explicitly specified, untyped Shading Language
functions are presumed to return a float.

Illuminance and Illuminate Statements
The Shading Language contains three new block statement constructs: illuminance,
illuminate, and solar. illuminance is used to control the integration of incoming light over a
hemisphere centered on a surface in a surface shader. illuminate and solar are used to
specify the directional properties of light sources in light shaders. If a light source does not
have an illuminate or solar statement, it is a non-directional ambient light source.

Unlike other control statements, illuminance, illuminate, and solar statements cannot be
nested. However, multiple illuminance, illuminate, or solar statements may be given
sequentially within a single shader.

The illuminance statement controls integration of a procedural reflectance model over the
incoming light. Inside the illuminance block two additional variables are defined: Cl or
light color, and L or light direction. The vector L points towards the light source, but may
not be normalized (see Figure 12.2, p. 111). The arguments to the illuminance statement
specify a three-dimensional solid cone and, optionally, the effective number of samples or
step size of the integral. The two forms of an illuminance statement are:

illuminance(position [, nsamples]) stmt
illuminance(position, axis, angle [, nsamples]) stmt

The first form specifies that the integral extends over the entire sphere centered at position.
The second form integrates over a cone whose apex is on the surface at position. This cone
is specified by giving its centerline, and the angle between the side and the axis in radians.

Illuminance and Illuminate Statements 117

If angle is PI, the cone extends to cover the entire sphere and these forms are the same as
the first form. If angle is PI/2, the cone subtends a hemisphere with the north pole in the
direction axis. Finally, if angle is 0, the cone reduces to an infinitesimally thin ray. The
quantity nsamples is roughly the number of samples used to evaluate the integral. If
nsamples is omitted, the integral is done as efficiently as possible.

A Lambertian shading model is expressed simply using the illuminance statement:

Nn = normalize(N);
illuminance(P, Nn, PI/2) {

Ln = normalize(L);
Ci += Cs * Cl * Ln.Nn;

}

This example integrates over a hemisphere centered at the point on the surface with its
north pole in the direction of the normal. Since the integral extends only over the upper
hemisphere, it is not necessary to use the customary max(0,Ln.Nn) to exclude lights that are
locally occluded by the surface element.

The illuminate and solar statements are inverses of the illuminance statement. They control
the casting of light in different directions. The point variable L corresponding to a
particular light direction is available inside this block. This vector points outward from the
light source. The color variable Cl corresponds to the color in this direction and should be
set. Like the illuminance statements, illuminate and solar statements cannot be nested.

The illuminate statement is used to specify light cast by local light sources. The arguments
to the illuminate statement specify a three-dimensional solid cone. The general forms are:

illuminate(position) stmt
illuminate(position, axis, angle) stmt

The first form specifies that light is cast in all directions. The second form specifies that light
is cast only inside the given cone. The length of L inside an illuminate statement is equal to
the distance between the light source and the surface currently being shaded.

The solar statement is used to specify light cast by distant light sources. The arguments to
the solar statement specify a three-dimensional cone. Light is cast from distant directions
inside this cone. Since this cone specifies only directions, its apex need not be given. The
general forms of the solar statement are:

solar() stmt
solar(axis, angle) stmt

The first form specifies that light is being cast from all points at infinity (e.g., an
illumination map). The second form specifies that light is being cast from only directions
inside a cone.

An example of the solar statement is the specification of a distant light source:

solar(D, 0)
Cl = intensity * lightcolor;

118 Section 13: Language Constructs

This defines a light source at infinity that sends light in the direction D. Since the angle of
the cone is 0, all rays from this light are parallel.

An example of the illuminate statement is the specification of a standard point light source:

illuminate(P)
Cl = (intensity * lightcolor) / (L.L)

This defines a light source at position P that casts light in all directions. The 1/L.L term
indicates an inverse square law fall off.

Shaders 119

Section 14

SHADERS AND FUNCTIONS

The Shading Language distinguishes between shaders and functions. Shaders are
procedures that are referred to by RenderMan Interface procedures. Functions are
procedures that can be called from within the Shading Language. The distinction between
shaders and functions is primarily a consequence of different argument passing
conventions.

Shaders
Shaders are introduced by the keywords light, surface, volume, displacement,
transformation, or imager and are followed by the name of the shader and the statements
that comprise its definition. These keywords indicate the type of RenderMan Interface
shader that is being defined. The RenderMan Interface uses the shader type to enforce a
type match in subsequent calls to RenderMan Interface procedures. For example, it is
illegal to declare a shader to be of type light and then instance it using RiSurface.

The arguments to a shader are referred to as its instance variables. All of these variables are
required have default values, and are assumed to be uniform unless declared otherwise.
Shader instance variables are read-only in the body of the shader. Their values can be
changed, however, when a particular shader is instanced from the RenderMan Interface.
For example, consider the shader weird:

surface
weird(float a=0.5; varying float b=0.25)
{

Ci = color (mod(s,a), abs(sin(a+b)), mod(b,t));
}

This surface shader may be referenced through the RenderMan Interface with the
RiSurface command. For example,

RiSurface("weird", RI_NULL);

instances the above shader with all its defaults.

Shader instance variable values can be changed from their defaults by passing their new
values through the RenderMan Interface. This first requires that the type of the variable be
declared. The declaration for weird would be:

RiDeclare("a", "uniform float");
RiDeclare("b", "varying float");

120 Section 14: Shaders and Functions

Once this is done, uniform instance variables can be set by passing them in the parameterlist
of a shader instance.

RtFloat a = 0.3;

RiSurface("weird", "a", (RtPointer)&a, RI_NULL);

In this example a is redefined while b remains equal to its default. It is not legal to assign
values to varying variables from the RenderMan functions that define shader instances
(RiSurface, RiLightSource, etc.).

Shader variables can also be set in geometric primitives. For example, the weird shader
variables could be set when defining a primitive:

RtFloat a;
RtFloat bs[4];
RtPoint Ps[4];

RiPolygon(4, "P", Ps, "a", (RtPointer)&a, "b", (RtPointer)bs, RI_NULL)

a is a single float and b is an array containing four values, since it is a varying variable. The
standard variable "P" is predeclared to be of type varying point.

If a geometric primitive sets a shader variable that is defined in none of the shaders
associated with that primitive, it is ignored. Uniform variables that are set on geometric
primitives override the values set by the shader instance.

Functions
Functions are similar to shaders except they can not be instanced from the RenderMan
Interface. A procedure definition is assumed to be a function if none of the shader
keywords are present or if a type (float, color or point) is given. For example, the following
defines a function normalize that returns a unit vector in the direction V:

point
normalize (point V)
{

return V/length(V);
}

Function calls use the traditional C syntax. There are two major differences though:
function parameters are passed by reference (since there are no array or pointer types in the
language and functions often must return multiple values); and functions cannot be called
recursively.

Mathematical Functions 121

Section 15

BUILT-IN FUNCTIONS

The following built-in functions are provided in the Shading Language.

Mathematical Functions
The following library of math functions is provided. This library includes most of the
routines normally found in the standard C math library as well as functions for
interpolation and computing derivatives.

The following mathematical functions are provided:

float PI = 3.14159... ;

float radians(float degrees)
float degrees(float radians)

float sin(float a)
float asin(float a)

float cos(float a)
float acos(float a)

float tan(float a)
float atan(float yoverx), atan(float y, x)

The predefined float constant PI is the value of π. The function radians converts
from degrees to radians; and conversely, the function degrees converts from radi-
ans to degrees. sin, cos, and tan are the standard trigonometric functions of radian
arguments. asin returns the arc sine in the range –π/2 to π/2. acos returns the arc
cosine in the range 0 to π. atan with one argument returns the arc tangent in the
range –π/2 to π/2. atan with two arguments returns the arc tangent of y/x in the
range –π to π.

float pow(float x, y)
float exp(float x)
float sqrt(float x)
float log(float x), log(float x, base)

122 Section 15: Built-in Functions

These functions compute power and inverse power functions. pow returns xy, exp
returns pow(e,x) and sqrt returns pow(x,.5). log with one argument returns the nat-
ural logarithm of x (x = log(exp(x))). log with two arguments returns the logarithm
in the specified base (x = log(pow(base, x), base)).

float mod(float a, b)
float abs(float x)
float sign(float x)

mod returns a value greater than 0 and less than or equal to b such that mod(a,b) =
a – n*b for some integer n. abs returns the absolute value of its argument and sign
returns –1 if its argument is negative, 1 if its argument is positive, and 0 if its argu-
ment is zero.

float min (float a, b)
float max(float a, b)
float clamp(float a, min, max)

min returns the argument with minimum value; max returns the argument with
maximum value. clamp(a, min, max) returns min if a is less than min, max if a is
greater than max; otherwise it returns a.

float floor(float x)
float ceil(float x)
float round(float x)

floor returns the largest integer (expressed as a float) not greater than x. ceil returns
the smallest integer (expressed as a float) not smaller than x. round returns the in-
teger closest to x.

float step(float min, value)
float smoothstep(float min, max, value)

step returns 0 if value is less than min; otherwise it returns 1. smoothstep returns 0
if value is less than min, 1 if value is greater than or equal to max, and performs a
smooth Hermite interpolation between 0 and 1 in the interval min to max.

float spline(float value; float f1, f2, ..., fn, fn1)
color spline(float value; color c1, c2, ..., cn, cn1)
point spline(float value; point p1, p2, ..., pn, pn1)

spline fits a Catmull-Rom interpolating spline to the control points given. At least
four control points must always be given. If value equals 0, f2 (or c2, p2) is re-

Geometric Functions 123

turned; if value equals 1, fn (or cn, pn) is returned. The type of the result depends
on the type of the arguments.

float Du(float p), Dv(float p), Deriv(float num; float den)
color Du(color p), Dv(color p), Deriv(color num; float den)
point Du(point p), Dv(point p), Deriv(point num; float den)

These functions compute the derivatives of their arguments. The type returned de-
pends on the type of the first argument. Du and Dv compute the derivatives in the
u and v directions, respectively. Deriv computes the derivative of the first argu-
ment with respect to the second argument. This is done using the chain rule:

Deriv(num,den) = Du(num)/Du(den) + Dv(num)/Dv(den);

The actual change in a variable is equal to its derivative with respect to a surface
parameter times the change in the surface parameter. Thus,

function(u+du)–function(u) = Du(function(u)) * du;
function(v+dv)–function(v) = Dv(function(v)) * dv;

The derivatives of position are predefined as:

dPdu = Du(P);
dPdv = Dv(P);

float random()
color random()
point random()

random returns a float, color, or point whose components are a random number
between 0 and 1.

float noise(float v), noise(float u, v), noise(point pt)
color noise(float v), noise(float u, v), noise(point pt)
point noise(float v), noise(float u, v), noise(point pt)

noise returns a value which is a pseuodrandom function of its arguments; its value
is always between 0 and 1. The domain of this noise function can be 1-D (one float),
2-D (two floats), or 3-D (one point). These functions can return any type. The type
desired is indicated by casting the function to the type desired. The following state-
ment causes noise to return a color.

c = 2 * color noise(P);

Geometric Functions
Geometric functions provide a kernel of useful geometric operations. Most of these
functions are most easily described by just giving their implementation.

124 Section 15: Built-in Functions

float xcomp(point P)
float ycomp(point P)
float zcomp(point P)

setxcomp(point P; float x)
setycomp(point P; float y)
setzcomp(point P; float z)

These functions get and set individual point components.

float
length(point V)
{

return sqrt(V.V);
}

Return the length of a vector.

float
distance(point P1, P2)
{

return length(P1–P2);
}

Return the distance between two points.

float
area(point P)
{

return length(Du(P)*du ^ Dv(P)*dv);
}

Return the differential surface area.

point
normalize(point V)
{

return V/length(V);
}

Return a unit vector in the direction of V.

point
faceforward(point N, I , [Nref])

Geometric Functions 125

{
return sign(–I.Ng) * N;

}

Flip N so that it faces in the direction opposite to I, from the point of view of the
current surface element. The surface element’s point of view is the geometric nor-
mal Ng, unless Nref is supplied, in which case it is used instead.

point
reflect(point I, N)
{

return I − 2*(I.N)*N;
}

Return the reflection vector given an incident direction I and a normal vector N.

point
refract(point I, N; float eta)
{

float IdotN = I.N;
float k = 1 − eta*eta*(1 − IdotN*IdotN);

return k < 0 ? (0,0,0) : eta*I - (eta*IdotN + sqrt(k))*N;
}

Return the transmitted vector given an incident direction I, the normal vector N
and the relative index of refraction eta. eta is the ratio of the index of refraction in
the volume containing the incident vector to that of the volume being entered. This
vector is computed using Snell’s law. If the returned vector has zero length, then
there is no transmitted light because of total internal reflection.

fresnel(point I, N; float eta, Kr, Kt; [point R, T])

Return the reflection coefficient Kr and refraction (or transmission) coefficient Kt
given an incident direction I, the surface normal N, and the relative index of refrac-
tion eta. eta is the ratio of the index of refraction in the volume containing the inci-
dent vector to that of the volume being entered. These coefficients are computed
using the Fresnel formula. Optionally, this procedure also returns the reflected (R)
and transmitted (T) vectors. The transmitted vector is computed using Snell’s law.

point transform(string fromspace, tospace; point P);
point transform(string tospace; point P);

Transform the point P from the coordinate system fromspace to the coordinate sys-
tem tospace. If fromspace is absent, it is assumed to be the "current" coordinate sys-
tem. Note that the transformation needed to transform directions is not the same
as that used to transform positions. Thus, this procedure should be only used to
transform position vectors.

126 Section 15: Built-in Functions

float depth(point P)

Return the depth of the point P in camera coordinates. The depth is normalized to
lie between 0 (at the near clipping plane) and 1 (at the far clipping plane).

point
calculatenormal(point P)
{

return Du(P) ^ Dv(P);
}

Return surface normal given a point on the surface. This function is normally
called after a displacement. For example:

P += displacement * N;
N = calculatenormal(P);

Color Functions
Several functions exist which operate on colors.

float comp(color c; float index)
setcomp(color c; float index, value)

These functions get and set individual color components. The index values are 0-
based (e.g., the green channel of an RGB triple is component 1).

color
mix(color color0, color1; float value)
{

return (1−value)*color0 + value*color1;

}

Return an interpolated color value.

Shading and Lighting Functions
In this section, built-in shading and lighting functions are defined.

color
ambient()

ambient returns the total amount of ambient light incident upon the surface. An
ambient light source is one in which there is no directional component, that is, a
light which does not have an illuminate or a solar statement.

Shading and Lighting Functions 127

color
diffuse(point N)
{

color C = 0;
point Nn, Ln;

Nn = normalize(N);
illuminance(P, Nn, PI/2) {

Ln = normalize(L);
C += Cl * Ln.Nn;

}
return C;

}

diffuse returns the diffuse component of the lighting model.

color
specular(point N, V; float roughness)
{

color C = 0;
point Nn, H;

Nn = normalize(N);
V = normalize(V);
illuminance(P, Nn, PI/2) {

H = normalize(normalize(L)+V);
C += Cl * pow(max(0.0, Nn.H), 1/roughness);

}
return C;

}

specular returns the specular component of the lighting model. N is the normal to
the surface. V is a vector from a point on the surface towards the viewer.

color
phong(point N, V; float size)
{

color C = 0;
point Ln, R;

R = reflect(-normalize(V), normalize(N));
illuminance(P, N, PI/2) {

Ln = normalize(L);
C += Cl * pow(max(0.0,R.Ln), size);

}
return C;

}

phong implements the Phong specular lighting model.

128 Section 15: Built-in Functions

color trace(point P, point R)

trace returns the incident light reaching a point P from a given direction R. If a par-
ticular implementation does not support the Ray Tracing capability, and cannot
compute the incident light arriving from an arbitrary direction, trace will return 0
(black).

Texture Mapping Functions
Texture maps are images that are mapped onto the surface of a geometric primitive. The
RenderMan Interface supports four primitive types of texture access: basic texture maps
(via texture), bump or normal perturbation maps (via bump), environment maps (via
environment), and shadow or z-buffer maps (via shadow). Texture maps are accessed using
two-dimensional coordinates and return floats or colors. Bump maps are accessed using
two-dimensional coordinates and return a point. This point is the perturbation of the
normal. Environment maps are accessed using a direction and return floats or colors.
Shadow maps are accessed using points and return floats.

For two-dimensional access (texture and bump), the texture coordinates default to the
texture coordinates attached to the surface, (s,t). These default texture coordinates are
equal to the surface parameters, the current texture coordinates, or the texture coordinates
passed with the geometric primitive. Texture coordinates can also be computed in the
Shading Language. This generality allows for many different types of coordinate
mappings. Images stored in various map projections can be accessed by computing the
map projection given a point on a sphere. This allows basic texture maps to be used as
environment maps. Images can also be mapped onto surfaces using a two step process.
First the surface of the geometric primitive is mapped to the surface of a parametric
primitive, such as a plane or cylinder, and then the parameters of this primitive are used
as the texture coordinates. This is sometimes called a decal projection.

For three-dimensional access (environment and shadow), the texture coordinates must
always be explicitly specified.

There is no restriction on how texture map values are used in the Shading Language. For
example, displacement mapping can be performed by moving a point on the surface in the
direction of the normal by the amount returned by a basic texture map. Transparency
mapping differs from color mapping only in which variable, either Os or Cs, the texture is
assigned to. There is also, in principle, no limit on the number of texture accesses per
shader or the number of texture maps per shader or per frame.

Texture maps are created in advance from image data via four types of MakeTexture
procedures that are defined as part of the RenderMan Interface. These are described in Part
I in the section on Texture Map Utilities (p. 87). RiMakeTexture creates a texture map for
access via texture. RiMakeCubeFaceEnvironment and RiMakeLatLongEnvironment create an
environment map for access via environment. RiMakeBump creates a bump map for access
via bump. RiMakeShadow creates a shadow map for access via shadow. A texture file may
contain several channels of information and have any horizontal or vertical resolution. This
information is normally inherited from the image from which the texture is made. The s
coordinate is assigned to the horizontal direction with increasing values moving right. The
t coordinate is assigned to the vertical direction with increasing values moving down.

Texture Mapping Functions 129

These coordinates are normalized to lie in the range 0 to 1 so that changing the resolution
of the texture map has no effect on the shaders that access the texture map. When a texture
map is created, the wrap mode is also specified. The wrap mode controls what values are
returned if the texture coordinates fall outside the unit square. Allowed wrap modes are:
periodic, black and clamp. periodic causes the texture data to tile the plane, black causes
accesses outside the unit square to return the value 0, and clamp causes the texture
coordinates to be clamped to the closest point on the unit square and the texture value
associated with that point to be returned.

The texture access functions normally pass the texture map through a low-pass filter to
prevent aliasing. If one set of texture coordinates is given to the access function, the texture
will be filtered over the area of the surface element being shaded (see the Shading Rate
section in Part I, p. 45). Four sets of texture coordinates can also be given to the access
procedure, in which case the texture is filtered over the quadrilateral determined by those
four points. The quality of texture antialiasing is controlled in the same way as spatial
antialiasing. Parameters control how true the answer is, the effective number of samples
used before filtering, and the type and width of the filter used. For this to be done properly
(since texture maps are normally prefiltered), these filtering parameters are best given to
the appropriate RiMake... procedure. For flexibility, however, they can also be changed at
access time. Table 15.1, Texture Access Parameters gives the standard parameters to all the
texture access functions; particular implementations may have additional parameters.

Table 15.1 Texture Access Parameters

Basic texture maps

Basic texture maps return either floats or colors.

float texture(string name[channel]; [texture coordinates,] [parameterlist])
color texture(string name[channel]; [texture coordinates,] [parameterlist])

where texture coordinates is one of the following:

float s, t;
float s1,t1, s2,t2, s3,t3, s4,t4;

Return the filtered texture value. The cast before the function determines the type
returned, either a float or a color. The name is the name of the texture map created
using RiMakeTexture. The channel selector is optional; if it is not present, the brack-

Name Description

"fidelity" How close the computed value is to the correct value.
"samples" The effective sampling rate when filtering.
"swidth" The amount to “overfilter” in s. This value multiplies the area being fil-

tered over in the s direction.
"twidth" The amount to “overfilter” in t. This value multiplies the area being fil-

tered over in the t direction.

130 Section 15: Built-in Functions

ets are also omitted and channel 0 is assumed. channel selects the starting channel
in the texture. The number of channels returned depends on whether the texture
is interpreted as a float or a color. texture coordinates are also optional. If present
they consist either of a single 2-D coordinate or four 2-D coordinates. If no texture
coordinates are given, the current values of (s,t) are used. parameterlist is a list of
name-value pairs that allow greater control over texture access.

Texture maps will always be available in implementations that support the Shad-
ing Language, and may also be available in the implementation-dependent pre-
defined shaders provided by a rendering system which does not support the Shad-
ing Language.

Some examples of the use of this function are:

c = texture("logo" [0]);
c = color texture ("logo");
c = color texture ("logo", 2*s, 4*t);

In the first two cases, the texture coordinates are the current values of the pre-
defined variables (s,t).

Environment maps

float environment(string name[channel]; texture coordinates, [parameterlist])
color environment(string name[channel]; texture coordinates, [parameterlist])

where texture coordinates is one of the following:

point R;
point R1, R2, R3, R4;

Return the filtered texture value from an environment map. The cast before the
function determines the type returned, either a float or a color. The name is the
name of the texture map created using RiMake...Environment. The channel selector
is optional; if it is not present, the brackets are also omitted and channel 0 is as-
sumed. channel selects the starting channel in the texture. The number of channels
returned depends on whether the texture is interpreted as a float or a color. This
function expects either a single texture coordinate or four texture coordinates.
These are points that are used to define a direction in space. The length of this vec-
tor is unimportant. parameterlist is a list of name-value pairs which allow greater
control over texture access.

If a particular implementation does not support the Environment Mapping capabil-
ity, environment will always return (0,0,0) (no illumination).

Bump maps

point bump(string name[channel];
point N, dPds, dPdt; [texture coordinates,] [parameterlist])

where texture coordinates is one of the following:

float s, t;
float s1,t1, s2,t2, s3,t3, s4,t4;

Return the filtered bump value from a bump map. bump returns a point that de-
fines a normal perturbation. This is normally added to the surface normal. The

Volume Variable Access Functions 131

name is the name of the texture map created using RiMakeBump. The channel selec-
tor is optional; if it is not present, the brackets are also omitted and channel 0 is as-
sumed. channel selects the starting channel in the texture. The values N, dPds, dPdt
define a local coordinate system on the surface. texture coordinates are also option-
al; if present they consist either of a single 2-D coordinate or four 2-D coordinates.
If no texture coordinates are given, the current values of (s,t) are used. parameterlist
is a list of name-value pairs that allow greater control over texture access.

An example of the use of this function is:

N += bump("bumps", N, dPdu, dPdv);

Since texture coordinates are not explicitly provided here, they default to the cur-
rent values of the predefined variables (s,t).

If a particular implementation does not support the Bump Mapping capability,
bump will always return (0,0,0) (no perturbation).

Shadow depth maps

Shadow depth maps are z-buffer images as seen from a particular view point. Normally a
shadow map is associated with a light source and represents a depth buffer rendered from
the point of view of the light source. The texture coordinate of a shadow map is a point.
The value returned is the fraction of points on the shaded surface that are farther from the
light than the surface recorded in the depth map. A value of 1 indicates that the surface is
completely in shadow and a value of 0 indicates that the surface is completely illuminated
by the light source.

float shadow(string name[channel]; texture coordinates[, parameterlist])

where texture coordinates is one of the following:

point P;
point P1, P2, P3, P4;

Return the shadow value from a shadow depth map. The name is the name of the
texture map created using RiMakeShadow. The channel selector is optional; if it is
not present, the brackets are also omitted and channel 0 is assumed. channel selects
the starting channel in the texture. Only one channel of a shadow map is ever ac-
cessed. texture coordinates are points in the coordinate system in which the depth
map was created. parameterlist is a list of name-value pairs that allow greater con-
trol over texture access.

If a particular implementation does not support the Shadow Depth Mapping capa-
bility, shadow will always return 0 (completely illuminated).

Volume Variable Access Functions
float incident(string name, float value)
float incident(string name, color value)
float incident(string name, point value)

132 Section 15: Built-in Functions

float opposite(string name, float value)
float opposite(string name, color value)
float opposite(string name, point value)

These functions access the value of the volume variable name that is stored in the
volume shaders attached to geometric primitive surface. incident accesses values
from the volume shader that describes the volume which contains the incident ray
I. opposite accesses values from the volume shader that describes the volume on
the other side of the surface. If the named variable exists and is of the correct type,
the value is stored in value and the function returns 1; otherwise, value is un-
changed and the function returns 0.

Print Function
printf(string format, val1, val2,..., valn)

Print the values of the specified variables on the standard output stream of the ren-
derer. format uses "%f", "%p", "%c", and "%s" to indicate float, point, color and
string, respectively.

Surface Shaders 133

Section 16

EXAMPLE SHADERS

Surface Shaders
Surface shaders inherit the surface variables of the surfaces to which they are attached. A
surface shader should always set the output color Ci and optionally the output opacity Oi
that is emitted in the direction –I. I is the direction of the ray incident to the surface. The
length of this vector is equal to the distance between the origin of the ray and the point on
the surface. Thus the actual origin of the ray is available as P–I.

Turbulence

The following surface shader implements a simple turbulence procedural texture. The
shader computes the texture by adding various octaves of noise, weighting each octave by
1/f, where f is the cutoff frequency of that octave. This texture is then used to modulate the
opacity of the surface. The texture is generated in the named coordinate system "marble",
which must have been established with by the use of an RiCoordinateSystem("marble") call
before the instantiation of the turbulence shader. Notice that after the opacity has been
computed, it is multiplied into the color, so that the colors and opacities output by the
shader are premultiplied for use by pixel compositors.

surface
turbulence (float Kd=.8, Ka=.2)
{

float a, scale, sum ;
float IdotN;
point M;

/* convert to texture coordinate system */
M = transform("marble", P);

scale = 1;
sum = 0;
a = sqrt(area(M));
while(a < scale) {

sum += scale * float noise(M/scale);
scale *= 0.5;

}
Oi = sum;
Ci = Cs * Oi * (Ka + Kd * I.N * I.N / (I.I * N.N));

}

134 Section 16: Example Shaders

Ray tracer

The following is a procedure to implement a Turner Whitted-style ray tracer.

surface
whitted(

float Kr =.8; /* reflective coefficient */
float Kt =.2; /* transmissive coefficient */
float Ks =.2; /* specular coefficient */
float Kss = 2;) /* specular exponent */

{
point Nn, H, T;
float eta, eta2;

/* Retrieve the index of refraction */
if (incident("eta", eta) && opposite("eta", eta2))

eta /= eta2;
else

eta = 1.0;

Nn = faceforward(normalize(N), I);

/* ambient term */
Ci = Kd * ambient();

/* diffuse and specular terms */
illuminance(P, Nn, PI/2) {

/* diffuse */
Ci += Kd * Cl * L.Nn;

/* specular */
H = normalize(normalize(L)+I);
Ci += Ks * Cl * pow(max(0,0, Nn.H), Kss);

}

/* reflection */
Ci += Ks * trace(reflect(I, Nn));

/* transmittance */
T = refract(I, Nn, eta);
if (length(T) != 0.0)
 Ci += Kt * trace(T);

}

Light Sources 135

Light Sources
There are several types of light source shaders, distinguished by their directional
properties. The directional properties of light sources depend on whether the sources
execute a solar or an illuminate statement. Light source shaders without explicit illuminate
or solar statements are assumed to be non-directional, or ambient. The total amount of
ambient light incident on a surface is normally returned to a surface shader through
ambient. A solar statement indicates that the light source is a directional light source, while
an illuminate statement indicates that the light source is a local light source. Local light
sources have a position. The position can be a property of the shader or can be inherited
from a surface. If the light source is attached to a geometric primitive the light source is an
area light source.

Light sources set Cl inside a solar or illuminate block unless they are defining an ambient
light. Inside these blocks the direction L points towards the surface. This variable is
available so that light source output intensities can be directional. If the light source has a
position, the length of L is the distance from the light source to the surface being shaded.

For example, consider the following light source:

light
phong(

float intensity = 1.0;
color color = 1;
float size = 2.0;
point from = point "shader" (0,0,0);
point to = point "shader" (0,0,1);)

{
uniform point R = normalize(to–from);

solar(R, PI/2)
Cl = intensity * color * pow(R.L/length(L), size);

}

The Phong shading model can be interpreted to be a procedural directional light source.
The light source has a direction R and a size parameter that controls its fall-off. The solar
statement specifies that the light source casts light in the forward facing hemisphere.

An environment background light source would be specified as follows:

light
reflection(string texturename = ""; float intensity = 1.0)
{

solar()
Cl = intensity * color environment(texturename, –L);

}

The solar statement implies the light is cast from infinity in all directions. The color of the
light is given by the environment map.

136 Section 16: Example Shaders

Volume Shader
Volume shaders change Ci and Oi due to volumetric scattering, self-luminosity, and
attenuation. A volume shader is called once per ray so it should explicitly integrate along
the path of the ray.

The input Ci and Oi are the colors and opacities at the point P. The volume shader should
set the color and opacity that result at the point P–I.

Displacement and Transformation Shaders
Displacement shaders move the position P of a surface. After a point of the surface is
moved, the normals should be recalculated with calculatenormal unless the new normals
can be computed as part of the displacement.

Transformation shaders specify a nonlinear transformation of all points in space to new
points. Since transformation shaders are not bound to surfaces, they do not have access to
the standard surface shader variables such as u and Cs.

The following shader places a sinusoidal bump on a surface.

displacement
ripple(float amplitude = 1.0, float wavelength = 0.25)
{

P += N * amplitude * sin(2*PI*(s / wavelength));
N = calculatenormal(P);

}

Imager Shaders
Imager shaders change the value of Ci and Oi. The exposure and quantization process
specified in the section on Displays in Part I (p. 27) could be specified as the following
imager:

imager
exposure(float gain=1.0, gamma=1.0, one = 255, min = 0, max = 255)
{
 Ci = pow(gain * Ci, 1/gamma);
 Ci = clamp(round(one * Ci), min, max);
 Oi = clamp(round(one * Oi), min, max);
}

Null Shader 137

Appendix A

STANDARD RenderMan INTERFACE SHADERS

In this section the required RenderMan Interface shaders are defined.

Null Shader

This shader does nothing and is intended to be a placeholder if no action is to be per-
formed. There is a null shader for every class of shader.

Surface Shaders

Constant surface

surface

constant

()
{

Oi = Os;
Ci = Os * Cs;

}

Matte surface

surface
matte

(

float

 Ka = 1;

float

 Kd = 1;)
{

point

 Nf;
Nf =

faceforward

(N,I);

Oi = Os;
Ci = Os * Cs * (Ka*

ambient

() + Kd*

diffuse

(Nf));
}

Metal surface

surface
metal

(

138 Appendix A: Standard RenderMan Interface Shaders

float

 Ka = 1;

float

 Ks = 1;

float

 roughness =.1;)
{

point

 Nf;
Nf =

faceforward

(N,I);

Oi = Os;
Ci = Os * Cs * (Ka*

ambient

() + Ks*

specular

(Nf,–I,roughness));
}

Shiny metal surface

surface
shinymetal

(

float

 Ka = 1;

float

 Ks = 1;

float

 Kr = 1;

float

 roughness = .1;

string

 texturename = "";)
{

point

 Nf, D;

 Nf =

faceforward

(N,I);
 D =

reflect

(I,

 normalize

(Nf));
 D =

transform

("world", point "world" (0,0,0) + D);

 Oi = Os;
 Ci = Os * Cs * (Ka*

ambient

() + Ks*

specular

(Nf,–I,roughness)
 + Kr*

color

environment

(texturename, D));
}

If the

Environment Mapping

 capability is not supported by a particular renderer imple-
mentation, the

shinymetal

 surface shader operates identically to the

metal

 shader.

Plastic surface

surface
plastic

(

float

 Ka = 1;

float

 Kd =.5;

float

 Ks =.5;

float

 roughness =.1;

color

 specularcolor = 1;)
{

point

 Nf;
Nf =

faceforward

(N, I);

Oi = Os;
Ci = Os * (Cs * (Ka*

ambient

() + Kd*

diffuse

(Nf)) +

Light Source Shaders 139

 specularcolor * Ks*

specular

(Nf,–I,roughness));
}

Painted plastic surface

surface
paintedplastic

(

float

 Ka = 1;

float

 Kd = .5;

float

 Ks = .5;

float

 roughness = .1;

color

 specularcolor = 1;

string

 texturename = "";)
{

point

 Nf;
 Nf =

faceforward

(N,I);

 Oi = Os;
 Ci = Os*(Cs*

color

texture

(texturename)*(Ka*

ambient

()+Kd*

diffuse

(Nf))
 + specularcolor * Ks *

specular

(Nf,–I,roughness));
}

If the

Texture Mapping

 capability is not supported by a particular renderer implemen-
tation, the

paintedplastic

 surface shader operates identically to the

plastic

 shader.

Light Source Shaders

Ambient light source

light
ambientlight

(

float

 intensity = 1;

color

 lightcolor = 1;)
{

Cl = intensity * lightcolor;
}

Distant light source

light
distantlight

(

float

 intensity = 1;

color

 lightcolor = 1;

point

 from = point "shader" (0,0,0);

point

 to = point "shader" (0,0,1);
{

solar

(to–from, 0.0)
 Cl = intensity * lightcolor;

}

140 Appendix A: Standard RenderMan Interface Shaders

Point light source

light
pointlight

(

float

 intensity = 1;

color

 lightcolor = 1;

point

 from = point "shader" (0,0,0);)
{

illuminate

(from)
 Cl = intensity * lightcolor / L.L;

}

Spotlight source

light
spotlight

(

float

 intensity = 1;

color

 lightcolor = 1;

point

 from = point "shader" (0,0,0);

point

 to = point "shader" (0,0,1);

float

 coneangle = radians(30);

float

 conedeltaangle = radians(5);

float

 beamdistribution = 2;)
{

float

 atten, cosangle;

uniform

point

 A = (to–from)/

length

(to–from);

illuminate

(from, A, coneangle) {
 cosangle = L.A/

length

(L);
 atten =

pow(cosangle,beamdistribution) / L.L;
 atten *= smoothstep(cos(coneangle),

cos(coneangle–conedeltaangle), cosangle);
 Cl = atten * intensity * lightcolor;
}

}

Volume Shaders

Depth cue shader

volume
depthcue(float mindistance = 0, maxdistance = 1;

color background = 0;)
{

float d;

d = clamp((depth(P)–mindistance)/
 (maxdistance–mindistance), 0.0, 1.0);

Ci = mix(Ci, background, d);
Oi = mix(Oi, color(1,1,1), d);

}

Displacement Shaders 141

Fog shader
volume
fog(float distance = 1; color background = 0;)
{

float d;

d = 1 − exp(−length(I)/distance);

Ci = mix(Ci, background, d);
Oi = mix(Oi, color(1,1,1), d);

}

Displacement Shaders

Bumpy shader
displacement
bumpy(
 float amplitude = 1;
 string texturename = "";)
{
 N += bump(texturename, N, dPdu, dPdv) * amplitude;
}

If the Bump Mapping capability is not supported by a particular renderer implementa-
tion, the bumpy surface shader is equivalent to a null displacement shader.

Transformation and Imager Shaders
There are no standard transformation or imager shaders required by the RenderMan
Interface.

Declarations 143

Appendix B

RenderMan SHADING LANGUAGE SYNTAX SUMMARY

This summary of the Shading Language syntax is intended more for aiding comprehen-
sion than as an exact description of the language.

Declarations

Shading Language source files consist of definitions:

definitions:
shader_definition
function_definition

shader_definition:
shader_type identifier (formalsopt) { variablesopt statements }

function_definition:
typeopt identifier (formalsopt) { variablesopt statements }

shader_type:
light
surface
volume
displacement
transformation
imager

formals:
variable_definitions
formals ; variable_definitions

variables:
variable_definitions ;
variables variable_definitions ;

variable_definitions:
typespec def_expressions

144 Appendix B: RenderMan Shading Language Syntax Summary

typespec:
detailopt type

def_expressions:
def_expression
def_expressions , def_expression

def_expression:
identifier def_initopt

def_init:
= expression

detail:
varying
uniform

type:
float
string
pspace
cspace

pspace:
point spacetypeopt

cspace:
color spacetypeopt

spacetype:
stringconstant

shadespace:
pspace
cspace
pspace cspace
cspace pspace

Statements
statements:

statements statement

statement:
assignexpression ;
procedurecall ;
return expression ;
loop_modstmt ;
if relation statement
if relation statement else statement
loop_control statement
{ statements }

loop_control:
while relation
for (expression ; relation ; expression)

Expressions 145

solar ()
solar (expression , expression)
illuminate (expression)
illuminate (expression , expression , expression)
illuminance (expression)
illuminance (expression , expression , expression)

loop_modstmt:
loop_mod integeropt

loop_mod:
break
continue

Expressions
The basic expressions are:

expression:
primary
expression binop expression
– expression
relation ? expression : expression
type expression

primary:
number
texture
identifier
stringconstant
procedurecall
assignexpression
(expression)
(expression , expression , expression)

relation:
(relation)
expression relop expression
relation logop relation
! relation

assignexpression:
identifier asgnop expression

procedurecall:
identifier (proc_argumentsopt)

proc_arguments:
expression
proc_arguments , expression

texture:
texture_type (texture_filename channelopt texture_argumentsopt)

146 Appendix B: RenderMan Shading Language Syntax Summary

texture_type:
texture
environment
bump
shadow

texture_filename:
identifier
stringconstant

channel:
[integer]

texture_arguments:
, expression
texture_arguments , expression

The primary-expression operators

()

have highest priority and group left-to-right. The unary operators

– !

have priority below the primary operators but higher than any binary or relational op-
erator and group right-to-left. Binary, relational, and logical operators all group left-to-
right and have priority decreasing as indicated:

binop:
.
/ *
^
+ –

relop:
> >= < <=
== !=

logop:
&&
||

The conditional operator groups right-to-left

? :

Assignment operators all have the same priority and all group right-to-left.

asgnop:
= += –= *= /=

Logical expressions have the value 1 for true, 0 for false. As in C, a non-zero logical ex-
pression is deemed to be true. In general, logical expressions are only defined for scalar
types. The exception is == and != which are defined for every type.

Preprocessor
#define identifier token-string
#define identifier (identifier , ... , identifier) token_string

Preprocessor 147

#undef identifier
#include "filename"
#include <filename>
#if constant-expression
#ifdef identifier
#ifndef identifier
#else
#endif
#line constant identifier

1: C Binding 149

Appendix C

LANGUAGE BINDING DETAILS

1: C Binding
The following is the file ri.h for the C binding of the RenderMan Interface. This file con-
tains all of the type, procedure, and global variable declarations and predefined con-
stant definitions that must be supported by a RenderMan renderer.

/*
 * RenderMan Interface Standard Include File
 * (for Kernighan & Ritchie 1978 "C Classic")
 */

/* Definitions of Abstract Types used in RI */

typedef short RtBoolean;
typedef long RtInt;
typedef float RtFloat;

typedef char * RtToken;

typedef RtFloat RtColor[3];
typedef RtFloat RtPoint[3];
typedef RtFloat RtMatrix[4][4];
typedef RtFloat RtBasis[4][4];
typedef RtFloat RtBound[6];

typedef char * RtString;

typedef char * RtPointer;
typedef int RtVoid;

typedef RtFloat (* RtFloatFunc)();
typedef RtVoid (* RtFunc)();

typedef RtPointer RtObjectHandle;
typedef RtPointer RtLightHandle;

150 AppendixC: Language Binding Details

/* Extern Declarations for Predefined RI Data Structures */

#define RI_FALSE 0
#define RI_TRUE (! RI_FALSE)
#define RI_INFINITY 1.0e38
#define RI_EPSILON 1.0e–10
#define RI_NULL ((RtToken)0)

extern RtToken RI_FRAMEBUFFER, RI_FILE;
extern RtToken RI_RGB, RI_RGBA, RI_RGBZ, RI_RGBAZ, RI_A, RI_Z, RI_AZ;
extern RtToken RI_PERSPECTIVE, RI_ORTHOGRAPHIC;
extern RtToken RI_HIDDEN, RI_PAINT;
extern RtToken RI_CONSTANT, RI_SMOOTH;
extern RtToken RI_FLATNESS, RI_FOV;

extern RtToken RI_AMBIENTLIGHT, RI_POINTLIGHT, RI_DISTANTLIGHT,
RI_SPOTLIGHT;

extern RtToken RI_INTENSITY, RI_LIGHTCOLOR, RI_FROM, RI_TO,
RI_CONEANGLE, RI_CONEDELTAANGLE, RI_BEAMDISTRIBUTION;

extern RtToken RI_MATTE, RI_METAL, RI_SHINYMETAL,
RI_PLASTIC, RI_PAINTEDPLASTIC;

extern RtToken RI_KA, RI_KD, RI_KS, RI_ROUGHNESS, RI_KR,
RI_TEXTURENAME, RI_SPECULARCOLOR;

extern RtToken RI_DEPTHCUE, RI_FOG, RI_BUMPY;
extern RtToken RI_MINDISTANCE, RI_MAXDISTANCE, RI_BACKGROUND,

RI_DISTANCE, RI_AMPLITUDE;

extern RtToken RI_RASTER, RI_SCREEN, RI_CAMERA, RI_WORLD, RI_OBJECT;
extern RtToken RI_INSIDE, RI_OUTSIDE, RI_LH, RI_RH;
extern RtToken RI_P, RI_PZ, RI_PW, RI_N, RI_NP, RI_CS, RI_OS,

RI_S, RI_T, RI_ST;
extern RtToken RI_BILINEAR, RI_BICUBIC;
extern RtToken RI_PRIMITIVE, RI_INTERSECTION, RI_UNION, RI_DIFFERENCE;
extern RtToken RI_PERIODIC, RI_NONPERIODIC, RI_CLAMP, RI_BLACK;
extern RtToken RI_IGNORE, RI_PRINT, RI_ABORT, RI_HANDLER;

extern RtBasis RiBezierBasis, RiBSplineBasis, RiCatmullRomBasis,
RiHermiteBasis, RiPowerBasis;

#define RI_BEZIERSTEP ((RtInt)3)
#define RI_BSPLINESTEP ((RtInt)1)
#define RI_CATMULLROMSTEP ((RtInt)1)
#define RI_HERMITESTEP ((RtInt)2)
#define RI_POWERSTEP ((RtInt)4)

extern RtInt RiLastError;

/* Declarations of All the RenderMan Interface Subroutines */

extern RtFloat RiGaussianFilter(), RiBoxFilter(), RiTriangleFilter(),
RiCatmullRomFilter(), RiSincFilter();

extern RtVoid RiErrorIgnore();
extern RtVoid RiErrorPrint();
extern RtVoid RiErrorAbort();

extern RtToken RiDeclare();

1: C Binding 151

extern RtVoid RiBegin(), RiEnd(),
RiFrameBegin(), RiFrameEnd(),
RiWorldBegin(), RiWorldEnd();

extern RtVoid RiFormat(), RiFrameAspectRatio(), RiScreenWindow(),
RiCropWindow(), RiProjection(), RiProjectionV(),
RiClipping(), RiDepthOfField(), RiShutter();

extern RtVoid RiPixelVariance(), RiPixelSamples(), RiPixelFilter(),
RiExposure(), RiImager(), RiImagerV(),
RiQuantize(), RiDisplay(), RiDisplayV();

extern RtVoid RiHider(), RiHiderV(), RiColorSamples(), RiRelativeDetail(),
RiOption(), RiOptionV();

extern RtVoid RiAttributeBegin(), RiAttributeEnd(),
RiColor(), RiOpacity(), RiTextureCoordinates();

extern RtLightHandleRiLightSource(), RiLightSourceV(),
RiAreaLightSource(), RiAreaLightSourceV();

extern RtVoid RiIlluminate(),
RiSurface(), RiSurfaceV(), RiAtmosphere(), RiAtmosphereV(),
RiInterior(), RiInteriorV(), RiExterior(), RiExteriorV(),
RiShadingRate(), RiShadingInterpolation(), RiMatte();

extern RtVoid RiBound(), RiDetail(), RiDetailRange(),
RiGeometricApproximation(),
RiOrientation(), RiReverseOrientation(), RiSides();

extern RtVoid RiIdentity(), RiTransform(), RiConcatTransform(),
RiPerspective(), RiTranslate(), RiRotate(), RiScale(), RiSkew(),
RiDeformation(), RiDeformationV(),
RiDisplacement(), RiDisplacementV(), RiCoordinateSystem();

extern RtPoint *RiTransformPoints();
extern RtVoid RiTransformBegin(), RiTransformEnd();

extern RtVoid RiAttribute(), RiAttributeV();

extern RtVoid RiPolygon(), RiPolygonV(),
RiGeneralPolygon(), RiGeneralPolygonV(),
RiPointsPolygons(), RiPointsPolygonsV(),
RiPointsGeneralPolygons(), RiPointsGeneralPolygonsV(),
RiBasis(), RiPatch(), RiPatchV(), RiPatchMesh(), RiPatchMeshV(),
RiNuPatch(), RiNuPatchV(), RiTrimCurve();

extern RtVoid RiSphere(), RiSphereV(), RiCone(), RiConeV(),
RiCylinder(), RiCylinderV(), RiHyperboloid(), RiHyperboloidV(),
RiParaboloid(), RiParaboloidV(), RiDisk(), RiDiskV(),
RiTorus(), RiTorusV(),
RiProcedural(), RiGeometry(), RiGeometryV();

extern RtVoid RiSolidBegin(), RiSolidEnd() ;
extern RtObjectHandle RiObjectBegin();
extern RtVoid RiObjectEnd(), RiObjectInstance(),

RiMotionBegin(), RiMotionBeginV(), RiMotionEnd() ;

extern RtVoid RiMakeTexture(), RiMakeTextureV(), RiMakeBump(), RiMakeBumpV(),
RiMakeLatLongEnvironment(), RiMakeLatLongEnvironmentV(),

152 AppendixC: Language Binding Details

RiMakeCubeFaceEnvironment(), RiMakeCubeFaceEnvironmentV(),
RiMakeShadow(), RiMakeShadowV();

extern RtVoid RiErrorHandler();

/*
Error Codes

 1 - 10 System and File Errors
11 - 20 Program Limitations
21 - 40 State Errors
41 - 60 Parameter and Protocol Errors
61 - 80 Execution Errors

*/

#define RIE_NOERROR ((RtInt)0)

#define RIE_NOMEM ((RtInt)1) /* Out of memory */
#define RIE_SYSTEM ((RtInt)2) /* Miscellaneous system error */
#define RIE_NOFILE ((RtInt)3) /* File nonexistent */
#define RIE_BADFILE ((RtInt)4) /* Bad file format */
#define RIE_VERSION ((RtInt)5) /* File version mismatch */

#define RIE_INCAPABLE ((RtInt)11) /* Optional RI feature */
#define RIE_UNIMPLEMENT ((RtInt)12) /* Unimplemented feature */
#define RIE_LIMIT ((RtInt)13) /* Arbitrary program limit */
#define RIE_BUG ((RtInt)14) /* Probably a bug in renderer */

#define RIE_NOTSTARTED ((RtInt)23) /* RiBegin not called */
#define RIE_NESTING ((RtInt)24) /* Bad begin-end nesting */
#define RIE_NOTOPTIONS ((RtInt)25) /* Invalid state for options */
#define RIE_NOTATTRIBS ((RtInt)26) /* Invalid state for attribs */
#define RIE_NOTPRIMS ((RtInt)27) /* Invalid state for primitives */
#define RIE_ILLSTATE ((RtInt)28) /* Other invalid state */
#define RIE_BADMOTION ((RtInt)29) /* Badly formed motion block */
#define RIE_BADSOLID ((RtInt)30) /* Badly formed solid block */

#define RIE_BADTOKEN ((RtInt)41) /* Invalid token for request */
#define RIE_RANGE ((RtInt)42) /* Parameter out of range */
#define RIE_CONSISTENCY ((RtInt)43) /* Parameters inconsistent */
#define RIE_BADHANDLE ((RtInt)44) /* Bad object/light handle */
#define RIE_NOSHADER ((RtInt)45) /* Can’t load requested shader */
#define RIE_MISSINGDATA ((RtInt)46) /* Required parameters not provided */
#define RIE_SYNTAX ((RtInt)47) /* Declare type syntax error */

#define RIE_MATH ((RtInt)61) /* Zerodivide, noninvert matrix, etc. */

/* Error severity levels */

#define RIE_INFO ((RtInt)0) /* Rendering stats and other info */
#define RIE_WARNING ((RtInt)1) /* Something seems wrong, maybe okay */
#define RIE_ERROR ((RtInt)2) /* Problem. Results may be wrong */
#define RIE_SEVERE ((RtInt)3) /* So bad you should probably abort */

2: ANSI C Binding 153

2: ANSI C Binding
The following is the version of ri.h required for the ANSI-standard C binding of the
RenderMan Interface. It differs from the previous version only in the expected ways.

/*
 * RenderMan Interface Standard Include File
 * (for ANSI Standard C)
 */

/* Definitions of Abstract Types used in RI */

typedef short RtBoolean;
typedef long RtInt;
typedef float RtFloat;

typedef char * RtToken;

typedef RtFloat RtColor[3];
typedef RtFloat RtPoint[3];
typedef RtFloat RtMatrix[4][4];
typedef RtFloat RtBasis[4][4];
typedef RtFloat RtBound[6];
typedef char * RtString;

typedef void * RtPointer;
#define RtVoid void
typedef RtFloat (* RtFilterFunc)(RtFloat, RtFloat, RtFloat, RtFloat);
typedef RtVoid (* RtErroandler)(RtInt, Rtnt, char *);

typedef RtPointer RtObjectHandle;
typedef RtPointer RtLightHandle;

/* Extern Declarations for Predefined RI Data Structures */

#define RI_FALSE 0
#define RI_TRUE (! RI_FALSE)
#define RI_INFINITY 1.0e38
#define RI_EPSILON 1.0e–10
#define RI_NULL ((RtToken)0)

extern RtToken RI_FRAMEBUFFER, RI_FILE;
extern RtToken RI_RGB, RI_RGBA, RI_RGBZ, RI_RGBAZ, RI_A, RI_Z, RI_AZ;
extern RtToken RI_PERSPECTIVE, RI_ORTHOGRAPHIC;
extern RtToken RI_HIDDEN, RI_PAINT;
extern RtToken RI_CONSTANT, RI_SMOOTH;
extern RtToken RI_FLATNESS, RI_FOV;

extern RtToken RI_AMBIENTLIGHT, RI_POINTLIGHT, RI_DISTANTLIGHT,
RI_SPOTLIGHT;

extern RtToken RI_INTENSITY, RI_LIGHTCOLOR, RI_FROM, RI_TO, RI_CONEANGLE,
RI_CONEDELTAANGLE, RI_BEAMDISTRIBUTION;

extern RtToken RI_MATTE, RI_METAL, RI_SHINYMETAL,
RI_PLASTIC, RI_PAINTEDPLASTIC;

154 AppendixC: Language Binding Details

extern RtToken RI_KA, RI_KD, RI_KS, RI_ROUGHNESS, RI_KR,
RI_TEXTURENAME, RI_SPECULARCOLOR;

extern RtToken RI_DEPTHCUE, RI_FOG, RI_BUMPY;
extern RtToken RI_MINDISTANCE, RI_MAXDISTANCE, RI_BACKGROUND,

RI_DISTANCE, RI_AMPLITUDE;

extern RtToken RI_RASTER, RI_SCREEN, RI_CAMERA, RI_WORLD, RI_OBJECT;
extern RtToken RI_INSIDE, RI_OUTSIDE, RI_LH, RI_RH;
extern RtToken RI_P, RI_PZ, RI_PW, RI_N, RI_NP, RI_CS, RI_OS, RI_S, RI_T, RI_ST;
extern RtToken RI_BILINEAR, RI_BICUBIC;
extern RtToken RI_PRIMITIVE, RI_INTERSECTION, RI_UNION, RI_DIFFERENCE;
extern RtToken RI_PERIODIC, RI_NONPERIODIC, RI_CLAMP, RI_BLACK;
extern RtToken RI_IGNORE, RI_PRINT, RI_ABORT, RI_HANDLER;

extern RtBasis RiBezierBasis, RiBSplineBasis, RiCatmullRomBasis,
RiHermiteBasis, RiPowerBasis;

#define RI_BEZIERSTEP ((RtInt)3)
#define RI_BSPLINESTEP ((RtInt)1)
#define RI_CATMULLROMSTEP ((RtInt)1)
#define RI_HERMITESTEP ((RtInt)2)
#define RI_POWERSTEP ((RtInt)4)

extern RtInt RiLastError;

/* Declarations of All the RenderMan Interface Subroutines */

extern RtFloat RiGaussianFilter(RtFloat x, RtFloat y,
RtFloat xwidth, RtFloat ywidth);

extern RtFloat RiBoxFilter(RtFloat x, RtFloat y,
RtFloat xwidth, RtFloat ywidth);

extern RtFloat RiTriangleFilter(RtFloat x, RtFloat y,
RtFloat xwidth, RtFloat ywidth);

extern RtFloat RiCatmullRomFilter(RtFloat x, RtFloat y,
RtFloat xwidth, RtFloat ywidth);

extern RtFloat RiSincFilter(RtFloat x, RtFloat y,
RtFloat xwidth, RtFloat ywidth);

extern RtVoid RiErrorIgnore(RtInt code, RtInt severity, char *msg);
extern RtVoid RiErrorPrint(RtInt code, RtInt severity, char *msg);
extern RtVoid RiErrorAbort(RtInt code, RtInt severity, char *msg);

extern RtToken
RiDeclare(char *name, char *declaration);

extern RtVoid
RiBegin(RtToken name),
RiEnd(void),
RiFrameBegin(RtInt frame),
RiFrameEnd(void),
RiWorldBegin(void),
RiWorldEnd(void);

extern RtVoid
RiFormat(RtInt xres, RtInt yres, RtFloat aspect),
RiFrameAspectRatio(RtFloat aspect),

2: ANSI C Binding 155

RiScreenWindow(RtFloat left, RtFloat right, RtFloat bot, RtFloat top),
RiCropWindow(RtFloat xmin, RtFloat xmax, RtFloat ymin, RtFloat ymax),
RiProjection(RtToken name, ...),
RiProjectionV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]),
RiClipping(RtFloat hither, RtFloat yon),
RiDepthOfField(RtFloat fstop, RtFloat focallength, RtFloat focaldistance),
RiShutter(RtFloat min, RtFloat max);

extern RtVoid
RiPixelVariance(RtFloat variation),
RiPixelSamples(RtFloat xsamples, RtFloat ysamples),
RiPixelFilter(RtFilterFunc filterfunc, RtFloat xwidth, RtFloat ywidth),
RiExposure(RtFloat gain, RtFloat gamma),
RiImager(RtToken name, ...),
RiImagerV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]),
RiQuantize(RtToken type, RtInt one, RtInt min, RtInt max, RtFloat ampl),
RiDisplay(char *name, RtToken type, RtToken mode, ...),
RiDisplayV(char *name, RtToken type, RtToken mode,

RtInt n, RtToken tokens[], RtPointer parms[]);

extern RtVoid
RiHider(RtToken type, ...),
RiHiderV(RtToken type, RtInt n, RtToken tokens[], RtPointer parms[]),
RiColorSamples(RtInt n, RtFloat nRGB[], RtFloat RGBn[]),
RiRelativeDetail(RtFloat relativedetail),
RiOption(RtToken name, ...),
RiOptionV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]);

extern RtVoid
RiAttributeBegin(void),
RiAttributeEnd(void),
RiColor(RtColor color),
RiOpacity(RtColor color),
RiTextureCoordinates(RtFloat s1, RtFloat t1, RtFloat s2, RtFloat t2,

RtFloat s3, RtFloat t3, RtFloat s4, RtFloat t4);

extern RtLightHandle
RiLightSource(RtToken name, ...),
RiLightSourceV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]),
RiAreaLightSource(RtToken name, ...),
RiAreaLightSourceV(RtToken name,

RtInt n, RtToken tokens[], RtPointer parms[]);
extern RtVoid

RiIlluminate(RtLightHandle light, RtBoolean onoff),
RiSurface(RtToken name, ...),
RiSurfaceV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]),
RiAtmosphere(RtToken name, ...),
RiAtmosphereV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]),
RiInterior(RtToken name, ...),
RiInteriorV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]),
RiExterior(RtToken name, ...),
RiExteriorV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]),
RiShadingRate(RtFloat size),

156 AppendixC: Language Binding Details

RiShadingInterpolation(RtToken type),
RiMatte(RtBoolean onoff);

extern RtVoid
RiBound(RtBound bound),
RiDetail(RtBound bound),
RiDetailRange(RtFloat minvis, RtFloat lowtran, RtFloat uptran, RtFloat maxvis),
RiGeometricApproximation(RtToken type, RtFloat value),
RiOrientation(RtToken orientation),
RiReverseOrientation(void),
RiSides(RtInt sides);

extern RtVoid
RiIdentity(void),
RiTransform(RtMatrix transform),
RiConcatTransform(RtMatrix transform),
RiPerspective(RtFloat fov),
RiTranslate(RtFloat dx, RtFloat dy, RtFloat dz),
RiRotate(RtFloat angle, RtFloat dx, RtFloat dy, RtFloat dz),
RiScale(RtFloat sx, RtFloat sy, RtFloat sz),
RiSkew(RtFloat angle, RtFloat dx1, RtFloat dy1, RtFloat dz1,

RtFloat dx2, RtFloat dy2, RtFloat dz2),
RiDeformation(RtToken name, ...),
RiDeformationV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]),
RiDisplacement(RtToken name, ...),
RiDisplacementV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]),
RiCoordinateSystem(RtToken space);

extern RtPoint *
RiTransformPoints(RtToken fromspace, RtToken tospace, RtInt n,

RtPoint points[]);

extern RtVoid
RiTransformBegin(void),
RiTransformEnd(void);

extern RtVoid
RiAttribute(RtToken name, ...),
RiAttributeV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]);

extern RtVoid
RiPolygon(RtInt nverts, ...),
RiPolygonV(RtInt nverts, RtInt n, RtToken tokens[], RtPointer parms[]),
RiGeneralPolygon(RtInt nloops, RtInt nverts[], ...),
RiGeneralPolygonV(RtInt nloops, RtInt nverts[],

RtInt n, RtToken tokens[], RtPointer parms[]),
RiPointsPolygons(RtInt npolys, RtInt nverts[], RtInt verts[], ...),
RiPointsPolygonsV(RtInt npolys, RtInt nverts[], RtInt verts[],

RtInt n, RtToken tokens[], RtPointer parms[]),
RiPointsGeneralPolygons(RtInt npolys, RtInt nloops[], RtInt nverts[],

RtInt verts[], ...),
RiPointsGeneralPolygonsV(RtInt npolys, RtInt nloops[], RtInt nverts[],

RtInt verts[], RtInt n, RtToken tokens[], RtPointer parms[]),
RiBasis(RtBasis ubasis, RtInt ustep, RtBasis vbasis, RtInt vstep),
RiPatch(RtToken type, ...),

2: ANSI C Binding 157

RiPatchV(RtToken type, RtInt n, RtToken tokens[], RtPointer parms[]),
RiPatchMesh(RtToken type, RtInt nu, RtToken uwrap,

RtInt nv, RtToken vwrap, ...),
RiPatchMeshV(RtToken type, RtInt nu, RtToken uwrap,

RtInt nv, RtToken vwrap,
RtInt n, RtToken tokens[], RtPointer parms[]),

RiNuPatch(RtInt nu, RtInt uorder, RtFloat uknot[], RtFloat umin, RtFloat umax,
RtInt nv, RtInt vorder, RtFloat vknot[], RtFloat vmin,
RtFloat vmax, ...),

RiNuPatchV(RtInt nu, RtInt uorder, RtFloat uknot[], RtFloat umin,
RtFloat umax, RtInt nv, RtInt vorder, RtFloat vknot[],
RtFloat vmin, RtFloat vmax,
RtInt n, RtToken tokens[], RtPointer parms[]),

RiTrimCurve(RtInt nloops, RtInt ncurves[], RtInt order[], RtFloat knot[],
RtFloat min[], RtFloat max[], RtInt n[],
RtFloat u[], RtFloat v[], RtFloat w[]);

extern RtVoid
RiSphere(RtFloat radius, RtFloat zmin, RtFloat zmax, RtFloat tmax, ...),
RiSphereV(RtFloat radius, RtFloat zmin, RtFloat zmax, RtFloat tmax,

RtInt n, RtToken tokens[], RtPointer parms[]),
RiCone(RtFloat height, RtFloat radius, RtFloat tmax, ...),
RiConeV(RtFloat height, RtFloat radius, RtFloat tmax,

RtInt n, RtToken tokens[], RtPointer parms[]),
RiCylinder(RtFloat radius, RtFloat zmin, RtFloat zmax, RtFloat tmax, ...),
RiCylinderV(RtFloat radius, RtFloat zmin, RtFloat zmax, RtFloat tmax,

RtInt n, RtToken tokens[], RtPointer parms[]),
RiHyperboloid(RtPoint point1, RtPoint point2, RtFloat tmax, ...),
RiHyperboloidV(RtPoint point1, RtPoint point2, RtFloat tmax,

RtInt n, RtToken tokens[], RtPointer parms[]),
RiParaboloid(RtFloat rmax, RtFloat zmin, RtFloat zmax, RtFloat tmax, ...),
RiParaboloidV(RtFloat rmax, RtFloat zmin, RtFloat zmax, RtFloat tmax,

RtInt n, RtToken tokens[], RtPointer parms[]),
RiDisk(RtFloat height, RtFloat radius, RtFloat tmax, ...),
RiDiskV(RtFloat height, RtFloat radius, RtFloat tmax,

RtInt n, RtToken tokens[], RtPointer parms[]),
RiTorus(RtFloat majrad, RtFloat minrad, RtFloat phimin, RtFloat phimax,

RtFloat tmax, ...),
RiTorusV(RtFloat majrad, RtFloat minrad, RtFloat phimin, RtFloat phimax,

RtFloat tmax, RtInt n, RtToken tokens[], RtPointer parms[]),
RiProcedural(RtPointer data, RtBound bound,

RtVoid (*subdivfunc)(RtPointer, RtFloat),
RtVoid (*freefunc)(RtPointer)

RiGeometry(RtToken type, ...),
RiGeometryV(RtToken type, RtInt n, RtToken tokens[], RtPointer parms[]);

extern RtVoid
RiSolidBegin(RtToken operation),
RiSolidEnd(void) ;

extern RtObjectHandle
RiObjectBegin(void);

158 AppendixC: Language Binding Details

extern RtVoid
RiObjectEnd(void),
RiObjectInstance(RtObjectHandle handle),
RiMotionBegin(RtInt n, ...),
RiMotionBeginV(RtInt n, RtFloat times[]),
RiMotionEnd(void) ;

extern RtVoid
RiMakeTexture(char *pic, char *tex, RtToken swrap, RtToken twrap,

RtFilterFunc filterfunc, RtFloat swidth, RtFloat twidth, ...),
RiMakeTextureV(char *pic, char *tex, RtToken swrap, RtToken twrap,

RtFilterFunc filterfunc, RtFloat swidth, RtFloat twidth,
RtInt n, RtToken tokens[], RtPointer parms[]),

RiMakeBump(char *pic, char *tex, RtToken swrap, RtToken twrap,
RtFilterFunc filterfunc, RtFloat swidth, RtFloat twidth, ...),

RiMakeBumpV(char *pic, char *tex, RtToken swrap, RtToken twrap,
RtFilterFunc filterfunc, RtFloat swidth, RtFloat twidth,
RtInt n, RtToken tokens[], RtPointer parms[]),

RiMakeLatLongEnvironment(char *pic, char *tex, RtFilterFunc filterfunc,
RtFloat swidth, RtFloat twidth, ...),

RiMakeLatLongEnvironmentV(char *pic, char *tex, RtFilterFunc filterfunc,
RtFloat swidth, RtFloat twidth,
RtInt n, RtToken tokens[], RtPointer parms[]),

RiMakeCubeFaceEnvironment(char *px, char *nx, char *py, char *ny,
char *pz, char *nz, char *tex, RtFloat fov,
RtFilterFunc filterfunc, RtFloat swidth, RtFloat ywidth, ...),

RiMakeCubeFaceEnvironmentV(char *px, char *nx, char *py, char *ny,
char *pz, char *nz, char *tex, RtFloat fov,
RtFilterFunc filterfunc, RtFloat swidth, RtFloat ywidth,
RtInt n, RtToken tokens[], RtPointer parms[]),

RiMakeShadow(char *pic, char *tex, ...),
RiMakeShadowV(char *pic, char *tex,

RtInt n, RtToken tokens[], RtPointer parms[]);

extern RtVoid
RiErrorHandler(RtFunc handler);

/*
Error Codes

 1 - 10 System and File Errors
11 - 20 Program Limitations
21 - 40 State Errors
41 - 60 Parameter and Protocol Errors
61 - 80 Execution Errors

*/

#define RIE_NOERROR ((RtInt)0)

#define RIE_NOMEM ((RtInt)1) /* Out of memory */
#define RIE_SYSTEM ((RtInt)2) /* Miscellaneous system error */
#define RIE_NOFILE ((RtInt)3) /* File nonexistent */

2: ANSI C Binding 159

#define RIE_BADFILE ((RtInt)4) /* Bad file format */
#define RIE_VERSION ((RtInt)5) /* File version mismatch */

#define RIE_INCAPABLE ((RtInt)11) /* Optional RI feature */
#define RIE_UNIMPLEMENT ((RtInt)12) /* Unimplemented feature */
#define RIE_LIMIT ((RtInt)13) /* Arbitrary program limit */
#define RIE_BUG ((RtInt)14) /* Probably a bug in renderer */

#define RIE_NOTSTARTED ((RtInt)23) /* RiBegin not called */
#define RIE_NESTING ((RtInt)24) /* Bad begin-end nesting */
#define RIE_NOTOPTIONS ((RtInt)25) /* Invalid state for options */
#define RIE_NOTATTRIBS ((RtInt)26) /* Invalid state for attribs */
#define RIE_NOTPRIMS ((RtInt)27) /* Invalid state for primitives */
#define RIE_ILLSTATE ((RtInt)28) /* Other invalid state */
#define RIE_BADMOTION ((RtInt)29) /* Badly formed motion block */
#define RIE_BADSOLID ((RtInt)30) /* Badly formed solid block */

#define RIE_BADTOKEN ((RtInt)41) /* Invalid token for request */
#define RIE_RANGE ((RtInt)42) /* Parameter out of range */
#define RIE_CONSISTENCY ((RtInt)43) /* Parameters inconsistent */
#define RIE_BADHANDLE ((RtInt)44) /* Bad object/light handle */
#define RIE_NOSHADER ((RtInt)45) /* Can’t load requested shader */
#define RIE_MISSINGDATA ((RtInt)46) /* Required parameters not provided */
#define RIE_SYNTAX ((RtInt)47) /* Declare type syntax error */

#define RIE_MATH ((RtInt)61) /* Zerodivide, noninvert matrix, etc. */

/* Error severity levels */

#define RIE_INFO ((RtInt)0) /* Rendering stats and other info */
#define RIE_WARNING ((RtInt)1) /* Something seems wrong, maybe okay */
#define RIE_ERROR ((RtInt)2) /* Problem. Results may be wrong */
#define RIE_SEVERE ((RtInt)3) /* So bad you should probably abort */

160 AppendixC: Language Binding Details

3: RIB Binding
The RenderMan Interface Bytestream Protocol, abbreviated RIB, is a byte-oriented pro-
tocol for specifying requests to the RenderMan Interface (RI) library. RIB permits cli-
ents of the RenderMan Interface to communicate requests to a remote rendering ser-
vice, or to save requests in a file for later submission to a renderer. To satisfy the many
different needs of clients, the protocol is designed to provide both

• an understandable (potentially) interactive interface to a rendering server, and

• a compact encoded format that minimizes transmission time (and space when
stored in a file)

RIB also strives to minimize the amount of communication from a server to a client.
This is particularly important in the situation where no communication is possible; e.g.,
when recording RIB in a file.

RIB is a byte stream protocol. That is, RIB interpreters work by scanning the input
stream one byte at a time. This implies interpreters should make no assumptions about
data alignment. The protocol is best thought of as a command language where tokens
in the input stream can be transmitted either as 7-bit ASCII strings or, optionally, as
compressed binary data. The ASCII interface provides a convenient interface for users
to interactively communicate with a rendering server and for developers to debug sys-
tems that generate RIB. The binary encoding significantly compresses the data stream
associated with an RI description with an associated savings in communication over-
head and/or file storage cost.

Syntax rules

RenderMan Interface Protocol requests are constructed from sequences of tokens. To-
kens are formed by the input scanner by grouping characters according to the RIB syn-
tax rules (described below). Other than requirements associated with delimiting to-
kens, RIB employs a free format syntax.

Character set

The standard character set is the printable subset of the ASCII character set, plus the
characters space, tab, and newline (return or line-feed). Non-printing characters are ac-
cepted, but are discouraged as they impair portability.

The characters space, tab, and newline are referred to as white space characters and are
treated equivalently (except when they appear in comments or strings). White space is
used to delimit syntactic constructs such as identifiers or numbers. Any number of con-
secutive white space characters are treated as a single white space character.

The characters ‘"’, ’#’, ’[’, and ’]’ are special: they delimit syntactic entities. All other
characters are termed regular characters and may be used in constructing syntactic enti-
ties such as identifiers and numbers.

Comments

Any occurrence of the ‘#’ character, except when in a string, indicates a comment. The
comment consists of all characters between the ‘#’ and the next newline character.
Comments are treated as white space when they are encountered by the input scanner.

3: RIB Binding 161

Numbers

Numbers include signed integers and reals. An integer consists of an optional sign (‘+’,
‘–’) followed by one or more decimal digits. The number is interpreted as a signed dec-
imal integer.

A real consists of an optional sign and one or more decimal digits, with an embedded
period (decimal point), a trailing exponent, or both. The exponent, if present, consists
of ‘E’ or ‘e’ followed by an optional sign and one or more decimal digits. The number
is interpreted as a real number and converted to an internal floating point value.

Strings

A string is an arbitrary sequence of characters delimited by double quote marks (‘"’).
Within a string the only special characters are ‘"’ and the ‘\’ (back-slash) character. The
‘\’ character is used as an ‘escape’ to include the ‘"’ character, non-printing characters,
and the ‘\’ character itself. The character immediately following the ‘\’ determines the
precise interpretation, as follows:

\n linefeed (newline)
\r carriage return
\t horizontal tab
\b backspace
\f form feed
\\ backslash
\" double quote
\ddd character code ddd (octal)
\newline no character — both are ignored

If the character following the ‘\’ is not one of the above, the ‘\’ is ignored.

The \ddd form may be used to include any 8-bit character constant in a string. One, two,
or three octal digits may be specified (with high-order overflow ignored).

The \newline form is used to break a string into a number of lines but not have the new-
lines be part of the string.

Names

Any token that consists entirely of regular characters and that cannot be interpreted as
a number is treated as a name. All characters except specials and white space can appear
in names.

Arrays

The characters ‘[’ and ‘]’ are self-delimiting tokens that specify the construction of an
array of numbers or strings. An array cannot contain both numbers and strings. If an
array contains at least one floating point value, all integer values in the array are con-
verted to floating point. Arrays of numbers are used, for example, to specify matrices
and points. Arrays of strings are used in specifying options.

Binary encoding

For efficiency, compressed binary encodings of many types of data are also supported.
These encodings may be freely intermixed with the normal ASCII strings. The two en-
codings are differentiated by the top bit of the eight-bit bytes in the input stream. If the
top bit is zero, then the byte is interpreted as a 7-bit ASCII character. Otherwise, if the

162 AppendixC: Language Binding Details

top bit is one, the byte is interpreted as a compressed token according to the rules given
below. This differentiation is not applied within string constants or the parameter bytes
which follow the initial byte of a compressed token. Table C1 shows the encoding for
compressed tokens with all byte values displayed in octal.

Table C1 Binary Encoding

Four separate data types are supported: signed integers, signed fixed-point numbers,
strings, and floating-point numbers. Integers and fixed-point numbers are encoded us-
ing a single format while strings are encoded with two different formats according to
the length of the string. Both single- and double-precision IEEE format floating-point
numbers are supported. Strings that are used repeatedly can be defined and then subse-
quently referenced with a compact form that is usually more space efficient.

Arrays of floating-point values are directly supported for efficiency (they can also be
specified using the array definition symbols). Single-precision matrices (arrays of 16
floating-point values) can be specified in a total of 66 bytes, while other arrays may re-
quire slightly more.

In the following sections the syntax for each encoding is presented as a sequence of
bytes separated by ‘|’ symbols. Numeric values should interpreted as octal values
(base 8) if they have a leading ‘0’ digit, otherwise as decimal values. Items shown in
angle brackets ‘< >’ represent varying items, such as a numeric value or string that is
being encoded.

Integers and fixed-point numbers. Integer and fixed-point values can be transmitted
in 2-5 bytes. The encoded token has the form:

0200 + (d ⋅ 4) + w | <value>

where the next w+1 bytes form a signed integer taken from the most significant byte to
the least significant byte, and the bottom d bytes are after the decimal point.

Strings. Strings shorter than 16 bytes, say w bytes, can be transmitted with a prefixing
token:

0220 + w | <string>

Values Span Interpreted as...

0-0177 128 ASCII characters
0200-0217 16 encoded integers and fixed-point numbers
0220-0237 16 encoded strings of no more than 15 characters
0240-0243 4 encoded strings longer than 15 characters
0244 1 encoded single precision IEEE floating point value
0245 1 encoded double precision IEEE floating point value
0246 1 encoded RI request
0247-0307 32 nothing (reserved)
0310-0313 4 encoded single precision array (length follows)
0314 1 define encoded request
0315 2 define encoded string token
0317 2 interpolate defined string
0321-0377 46 nothing (reserved)

3: RIB Binding 163

Other strings must use a prefixing token followed by a variable length string length,
and then followed by the string itself:

0240 + l | <length> | <string>

where l+1 is the number of bytes needed to specify the length of the string, 0 <= l <= 3.
The string length is an unsigned value and is transmitted from most significant byte to
least significant byte. Unlike unencoded strings, there are no escape or special charac-
ters in an encoded string.

Defining strings. For strings that are to be transmitted repeatedly, a string token can be
defined with:

0315 + w | <token> | <string>

where w+1 is the number of bytes needed to specify the token, (1 or 2), and the string
being defined is transmitted in an encoded or unencoded form. The token is an un-
signed value and is transmitted from most significant byte to least significant byte. For
efficiency, the range of tokens defined should be as compact as possible.

Referencing defined strings. To interpolate a string that has previously been defined
(as described above), the following is used:

0317 + w | <token>

where the token refers to the string to be interpolated.

Floating-point values. Floating-point values are transmitted in single-precision or
double-precision IEEE format from most significant byte to least significant byte. Sin-
gle-precision floating-point values occupy four bytes in the input stream and double-
precision values occupy eight bytes.

Floating point arrays. Aggregates of single-precision floating-point values can be
transmitted with a prefixing token byte. Variable sized arrays are transmitted as a token
byte followed by a variable length array size, and then followed by the array itself:

0310 + l | <length> | <array of floats>

The array length is an unsigned value, l+1 bytes long, and is transmitted from most sig-
nificant byte to least significant byte.

Defining RI requests. Before an encoded request can be used, it must first be bound to
its ASCII equivalent with:

0314 | <code> | <string>

where the code is one byte and string is the ASCII form of the request.

Referencing defined RI requests. A previously defined RI request is referenced with
two bytes; a prefixing token, 0246, followed by a request code.

0246 | <code>

This means that no more than 256 RI requests can be directly encoded in the binary pro-
tocol.

Example. Consider the following sequence of RIB commands:

version 3.03
ErrorHandler "print"
Display "test.25.pic" "file" "rgba"
Format 512 307 1

164 AppendixC: Language Binding Details

Clipping 0.1 10000
WorldBegin
Declare "direction" "point"
LightSource "windowlight" 0 "direction" [1 0 −0.1]
Color [1 1 1]
Orientation "lh"
Sides 1
AttributeBegin
MotionBegin [0 1]
Translate 1.91851 0.213234 1.55
Sphere 2 −0.3 1.95 175
MotionEnd
AttributeEnd

This could translate into the encoded sequence of bytes shown in Figure C1.

Version Number

The RIB stream supports a special version request that is used internally to ensure that
the syntax of the stream is compatible with the parser being used.

version num Specifies the protocol version number of the RIB stream. The stream
specified in this document is version 3.03. A RIB parser may refuse to
parse streams with incompatible version numbers.

Error handling

There are two types of errors that may be encountered while processing a RIB input
stream: syntactic errors and semantic errors. Syntactic errors occur when the stream of to-
kens fails to form a syntactically legal statement or request. For example, a syntactic er-
ror occurs when a required parameter is missing, or when a string is left unterminated.
Semantic errors occur when a syntactically legal statement contains incorrect data; e.g.,
when a parameter that must be non-negative is specified to be –1.

RIB defines a number of syntactic errors and a limited number of semantic errors. In
theory RIB should be responsible only for syntactic errors. However, due to the weak
typing of programming languages such as C, semantic errors that can not be easily rec-
ognized within the RenderMan Interface software are checked at the RIB level. For ex-
ample, RIB checks arrays that are to be converted to matrices to be sure they have 16
values.

Table C2 shows the set of errors recognized by RIB. Detailed descriptions of the errors
are given below.

All errors encountered by a RIB interpreter require some associated action to be per-
formed. In the case of syntax errors, if input processing is to be continued, the input
scanner must resynchronize itself with the input stream. This synchronization is done by
reading and discarding tokens from the input stream until a valid RIB request token is
encountered. That is, any tokens between the point of the syntax error and the next re-
quest token are discarded. The protocol has been designed so that no more than one
request (along with any associated parameters) must be discarded when recovering
from an error.

Errors are handled in one of three ways:

3: RIB Binding 165

v e r s i o n 212 # version
003 007 256 E r r o r # 3.03 Error

H a n d l e r 225 # Handler "
p r i n t D i s # print" Dis
p l a y 315 \0 233 t # play <defstr 0 "t
e s t . 2 5 . p # est.25.p
i c 317 \0 315 001 224 f # ic"> <str 0> <defstr 1 "f
i l e 317 001 315 002 224 # ile"> <str 1> <defstr 2 "
r g b a 317 002 F o # rgba"> <str 2> Fo
r m a t 201 002 \0 201 # rmat 512

001 3 200 001 C l i p # 307 1 Clip
p i n g 211 031 231 201 # ping 0.1
’ 020 314 272 232 W o r # 10000 <defreq 0272 "Wor
l d B e g i n 246 # ldBegin"> <req

272 314 207 227 D e c l # 0272> <defreq 0207 "Decl
a r e 246 207 315 003 231 # are"> <req 0207> <defstr 3 "
d i r e c t i o # directio
n 317 003 315 004 225 p o # n"> <str 3> <defstr 4 "po
i n t 317 004 314 224 233 # int"> <str 4> <defreq 0224 "
L i g h t S o u # LightSou
r c e 246 224 315 005 233 # rce"> <req 0224> <defstr 5 "

w i n d o w l i # windowli
g h t 317 005 200 001 317 # ght"> <str 5> 1 <str

003 310 003 ? 200 \0 \0 \0 # 3> [1
\0 \0 \0 275 314 314 315 314 # 0 -0.1] <defreq

203 225 C o l o r 246 # 0203 "Color"> <req
203 310 003 ? 200 \0 \0 ? # 0203> [1
200 \0 \0 ? 200 \0 \0 314 # 1 1] <defreq
237 233 O r i e n t # 0237 "Orient

a t i o n 246 237 315 # ation"> <req 0237> <defstr
006 222 l h 317 006 314 254 # 6 "lh"> <str 6> <defreq 0254
225 S i d e s 246 254 # "Sides"> <req 0254>
200 001 314 177 236 A t t # 1 <defreq 0177 "Att

r i b u t e B e # ributeBe
g i n 246 177 314 227 233 # gin"> <req 0177> <defreq 0227 "

M o t i o n B e # MotionBe
g i n 246 227 310 002 \0 # gin"> <req 0227> [

\0 \0 \0 ? 200 \0 \0 314 # 0 1] <defreq
270 231 T r a n s l # 0270 "Transl

a t e 246 270 212 001 353 # ate"> <req 0270> 1.91851
211 6 226 212 001 214 314 # 0.213234 1.55

314 260 226 S p h e r # <defreq 0260 "Spher
e 246 260 200 002 211 263 4 # e"> <req 0260> 2 -0.3

212 001 363 3 201 \0 257 314 # 1.95 1.75 <defreq
230 231 M o t i o n # 0230 "Motion

E n d 246 230 314 200 234 # End"> <req 0230> <defreq 0200 "
A t t r i b u t # Attribut
e E n d 246 200 # eEnd"> <req 0200>

Figure C1 Example encoded RIB byte stream

166 AppendixC: Language Binding Details

Table C2 RIB Errors

• They are ignored and the rendering process will proceed to its completion no mat-
ter what input stream is provided.

• They cause diagnostic messages to be generated on the renderer’s standard error
stream, but they are otherwise ignored (the default).

• The first error causes a diagnostic message to be generated and the renderer termi-
nates immediately without creating an image.

If the RIB interpreter is acting as a network server, in direct communication with a cli-
ent application, the interpreter may send parsing error signals back to the client. These
signals take the form of the following RIB requests, though they are not valid in the cli-
ent-to-server stream. None of these error requests have arguments. Note that some er-
rors may not be recognized immediately by a RIB interpreter upon parsing a request.
This may be due to buffering or queuing built into the interface between the intepreter
and the renderer. In a client-server environment this may have implications for the cli-
ent application.

arraytoobig The interpreter was unable to allocate sufficient memory to store an ar-
ray specified in the input stream. This error is dependent on the inter-
preter’s implementation. Good implementations of a RIB interpreter
support arrays as large as memory will permit.

badargument The RIB interpreter encountered an invalid parameter value in parsing
a request.

EXAMPLE

Polygon "N" [...] # no "P" specified
PointsGeneralPolygons [2 2] [4 3 4]...# bad nloops

Name Description

arraytoobig insufficient memory to construct array
badargument incorrect parameter value
badarray invalid array specification
badbasis undefined basis matrix name
badcolor invalid color specification
badhandle invalid light or object handle
badparamlist parameter list type mismatch
badripcode invalid encoded RIB request code
badstringtoken undefined encoded string token
badtoken invalid binary token
badversion protocol version number mismatch
limitcheck overflowing an internal limit
outofmemory generic instance of insufficient memory
protocolbotch malformed binary encoding
stringtoobig insufficient memory to read string
syntaxerror general syntactic error
unregistered undefined RIB request

3: RIB Binding 167

badarray The number of items in an array is inappropriate for the specified pa-
rameter, or an array has both string and number elements.

EXAMPLE

Basis [0 1 2 3] Cone [1.5] Bound [0 1 0 "oops"]

badbasis The basis matrix name specified in a basis request is not known by the
RIB interpreter.

EXAMPLE

Basis "my-favorite-basis"

badcolor An invalid color was supplied as a parameter to a request. That is, an
array was specified with an incorrect number of elements.

EXAMPLE

Opacity [.5 1] # with 3-channel colors

badhandle An invalid light or object handle was supplied as a parameter to an Il-
luminate, ObjectInstance, LightSource, AreaLightSource, or ObjectBegin
request. For Illuminate, the light handle must be an integer value spec-
ified in a previous LightSource or AreaLightSource request. For Object-
Instance, the object handle must be an integer value specified in a pre-
vious ObjectBegin request. For LightSource, AreaLightSource, and Ob-
jectBegin this error is raised if the number specified for a light handle is
significantly larger than any previous handle; for example, specifying
3000 when the largest previous handle was 10 (this is used as a ‘‘sanity
check’’ to guard against corrupted input data.)

EXAMPLE

LightSource "finite" 1
Illuminate 99999

badparamlist In a token-value pair of a parameter list, the type of a value did not
agree with the declared type of the token.

EXAMPLE

Declare "gridsize" "uniform float[2]"
Option "limits" "gridsize" "not a number"

badripcode A binary encoded token that specified a RIB request used an undefined
request code. Request codes must be defined, prior to their use, with
the binary encoding protocol; see the section on Binary Encoding, p. 161.

badstringtoken A binary encoded string token referenced a string that had not previous-
ly been defined. The binary encoding scheme is described in Binary en-
coding.

badtoken A byte with the most significant bit set was not recognized as a valid
binary encoding. The binary encoding scheme is described in Binary en-
coding.

EXAMPLE

\300

168 AppendixC: Language Binding Details

badversion The RIB protocol version number specified in a version request was
greater than the protocol version number of the interpreter.

SEE ALSO

version

limitcheck An internal limit was encountered during normal operation of the in-
terpreter. Implementers of RIB interpreters are expected to avoid im-
posing arbitrary limits. Some implementations may, however, need to
limit the maximum size of strings, arrays, etc. due to memory con-
straints.

outofmemory The interpreter ran out of memory in the normal course of operation.
Interpreters are expected to utilize whatever memory is available in
their operating environment. If only a limited amount of memory is
present on the machine they are operating on, they may restrict their
use. If memory is arbitrarily limited, however, running out of space
should result in a limitcheck error, not outofmemory.

protocolbotch A protocol error was encountered while parsing binary encoded data
in the input stream. In particular, when defining a string or request
code, an expected string was not encountered. The binary encoding
scheme is described in Binary encoding.

stringtoobig The interpreter ran out of space while parsing a string. This error is a
specific instance of the outofmemory error.

SEE ALSO

outofmemory, limitcheck

syntaxerror The interpreter recognized a syntax error of indeterminate nature. Syn-
tax errors can occur from unterminated strings or invalid numbers.

EXAMPLE

"this is an unterminated string
01a3 # invalid integer

unregistered The interpreter encountered a name token that was not a valid request.
This is usually due to misspelling a request name, or not enclosing a
string in quote marks (").

EXAMPLE

Basis power 1

RIB File Structuring Conventions 169

Appendix D

RenderMan INTERFACE BYTESTREAM CONVENTIONS

Version 1.1

File structuring conventions for RIB files are presented to facilitate the use of RIB as a
file format for rendering interchange. A format for single User Entities is presented to
allow importing external models into existing RIB streams. Finally, we describe a ren-
dering services file format that will enable Render Managers to provide services to a
specific renderer.

RIB File Structuring Conventions
The RenderMan Interface Bytestream (RIB) is a complete specification of the required
interface between modelers and renderers. In a distributed modeling and rendering en-
vironment RIB serves well as a rendering file format. As RIB files are passed from one
site to another, utilities for shader management, scene editing, and rendering job dis-
patching (referred to hereafter as Render Managers) can benefit from additional infor-
mation not strictly required by rendering programs. Additional information relating to
User Entities, resource requirements and accounting can be embedded in the RIB file
by a modeler through the "proper" use of RIB in conjunction with some simple file
structuring conventions.

This section lays out a set of RIB file format conventions which are patterned loosely
after the model put forth in Adobe’s “Document Structuring Conventions.”

Conforming files

The conventions outlined in this section are optional in the sense that they are not in-
terpreted by a renderer and thus will not have any effect on the image produced. Al-
though a Render Manager may require conformance to these conventions, it may
choose to utilize or ignore any subset of the structural information present in the RIB
file. A RIB file is said to be conforming if it observes the Pixar RIB File Structuring Con-
ventions, and the conforming file can be expected to adhere to specific structuring con-
straints in that case.

Using RIB File structuring conventions

These conventions are designed to facilitate communication between modeling/
animation systems and network rendering management systems. In a distributed envi-
ronment many decisions relating to the final appearance of rendered frames may need

170 Appendix D: RIB Conventions

to be deferred until the selection of a particular renderer can be made. A render man-
agement system should provide the ability to tailor the scene to the resources and ca-
pabilities of the available rendering and output systems. Unfortunately, a modeling/
animation system cannot, in general, assume that any particular render management
services are available. The following strategies should thus be adopted with the goal of
making a RIB file reasonably self-contained and renderer-independent:

• Any nonstandard shaders, optional RenderMan features (motion blur, CSG, level
of detail) or textures should be flagged as special resource requirements.

• Renderer-specific options or attributes should be specified according to the special
comment conventions described below.

• Display-dependent RenderMan options should not be included except to indicate
to Render Managers that such options are mandatory.

RIB File structure conventions

Following is a structured list of components for a conforming RIB file that diagrams the
"proper" use of RIB. Some of the components are optional and will depend greatly on
the resource requirements of a given scene.

Scope

Indentation indicates the scope of the following command.

Preamble and global variable declarations (RIB requests: version, declare)
Static options and default attributes (image and display options, camera options)
Static camera transformations (camera location and orientation)
Frame block (if more than one frame)

Frame-specific variable declarations
Variable options and default attributes
Variable camera transforms
World block

(scene description)
User Entity (enclosed within AttributeBegin/AttributeEnd)
User Entity (enclosed within AttributeBegin/AttributeEnd)
User Entity

more frame blocks

This structure results from the vigorous application of the following Scoping Conven-
tions:

• No attribute inheritance should be assumed unless implicit in the definition of the
User Entity (i.e., within a hierarchy).

• No attribute should be exported except to establish either global or local defaults.

The RenderMan Specification provides block structuring to organize the components
of a RIB file. Although the use of blocks is only required for frame and world constructs
by the Specification, the liberal use of attribute and transform blocks is encouraged. A
modeler enables a Render Manager to freely manipulate, rearrange, or delete scene el-
ements (frames, cameras, lights, User Entities) by carefully bounding these elements in
the RIB file according to scope. A Render Manager might, for example, strip all of the
frames out of a RIB file and distribute them around a network of rendering servers.
This, of course, is only possible if the RIB file has been structured in such a way as to

RIB File Structuring Conventions 171

bound those things pertaining to a given frame within its frame block and those things
pertaining to all frames outside and before all frame blocks.

User Entities

A User Entity couples a collection of geometric primitives and/or User Entities with
shading and geometric attributes. As such it introduces a level of scope that is more local
than that implied by the RenderMan world block. Typically, the term User Entity refers
to a geometric element within a scene whose attributes or position a user may wish to
modify or tweak. Because there is some computational expense associated with attribute
block structuring, there is an intrinsic trade-off between control over individual User En-
tities and rendering time/memory requirements. At one extreme, the entire scene is
made up of one User Entity within one attribute block. At the other extreme, each poly-
gon is a User Entity and the renderer is forced to spend most of its time managing the
graphics state. Modeling programs and their users may wish to carefully weigh this
trade-off.

The Scoping Conventions above prescribe the following User Entity Conventions:

• All User Entities must be delimited by an attribute block.

• All User Entities must have an identifier attribute that uniquely characterizes that En-
tity to the user. Two special identifier attributes are provided to distinguish between
Entities organized by a geometric relationship (the name identifier) and Entities orga-
nized according to material makeup (the shadinggroup identifier).

• A User Entity must be completely described within its attribute block.

Nonportable options and attributes

The following list of RIB requests are restricted as they either limit the device indepen-
dence of the file or they control rendering quality or speed parameters. Render manag-
ers should provide this kind of control to users at render time. The inclusion of these re-
stricted requests by a modeler should indicate to a Render Manager that they are, in
some sense, mandatory. When including nonportable options or attributes in the RIB
file, they should be located contiguously (according to scope) in a RIB file.

Attribute FrameAspectRatio PixelSamples
CropWindow Imager PixelVariance
Exposure Option Quantize
Format PixelFilter ShadingRate

Conventions for structural hints

The ‘##’ character sequence is used to designate structural hints. Any characters found
after these special characters and before the next newline character are construed as
special hints intended for Render Managers. Such hints should conform to the conven-
tions outlined herein and should provide structural, resource, or administrative infor-
mation which cannot easily be incorporated into or derived from the standard RIB
stream. The same scoping considerations which apply to RIB should also be applied
toward special comments.

Header information

Header information must be located immediately beginning any conforming RIB file.
These hints should provide scene-global administrative and resource information.

172 Appendix D: RIB Conventions

Header entries should precede any RIB requests and must be contiguous. If a header
entry appears twice in a file, the first occurrence should be considered to be the true
value.

##RenderMan RIB-Structure 1.1 [keyword]
This entry should be the first line in a conforming RIB file. Its inclusion indi-
cates full conformance to these specifications. The addition of the special key-
word, Entity, specifies that the file conforms to the User Entity conventions de-
scribed in the Rib Entity Files section.

##Scene name
This entry allows a scene name to be associated with the RIB file.

##Creator name
Indicates the file creator (usually the name of the modeling or animation soft-
ware).

##CreationDate time
Indicates the time that the file was created. It is expressed as a string of charac-
ters and may be in any format.

##For name
Indicates the user name or user identifier (network address) of the individual
for whom the frames are intended.

##Frames number
Indicates the number of frames present in the file.

##Shaders shader1, shader2, ...
Indicates the names of nonstandard shaders required. When placed in the
header of a RIB file, any nonstandard shaders that appear in the entire file
should be listed. When placed within a frame block, any nonstandard shaders
that appear in that frame must be listed.

##Textures texture1, texture2, ...
Lists any preexisting textures required in the file. When placed in the header of
a RIB file, any preexisting textures that appear anywhere in the file should be
listed. When placed within a frame block, any preexisting shaders that appear
in that frame must be listed.

##CapabilitiesNeeded feature1, feature2, ...
Indicates any RenderMan Interface optional capabilites required in the file
(when located in the header) or required in the frame (when located at the top
of a frame block). The optional capabilities are:
• Area Light Sources • Motion Blur • Special Camera Projections
• Bump Mapping • Programmable Shading • Spectral Colors
• Deformations • Radiosity • Texture Mapping
• Displacements • Ray Tracing • Trim Curves
• Environment Mapping• Shadow Depth Mapping • Volume Shading
• Level Of Detail • Solid Modeling

See Part I, Section 1, Introduction, for a description of these capabilities.

Frame information

Frame-local information must be located directly after a FrameBegin RIB request and
be contiguous. These comments should provide frame-local information that contains
administrative and resource hints.

RIB File Structuring Conventions 173

##CameraOrientation eyex eyey eyez atx aty atz [upx upy upz]
Indicates the location and orientation of the camera for the current frame in
World Space coordinates. The up vector is optional and the default value is [0
1 0].

##Shaders shader1, shader2, ...
Lists the nonstandard shaders required in the current frame.

##Textures texture1, texture2, ...
Lists the nonstandard textures required in the current frame.

##CapabilitiesNeeded feature1, feature2, ...
Lists the special capabilities required in the current frame from among those
listed under Header Information.

Body Information

Body information may be located anywhere in the RIB file.

##Include filename
This entry allows the specification of a file name for inclusion in the RIB stream.
Note that the Include keyword itself does not cause the inclusion of the speci-
fied file. As with all structural hints, the Include keyword serves only as a spe-
cial hint for render management systems. As such, the Include keyword should
only be used if render management facilities are known to exist.

RIB File structuring example
##RenderMan RIB-Structure 1.1
##Scene Bouncing Ball
##Creator /usr/ucb/vi
##CreationDate 12:30pm 8/24/89
##For RenderMan Jones
##Frames 2
##Shaders PIXARmarble, PIXARwood, MyUserShader
##CapabilitiesNeeded ShadingLanguage Displacements
version 3.03
Declare "d" "uniform point"
Declare "squish" "uniform float"
Option "limits" "bucketsize" [6 6] #renderer specific
Option "limits" "gridsize" [18] #renderer specific
Format 1024 768 1 #mandatory resolution
Projection "perspective"
Clipping 10 1000.0
FrameBegin 1
##Shaders MyUserShader, PIXARmarble, PIXARwood
##CameraOrientation 10.0 10.0 10.0 0.0 0.0 0.0
Transform [.707107 –.408248 –.57735 0

0 .816497 –.57735 0
–.707107 –.408248 –.57735 0
0 0 17.3205 1]

WorldBegin
AttributeBegin
Attribute "identifier" "name" "myball"
Displacement "MyUserShader" "squish" 5

174 Appendix D: RIB Conventions

AttributeBegin
Attribute "identifier" "shadinggroup" ["tophalf"]
Surface "PIXARmarble"
Sphere .5 0 .5 360
AttributeEnd
AttributeBegin
Attribute "identifier" "shadinggroup" ["bothalf"]
Surface "plastic"
Sphere .5 -.5 0. 360
AttributeEnd
AttributeEnd
AttributeBegin
Attribute "identifier" "name" ["floor"]
Surface "PIXARwood" "roughness" [.3] "d" [1]
geometry for floor
Polygon "P" [–100. 0. –100. –100. 0. 100. 100. 0. 100. 10.0 0. –100.]
AttributeEnd
WorldEnd
FrameEnd
FrameBegin 2
##Shaders PIXARwood, PIXARmarble
##CameraOrientation 10.0 20.0 10.0 0.0 0.0 0.0
Transform [.707107 –.57735 –.408248 0

0 .57735 –.815447 0
–.707107 –.57735 –.408248 0
0 0 24.4949 1]

WorldBegin
AttributeBegin
Attribute "identifier" "name" ["myball"]
AttributeBegin
Attribute "identifier" "shadinggroup" ["tophalf"]
Surface "PIXARmarble"
ShadingRate .1
Sphere .5 0 .5 360
AttributeEnd
AttributeBegin
Attribute "identifier" "shadinggroup" ["bothalf"]
Surface "plastic"
Sphere .5 -.5 0 360
AttributeEnd
AttributeEnd
AttributeBegin
Attribute "identifier" "name" ["floor"]
Surface "PIXARwood" "roughness" [.3] "d" [1]
geometry for floor
AttributeEnd
WorldEnd
FrameEnd

RIB Entity Files 175

RIB Entity Files
A RIB Entity File contains a single User Entity. RIB Entity Files are incomplete since they
do not contain enough information to describe a frame to a renderer. RIB Entity Files
depend on Render Management services for integration into “legal,” or complete, RIB
Files. These files provide the mechanism for 3-D “clip-art” by allowing Render Manag-
ers to insert objects into preexisting scenes.

RIB Entity Files must conform to the User Entity Conventions described in the User En-
tites section on p. 171. To summarize, a User Entity must be delimited by an attribute
block, must have a name attribute, and must be completely contained within a single
attribute block. Three additional requirements must also be met:

• The header hint: ##RenderMan RIB-Structure 1.1 Entity must be included as the first line
of the file.

• The Entity must be built in an object coordinate system which is centered about the
origin.

• The Entity must have a RIB bound request to provide a single bounding box of all
geometric primitives in the User Entity.

RIB Entity File example

##RenderMan RIB-Structure 1.1 Entity
AttributeBegin #begin unit cube
Attribute "identifier" "name" "unitcube"
Bound –.5 .5 –.5 .5 –.5 .5
TransformBegin
far face
Polygon "P" [.5 .5 .5 –.5 .5 .5 –.5 –.5 .5 .5 –.5 .5]
Rotate 90 0 1 0
right face
Polygon "P" [.5 .5 .5 –.5 .5 .5 –.5 –.5 .5 .5 –.5 .5]
near face
Rotate 90 0 1 0
Polygon "P" [.5 .5 .5 –.5 .5 .5 –.5 –.5 .5 .5 –.5 .5]
left face
Rotate 90 0 1 0
Polygon "P" [.5 .5 .5 –.5 .5 .5 –.5 –.5 .5 .5 –.5 .5]
TransformEnd
TransformBegin
bottom face
Rotate 90 1 0 0
Polygon "P" [.5 .5 .5 –.5 .5 .5 –.5 –.5 .5 .5 –.5 .5]
TransformEnd
TransformBegin
top face
Rotate –90 1 0 0
Polygon "P" [.5 .5 .5 –.5 .5 .5 –.5 –.5 .5 .5 –.5 .5]
TransformEnd
AttributeEnd #end unit cube

176 Appendix D: RIB Conventions

RenderMan Renderer Resource Files
Renderer Resource Files are intended to provide information to Render Managers and
modelers about the specific features, attributes, options, and resources of a particular
renderer. In an environment where multiple renderers are available, a Render Manager
can provide the user with the ability to tailor RIB file to best suit the desired renderer.

Renderer Resource Files should be shipped with any RenderMan renderer and should
be updated on-site by the local system administrator to reflect the resources available
to a renderer. Only those sections containing site-specific information can be custom-
ized in this way. The simple ASCII format of Renderer Resource Files makes them easy
to read, modify and parse.

Format of Renderer Resource Files

A Renderer Resource File is broken up into a series of sections delimited by special key-
words. Within each section, all related information is provided using a section-specific
predefined format. A special include keyword is provided to simplify the task of cus-
tomizing Resource Files. The keywords are as follows:

 ##RenderMan Resource-1.0
Must be included as the first line in any Renderer Resource File.

##Renderer name
Requires the name of the renderer along with any revision or date information.

##Include file
Allows the inclusion of a specified file. This keyword should only be used in
sections which are modifiable.

##RenderManCapabilitiesAvailable
This keyword identifies the section enumerating the Capabilities provided by
the renderer. The list of capabilities are found in the Header information section
and in Section 1 (p. 3). Each capability implemented by the renderer must ap-
pear as one line in this section. No entries in this section should be modified.

##RendererSpecificAttributes
This keyword identifies the section which enumerates the Renderer Specific At-
tributes. These attributes are invoked with the RIB call Attribute. Each attribute
implemented by the renderer must appear as one line in this section with legal
RIB syntax. The class of all parameter identifiers must be declared previously
with a Declare RIB request. If arguments are required for a given attribute, the
entry should specify the default value for that attribute. No entries in this sec-
tion should be modified.

##RendererSpecificOptions
This keyword identifies the section which enumerates Renderer Specific Op-
tions. These attributes are invoked with the RIB call Option. Each option imple-
mented by the renderer must appear as one line in this section with legal RIB
syntax. The class of all parameter identifiers must be declared previously with
a Declare RIB request. No entries in this section should be modified.

##ShaderResources
This keyword identifies the section which enumerates Shaders available to the
renderer. Both built-in and programmed shaders should be listed here. A Ren-
derMan Shading Language declaration for each shader must be provided to

RenderMan Renderer Resource Files 177

enumerate the specific instantiated variables. A declaration may cross line
boundaries. This section can be customized to a specific site.

##TextureResources
This keyword identifies the section which enumerates the Textures available to
the renderer. The name of each texture may be followed on the same line by an
optional string which provides a short description of the Texture. If included,
the string should be preceded by the ‘#’ character. This section can be custom-
ized to a specific site.

Renderer Resource File example
##RenderMan Resource-1.0
##Renderer TrayRacer 1.0
##RenderManCapabilitiesAvailable
Solid Modeling
Motion Blur
Programmable Shading
Displacements
Bump Mapping
Texture Mapping
Ray Tracing
Environment Mapping
##RendererSpecificAttributes
Declare "refractionindex" "uniform float"
Declare "displacement" "uniform float"
Attribute "volume" "refractionindex" [1.0]
Attribute "bound" "displacement" 3.5
##RendererSpecificOptions
Declare "bucketsize" "uniform integer[2]"
Declare "texturememory" "uniform integer"
Declare "shader" "string"
Declare "texture" "string"
Option "limits" "bucketsize" [12 12]
Option "limits" "texturememory" 1024
Option "searchpath" "shader" "/usr/local/rman/shaders"
Option "searchpath" "texture" "/usr/local/rman/textures"
##ShaderResources
surface wood(

float ringscale = 10;
color lightwood = color(.3, .12, 0.0);
darkwood = color(.05, .01, .005);
float Ka =.2,

Kd =.4,
Ks =.6,
roughness =.1)

displacement dented(float Km = 1.0)
light slideprojector (

float fieldofview=PI/32;
point from = {8,-4,10), to = {0,0,0), up = point "eye" (0,1,0);
string slidename = "")

##Include othershaderfile

178 Appendix D: RIB Conventions

##TextureResources
brick
bluebrick
grass #kentucky bluegrass-1 square meter
moss #spanish moss
logo
##Include othertexturefile

Interface Routines 179

Appendix E

RenderMan INTERFACE QUICK REFERENCE

Interface Routines
Graphics State

Function Description

RiAreaLightSource(name,
parameterlist)

creates an area light and makes it the current
area light source. Each subsequent geometric
primitive is added to the list of surfaces that
define the area light.

RiAtmosphere(name, parameterlist) sets the current atmosphere shader.

RiAttribute(name, parameterlist); sets the parameters of the attribute name, using
the values specified in the token-value list
parameterlist.

RiAttributeBegin()
RiAttributeEnd()

pushes and pops the current set of attributes.

RiBegin(name)
RiEnd()

initializes and terminates a rendering session.

RiBound(bound) sets the current bound to bound.

RiClipping(near, far) sets the position of the near and far clipping
planes along the direction of view.

RiColor(color) sets the current color to color.

RiColorSamples(n, nRGB, RGBn) controls the number of color components or
samples to be used in specifying colors.

RiConcatTransform(transform) concatenates the transformation transform onto
the current transformation.

RiCoordinateSystem(space) marks the coordinate system defined by the
current transformation with the name space and
saves it.

RiCropWindow(xmin, xmax, ymin,
ymax)

renders only a subrectangle of the image.

RiDeformation(name, parameterlist) concatenates the named deformation shader
onto the current transformation.

180 Appendix E: RenderMan Interface Quick Reference

RiDepthOfField(fstop, focallength,
focaldistance)

focaldistance sets the distance along the direc-
tion of view at which objects will be in focus.

RiDetail(bound) sets the current detail to the area of the bounding
box bound in the raster coordinate system.

RiDetailRange(minvisible,
lowertransition, uppertransition,
maxvisible)

sets the current detail range.

RiDisplacement(name, parameterlist) sets the current displacement shader to the named
shader.

RiDisplay(name, type, mode,
parameterlist)

chooses a display by name and sets the type of
output being generated.

RiExposure(gain, gamma) controls the sensitivity and non-linearity of the
exposure process.

RiExterior(name, parameterlist) sets the current exterior volume shader.

RiFormat(xresolution, yresolution,
pixelaspectratio)

sets the horizontal (xresolution) and vertical
(yresolution) resolution (in pixels) of the image
to be rendered.

RiFrameAspectRatio(frameaspectratio) frameaspectratio is the ratio of the width to the
height of the desired image.

RiFrameBegin(frame)
RiFrameEnd()

marks the beginning and end of a single frame
of an animated sequence.

RiGeometricApproximation(type,
value)

The predefined geometric approximation is
"flatness".

RiHider(type, parameterlist) The standard types are "hidden", "paint", and
"null".

RiIdentity() sets the current transformation to the identity.

RiIlluminate(light, onoff) If onoff is RI_TRUE and the light source referred
to by the RtLightHandle is not currently in the
current light source list, add it to the list.

RiImager(name, parameterlist) selects an imager function programmed in the
Shading Language.

RiInterior(name, parameterlist) sets the current interior volume shader.

RiLightSource(name, parameterlist) creates a non-area light, turns it on, and adds it
to the current light source list.

RiMatte(onoff) indicates whether subsequent primitives are
matte objects.

RiOpacity(color) sets the current opacity to color.

RiOption(name, parameterlist) sets additional implementation-specific
options.

Graphics State

Function Description

Interface Routines 181

RiOrientation(orientation) sets the current orientation to be either left-
handed or right-handed.

RiPerspective(fov) concatenates a perspective transformation onto
the current transformation.

RiPixelFilter(filterfunc, xwidth, ywidth) performs antialiasing by filtering the geometry
(or supersampling) and then sampling at pixel
locations.

RiPixelSamples(xsamples, ysamples) sets the effective sampling rate in the horizontal
and vertical directions.

RiPixelVariance(variation) sets the amount computed image values are
allowed to deviate from the true image values.

RiProjection(name, parameterlist) sets the type of projection and marks the cur-
rent coordinate system before projection as the
camera coordinate system.

RiQuantize(type, one, min, max,
ditheramplitude)

sets the quantization parameters for colors or
depth.

RiRelativeDetail(relativedetail) The relative level of detail scales the results of
all level of detail calculations.

RiReverseOrientation() causes the current orientation to be toggled.

RiRotate(angle, dx, dy, dz) concatenates a rotation of angle degrees about
the given axis onto the current transformation.

RiScale(sx, sy, sz) concatenates a scaling onto the current transfor-
mation.

RiScreenWindow(left, right, bottom,
top)

defines a rectangle in the image plane that gets
mapped to the raster coordinate system and that
corresponds to the display area selected.

RiShadingInterpolation(type) controls how values are interpolated between
shading samples (usually across a polygon).

RiShadingRate(size) sets the current shading rate to size.

RiShutter(min, max) sets the times at which the shutter opens and
closes.

RiSides(sides) If sides is 2, subsequent surfaces are considered
two-sided and both the inside and the outside
of the surface will be visible.

RiSkew(angle, dx1, dy1, dz1, dx2, dy2,
dz2)

concatenates a skew onto the current transforma-
tion.

RiSurface(name, parameterlist) sets the current surface shader. name is the name
of a surface shader.

RiTextureCoordinates(s1,t1,s2,t2,s3,
t3,s4,t4)

sets the current set of texture coordinates to the
values passed as arguments.

Graphics State

Function Description

182 Appendix E: RenderMan Interface Quick Reference

RiTransform(transform) sets the current transformation to the transforma-
tion transform.

RiTransformBegin()
RiTransformEnd()

saves and restores the current transformation.

RiTransformPoints(fromspace,
tospace, n, points)

transforms the array of points from the coordi-
nate system fromspace to the coordinate system
tospace.

RiTranslate(dx, dy, dz) concatenates a translation onto the current
transformation.

RiWorldBegin()
RiWorldEnd()

Starts and ends the description of the scene
geometry for a specific image.

Geometric Primitives

Function Description

RiBasis(ubasis, ustep, vbasis, vstep) sets the current u-basis to ubasis and the current
v-basis to vbasis.

RiCone(height, radius, thetamax,
parameterlist)

requests a cone.

RiCylinder(radius, zmin, zmax,
thetamax, parameterlist)

requests a cylinder.

RiDisk(height, radius, thetamax,
parameterlist)

requests a disk.

RiGeneralPolygon(nloops, nverts,
parameterlist)

defines a general planar concave polygon with
holes.

RiGeometry(type, parameterlist) provides a standard way of defining an imple-
mentation-specific geometric primitive.

RiHyperboloid(point1, point2,
thetamax, parameterlist)

requests a hyperboloid.

RiNuPatch(nu, uorder, uknot, umin,
umax, nv, vorder, vknot, vmin,
vmax, parameterlist)

creates a single tensor product rational or poly-
nomial non-uniform B-spline surface patch.

RiObjectBegin()
RiObjectEnd()

begins and ends the definition of an object.

RiObjectInstance(handle); creates an instance of a previously defined
object.

RiParaboloid(rmax, zmin, zmax,
thetamax, parameterlist)

requests a paraboloid.

RiPatch(type, parameterlist) define a single patch.

Graphics State

Function Description

Interface Routines 183

RiPatchMesh(type, nu, uwrap, nv,
vwrap, parameterlist)

specifies in a compact way a quadrilateral
mesh of patches.

RiPointsPolygons(npolys, nverts,
parameterlist)

defines npolys planar convex polygons that
share vertices.

RiPointsGeneralPolygons(npolys,
nloops, nverts, verts, parameterlist)

defines npolys planar concave polygons, with
holes, that share vertices.

RiPolygon(nverts, parameterlist) nverts is the number of vertices in a single
closed planar convex polygon. parameterlist is
a list of token-array pairs where each token is
one of the standard geometric primitive vari-
ables or a variable which has been defined
with RiDeclare.

RiProcedural(data, bound,
subdividefunc, freefunc)

defines a procedural primitive.

RiSolidBegin(operation)
RiSolidEnd()

starts and ends the definition of a CSG solid
primitive.

RiSphere(radius, zmin, zmax,
thetamax, parameterlist)

requests a sphere.

RiTorus(majorradius, minorradius,
phimin, phimax, thetamax,
parameterlist)

requests a torus.

RiTrimCurve(order, knot, min, max, n,
u, v, w)

sets the current trim curve.

Motion

Function Description

RiMotionBegin(n, t0, t1, ..., tnminus1)
RiMotionEnd()

starts and ends the definition of a moving
primitive.

Geometric Primitives

Function Description

184 Appendix E: RenderMan Interface Quick Reference

Texture Map Utilities

Function Description

RiMakeBump(picturename,
texturename, swrap, twrap,
filterfunc, swidth, twidth,
parameterlist)

converts a height field image in a standard
picture file whose name is picturename into a
bump map file whose name is texturename.

RiMakeCubeFaceEnvironment(px, nx,
py, ny, pz, nz, texturename, fov,
filterfunc, swidth, twidth,
parameterlist)

converts six images in a standard picture file
representing six viewing directions into an
environment map whose name is texture-
name.

RiMakeLatLongEnvironment(
picturename, texturename,
filterfunc, swidth, twidth,
parameterlist)

converts an image in a standard picture file
representing a latitude-longitude map whose
name is picturename into an environment
map whose name is texturename.

RiMakeShadow(picturename,
texturename, parameterlist)

creates a depth image file named picturename
into a shadow map whose name is texture-
name.

RiMakeTexture(picturename,
texturename, swrap, twrap)

converts an image in a standard picture file
whose name is picturename into a texture file
whose name is texturefile

External Resources

Function Description

RiErrorHandler(handler) sets the user error handling procedure.

RiArchiveRecord(type, format, ...) writes a user data record into a RIB archive
file

Shading anguage Routines 185

Shading Language Routines
Math Functions

Function Description

abs(x) returns the absolute value of its argument.

acos(a) returns the arc cosine in the range 0 to PI.

asin(a) returns the arc sine in the range –PI/2 to PI/2.

atan(yoverx), atan(y,x) with one argument returns the arc tangent in the
range –PI/2 to PI/2 (1 argument) or –PI to PI (2 argu-
ments).

ceil(x) returns the largest integer (expressed as a float) not
greater than x.

clamp(a,min,max) returns min if a < min, max if a > max; otherwise a.

cos(a) standard trigonometric function of radian arguments.

degrees(radians) converts from radians to degrees.

Du(p), Dv(p), Deriv(num, den) computes the derivatives of the arguments. The type
returned depends on the type of the first argument.
Du and Dv compute the derivatives in the u and v
directions, respectively. Deriv computes the deriva-
tive of the first argument with respect to the second
argument.

exp(x) returns pow(e,x).

floor(x) returns the smallest integer (expressed as a float) not
smaller than x.

log(x), log(x,base) returns the natural logarithm of x (x=log(exp(x))) (1
arg.) or the logarithm in the specified base
(x=log(pow(base,x),base)) (2 args).

max(a,b) returns the argument with maximum value.

min(a,b) returns the argument with minumum value.

mod(a,b) returns 0 < value ≤ b such that value(a,b)=a – nb for an
integer n.

noise(v), noise(u,v), noise(pt) returns a value which is a random function of its
arguments. Its value is always between 0 and 1. The
domain of this noise function can be 1-D (one float),
2-D (two floats), or 3-D (one point).

pow(x, y) returns xy.

radians(degrees) converts from degrees to radians.

random() returns a float, color, or point whose components are
a random number between 0 and 1.

round(x) returns the integer closest to x.

sign(x) returns –1 with a negative argument, 1 with a posi-
tive argument, and 0 if its argument is zero.

186 Appendix E: RenderMan Interface Quick Reference

sin(a) standard trigonometric function of radian argu-
ments.

smoothstep(min,max,value) returns 0 if value < min, 1 if value ≥ max, and performs
a smooth Hermite interpolation between 0 and 1 in
the interval min to max.

spline(value, f1, f2, ..., fn, fn1) fits a Catmull-Rom interpolatory spline to the control
points given. At least four control points must always
be given.

sqrt(x) returns pow(x,.5).

step(min,value) returns 0 if value < min; otherwise 1.

tan(a) standard trigonometric function of radian argu-
ments.

Math Functions

Function Description

Shading anguage Routines 187

Geometric Functions

Function Description

area(P) returns the differential surface area.

calculatenormal(P) returns surface normal given a point on the surface.

depth(P) returns the depth of the point P in camera coordi-
nates. The depth is normalized to lie between 0 (at
the near clipping plane) and 1 (at the far clipping
plane).

distance(P1,P2) returns the distance between two points.

faceforward(N, I) flips N so that it faces in the direction opposite to I.

fresnel(I, N, eta, Kr, Kt, [R, T]) returns the reflection coefficient Kr and refraction (or
transmission) coefficient Kt given an incident direc-
tion I, the surface normal N, and the relative index of
refraction eta. Optionally, this procedure also
returns the reflected (R) and transmitted (T) vectors.

length(V) returns the length of a vector.

normalize(V) returns a unit vector in the direction of V.

transform(fromspace, tospace, P) transforms the point P from the coordinate system
fromspace to the coordinate system tospace. If from-
space is absent, it is assumed to be the "current" coor-
dinate system.

reflect(I, N) returns the reflection vector given an incident direc-
tion I and a normal vector N.

refract(I, N, eta) returns the transmitted vector given an incident
direction I, the normal vector N and the relative
index of refraction eta.

setxcomp(P, x) sets x component.

setycomp(P, y) sets y component.

setzcomp(P, z) sets z component.

xcomp(P) gets x component.

ycomp(P) gets y component.

zcomp(P) gets z component.

188 Appendix E: RenderMan Interface Quick Reference

Color Functions

Function Description

comp(c, index) gets individual color component.

mix(color0, color1, value) returns an interpolated color value.

setcomp(c, index,value) sets individual color component.

Shading and Lighting Functions

Function Description

ambient() returns the total amount of ambient light incident
upon the surface.

diffuse(N) returns the diffuse component of the lighting model.

phong(N, V, size) implements the Phong specular lighting model.

specular(N, V, roughness) returns the specular component of the lighting
model. N is the normal to the surface. V is a vector
from a point on the surface towards the viewer.

trace(P, R) returns the incident light falling on a point P in a
given direction R.

Texture Mapping Functions

Function Description

bump(name[channel], N, dPds, dPdt [, texture
coordinates][, parameterlist])

accesses a bump map.

environment(name[channel], texture coordinates
[, parameterlist])

accesses an environment map.

shadow(name[channel], texture coordinates
[, parameterlist])

accesses a shadow depth map.

texture(name[channel] [,texture coordinates]
[, parameterlist])

accesses a basic texture map.

Volume Variable Access Functions

Function Description

incident(name,value) returns the value of the volume variable name that is

opposite(name, value) stored in the volume shaders attached to geometric
primitive surface.

Shading anguage Routines 189

Print Functions

Function Description

printf(format, val1, val2, ..., valn) Prints the values of the specified variables on the
standard output stream of the renderer. format uses
"%f", "%p", "%c", and "%s" to indicate float, point,
color and string, respectively.

Shading anguage Routines 191

Appendix F

LIST OF RenderMan INTERFACE PROCEDURES

RiHyperboloid 74
RiIdentity 52
RiIlluminate 42
RiImager 31
RiInterior 44
RiLightSource 40
RiMakeBump 88
RiMakeCubeFaceEnvironment 90
RiMakeLatLongEnvironment 89
RiMakeShadow 92
RiMakeTexture 88
RiMatte 46
RiMotionBegin 83
RiMotionEnd 83
RiNuPatch 69
RiObjectBegin 81
RiObjectEnd 81
RiObjectInstance 82
RiOpacity 38
RiOption 35
RiOrientation 50
RiParaboloid 75
RiPatch 66
RiPatchMesh 67
RiPerspective 53
RiPixelFilter 30
RiPixelSamples 30
RiPixelVariance 28
RiPointsGeneralPolygons 64
RiPointsPolygons 63
RiPolygon 61
RiProcedural 78
RiProjection 24
RiQuantize 31
RiRelativeDetail 35
RiReverseOrientation 51
RiRotate 54

RiArchiveRecord 93
RiAreaLightSource 41
RiAtmosphere 44
RiAttribute 58
RiAttributeBegin 36
RiAttributeEnd 36
RiBasis 65
RiBegin 15
RiBound 46
RiClipping 25
RiColor 37
RiColorSamples 34
RiConcatTransform 53
RiCone 73
RiCoordinateSystem 57
RiCropWindow 24
RiCylinder 74
RiDeclare 13
RiDeformation 55
RiDepthOfField 26
RiDetail 48
RiDetailRange 49
RiDisk 75
RiDisplacement 56
RiDisplay 32
RiEnd 15
RiErrorHandler 92
RiExposure 31
RiExterior 45
RiFormat 21
RiFrameAspectRatio 22
RiFrameBegin 15
RiFrameEnd 15
RiGeneralPolygon 62
RiGeometricApproximation 50
RiGeometry 79
RiHider 33

192 Appendix F: List of RenderMan Interface Procedures

RiScale 54
RiScreenWindow 23
RiShadingInterpolation 46
RiShadingRate 45
RiShutter 26
RiSides 51
RiSkew 55
RiSolidBegin 80
RiSolidEnd 80
RiSphere 72
RiSurface 42
RiTextureCoordinates 39
RiTorus 76
RiTransform 52
RiTransformBegin 58
RiTransformEnd 58
RiTransformPoints 57
RiTranslate 54
RiTrimCurve 71
RiWorldBegin 16
RiWorldEnd 16

Statement About Pixar’s Copyright and Trademark Rights for the
RenderMan

3-D Scene Description Interface

The RenderMan 3-D Scene Description Interface, created by Pixar, is used for describing three-dimensional
scenes in a manner suitable for photorealistic image synthesis. The RenderMan Interface specifies proce-
dure calls that are listed collectively in the Procedures List appendix (Appendix F) to the RenderMan Inter-
face document. The RenderMan Interface Bytestream (‘‘RIB’’) is a byte-oriented protocol for specifying re-
quests to the RenderMan Interface, and specifies a set of encoded requests according to the methods de-
scribed in the RenderMan Interface document.

Pixar owns the copyrights in the RenderMan Interface and RIB including the Procedures List, Binary En-
coding table and the RenderMan written specifications and manuals. These may not be copied without Pix-
ar’s permission. Pixar also owns the trademark ‘‘RenderMan’’.

Pixar will enforce its copyrights and trademark rights. However, Pixar does not intend to exclude anyone
from:

(a) creating modeling programs that make RenderMan procedure calls or RIB requests;

(b) creating rendering systems that execute the RenderMan procedure calls or RIB requests pro-
vided a separate written agreement is entered into with Pixar.

Permitted Use of the RenderMan Interface by Modelers

Pixar gives permission for you to copy the procedure calls included in the Procedures List and the encoded
requests in the Binary Encoding table for writing modeling programs that use the RenderMan Interface.
Any program that incorporates any of the RenderMan procedures calls or RIB requests must include the
proper copyright notice on each program copy. The copyright notice should appear in a manner and loca-
tion to give reasonable notice of Pixar’s copyrights, as follows:

The RenderMan

 Interface Procedures and Protocol are:
Copyright 1988, 1989, Pixar

All Rights Reserved

The right to copy the RenderMan procedure calls from the Procedures List does not include the right to
copy the RenderMan documentation or manuals, or the programming code in any Pixar products, in whole
or in part, in any manner except as described above.

Written License for Use of the RenderMan Interface by Renderers

A no-charge license is available from Pixar for anyone who wishes to write a renderer that uses the Pixar
RenderMan procedures calls or RIB requests. This license must be in writing.

Limited Use of the Trademark ‘‘RenderMan’’

The trademark ‘‘RenderMan’’ should refer only to the scene description interface created by Pixar. Anyone
that creates a routine or computer program that includes any of the procedures calls from the RenderMan
Procedures List statement or RIB requests from the Binary Encoding table may refer to the computer pro-
gram as ‘‘using’’ or ‘‘adhering to’’ or ‘‘compatible with’’ the RenderMan Interface, if that statement is accu-
rate. Any such reference must be accompanied by the following legend:

RenderMan

 is a registered trademark of Pixar

No-one may refer to or call a product or program which did not originate with Pixar a ‘‘RenderMan pro-
gram’’ or ‘‘RenderMan modeler’’ or ‘‘RenderMan renderer’’.

Nothing in this statement shall be construed as granting a license or permission of any type to any party for
the use of the trademark RenderMan, or anything confusingly similar to it, in connection with any products
or services whatsoever, including, but not limited to, computer hardware, software or manuals. Use of the
trademark ‘‘RenderMan’’ should follow the trademark use procedure guidelines of Pixar. Any use of the
RenderMan Interface, RIB and related materials other than as described in this statement is an unautho-
rized use and violates Pixar’s proprietary rights, and Pixar will enforce its rights to prevent such use.

September 25, 1989

	Front Pages
	Table of Contents
	List of Illustrations
	List of Tables
	Preface

	Part 1 : The RenderMan Interface
	Introduction
	Features and Capabilities
	Structure of this Document

	Language Binding Summary
	C Binding
	Bytestream Protocol
	Additional Information

	Relationship to the RM Shading Language
	Graphics State
	Options
	Attributes
	Transformations

	Geometric Primitives
	Polygons
	Patches
	Quadrics
	Procedural Primitives
	Solids and Spatial Set Operations
	Retained Geometry

	Motion
	External Resources
	Texture Map Utilities
	Errors
	Archive Files

	Part 2 : The RenderMan Shading Language
	Intro to the Shading Language
	Overview of the Shading Process
	Relationship to the RM Interface
	Types
	Floats
	Colors
	Points
	Strings
	Uniform and Varying Variables

	Shader Execution Environment
	Surface Shaders
	Light Source Shaders
	Volume Shaders
	Displacement Shaders
	Transformation Shaders
	Imager Shaders

	Language Constructs
	Expressions
	Standard Control Flow Constructs
	Illuminance and Illuminate Statements

	Shaders and Functions
	Shaders
	Functions

	Built-In Functions
	Mathematical Functions
	Geometric Functions
	Color Functions
	Shading and Lighting Functions
	Texture Mapping Functions
	Volume Variable Access Functions
	Print Function

	Example Shaders
	Surface Shaders
	Light Sources
	Volume Shader
	Displacement and Transformation Shaders
	Imager Shaders

	Appendices
	A: Standard RM Shaders
	Surface Shaders
	Light Source Shaders
	Volume Shaders
	Displacement Shaders

	B: RM Shading Language Syntax
	C: Language Binding Details
	K&R C Binding
	ANSI C Binding
	RIB Binding

	D: RIB Conventions
	RIB File Structuring Conventions
	RIB Entity Files
	RM Renderer Resource Files

	E: RM Quick Reference
	Interface Routines
	Shading Language Routines

	F: List of Procedures
	Copyright and Trademark Statement

