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Introduction

Goal in robotics

Autonomous robots that can plan their own motions

Motion planning problem
Mowe from start to destination
Mo collisions with walls {using floorplans)

Mo collisions with people {using sensors)

Examples
Robots in a warehouse or factory

Al
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Simplifying Assumptions
20 Planar Region

Falygonal obstacles
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Work Space & Configuration Space

R{x,¥) - Robot reference point at coordinates {x,y)
R{0,0) - Robot at origin

Robot vertices are defined relative to the
reference point

For example, suppose at R{0,0}) the vertices lie at: |
{lf-lji {lrljr EDrBL Elr'l)r {'lr'l.} Lt

Then at R{6,4), the robot's vertices are now at:
(7,3); (5,5), (6,7}, (5,5), {5,3)

Far rotations, let the reference point = the pivot point
R{x,y, D) - Added & parameter defines robot orientation

Conbinge
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Work Space & Configuration Space

HiG,445)

R{x,y) - Robot reference point at coordinates {x,y) 57
R(0,0) - Robot at origin 4

Robot vertices are defined relative to the
reference point i

For example, suppose at R{0,0) the vertices lie at:
{lf-lji {lrljr EDrBL Elr'l)r {'lr'l.}

Then at R{6,4), the robot's vertices are now at:
(7,3); (5,5), (6,7}, (5,5), {5,3)

Far rotations, let the reference point = the pivot point
R{x,y, D) - Added & parameter defines robot orientation

Lo fine
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v

Work Space Configuration Space
20 environment with set § of obstacles Parameter space for Ehe robot
The Yreal worid™ where the robot moves around Defined as C(R)

& polygonal robot In the work space s represented by a dot in the configuration space

Mot all points in the config space are possible

Forbidden Config Space Cua(R,S) - Set of points in the config space that correspong to
placernents in the work space where the robot intersects an obstacle {forms C-Obstacles’
Frae Config Space Cree{R,S) - The rest of the config space

unobstructed path in the work space -»= Path far the rabot in the config space
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Work Space Configuration Space
20 environment with set § of obstacles Parameter space for Ehe robot
The Yreal worid™ where the robot moves around Defined as C(R)

& polygonal robot In the work space s represented by a dot in the configuration space

Mot all points in the config space are possible
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unobstructed path in the work space -»= Path far the rabot in the config space
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Point Robot Motion Planning

v, W1

Work Space Configuration Space

First, let's analyze the simple case - a point robot
What should the configuration space look like?
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Point Robot Motion Planning

v

W, |

Work Space Configuration Space

First, let's analyze the simple case - a point robot

Work space and config space look identical
C-Obstacles = Obstacles
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Representing the Environment

Create bounding box with enclosing area B

So now you have:

Point robot R
Set of Obstacles § = {P1,... ,Pt}

cfr\ul:= Bl'ﬁ_ll:.! PI
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Representing the Environment

Use a trapezoidal map (Chapter 6) to PN o
represent the free space ; S “'x_h
! R S ™

\ 1 —— )
Extend vertical lines up and down from Y /,-/ _:f:; .
every vertex until they hit something e /—f"x\ ~J
L]

Remove trapezoids inside obstacles o
-

Oin log n) expected time

Conbinne
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Representing the Environment

|

Use a trapezoidal map (Chapter 6) to
represent the free space

Extend vertical lines up and down from
every vertex until they hit something

Remove trapezoids inside abstacles

O(n log n) expected time

Comirmrne
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Finding a Path

Create graph Geeaa to represent

the possible paths ..
Place a node at the

center of each trapezoid and

the middie of each vertical extension

For each trapezoid, deaw an edae from the

center node to each vertical extension node

Constructed in O{n} time by traversing the
doubly connected edge list of the

trapezoidal map T{Cea)

Coambime
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Finding a Path

Finding a path from pae: (0 Pooa )

Find trapezoid Asmqa containing pPawe and

trapezoid Agea cONtaining Pgeal : :
If Asearr = Agow, just go directly from _

Patart U0 Poeal

else use breadth-first search to find a
path from Astar t0 Ageal

Path = Petart - = Dath from Asiea 0 Ageat - > Pgoal

Overall Running Time:
Preprocessing - O(n log n)
Path Query - {log i -+ n)
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Minkowski Sums

C-obstacle

To begin studying polygonal robot motion
planning, we need to cover C-obstacles
and Minkowski sums.

C-obstacles help define the free config
space to contruct our road graphs.

C-obstacle

CP = {(x,y) : R(xy) [N P # 0}
This means a C-obstacle is the set of points in config
space that map to placements of R where R intersects an obstacle P

It turns out C-obstacles can be easily calculated using Minkowski Sums...
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Minkowski Sums C-obstacle

To begin studying polygonal robot motion
planning, we need to cover C-obstacles
and Minkowski sums.

C-obstacles help define the free config
space to contruct our road graphs.

C-obstacle

CP o= {(xy) : R(x,y) [N P # 0}
This means a C-abstacle is the set of points in config
space that map to placements of R where R intersects an obstacle P

It turns out C-obstacles can be easily calculated using Minkowski Sums...
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Minkowski Sums

Minkowski Sum of two sets 51, Sz, denoted by S: & Sz, is
Si1@5:z:={p+q:pe€ S5y, g€ Sz}, where
P+gi={p«+ Qs Py + Qy)

Minkowski sum of two sets of numbers is
the vector sum of all pairs.

For this reason the Minkowski Sum polygon can
be carved by moving the 5: around the border of
5z as shown in the demao.
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Minkowski Sums

Minkowski Sum of two sets 51, Sz, denoted by S: & 53, is
S:@5::={p+q:peE S5, q€ 5z}, where
P+q:i={(px+ g py+ dy)

Minkowski sum of two sets of numbers is
the vector sum of all pairs.

For this reason the Minkowski Sum polygon can
be carved by moving the 5: around the border of
S:as shown in the demo.
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Note
For a point p = (p«,py), define -p := (-p.,-py) and
for a set S, define -5 := {-p: pe S}

So for polygon A, -A is simply polygon A flipped

Theorem 1 - The C-obstacle of Pis P& (-R{0,0))
where P is an obstacle and R is the robot

What this means is you can get the C-obstacle by
computing the Minkowski Sum of the obstacle and
the robot flipped.
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Note
For a point p = (px,py), define -p := (-px,-py) and
for a set 5, define -5 := {-p: pE 5}

So for polygon A, -A is simply polygon A flipped

Theorem 1 - The C-obstacle of Pis P& (-R{0,00)
where P is an obstacle and R is the robot

What this means is you can get the C-obstacle by
computing the Minkowski Sum of the obstacie and
the robot flipped.
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Theorem 1 - The C-obstacle of P is P & (-R{0,0))
where P is an cbstacle and R is the robot

Proof
Prove that R{x,y) intersects P iff {x,y) € P @& (-R{0,0))

Step 1: Suppose R(x,y) intersects P

Let g be a point in the intersection.

Since g€ Rix,y), (0« - x, gy - y) € R(0,0)
Rearrange to get {-g« + %, -qy + v) € -R{0,0)
SincegeP

this implies {x,y)e P & (-R{0,0)}

Step 2: Let (x,y)€ P& (-R(0,0)), this means there pre points
{t‘x,t‘?}E H(ﬂ,ﬂ] and {px;py} £ p S.t. {){,?} = {px‘rx,pv‘r-'-}
Rearrangetoget pe =t + X, py =y + %

this implies R{x,y) intersects P
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. pr
Our eventual algorithm for Minkowski Sum

computation requires understanding of extreme points,
pseudodiscs and directions.

Extreme Points

MNote that the extreme point in direction d of P& R
is the sum of the extreme points of P and R

Theorem 2 - Let P and R be two convex polygons with
n and m edges, then P & R is a convex polygon with
at most n + m edges.

Intuition - an edge e of P @ R must come from an edge
in P or R, An edge in P or R cannot contribute more than once.
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Our eventual algorithm for Minkowski Sum
computation reguires understanding of extreme points,
pseudodiscs and directions.

Extreme Points

MNote that the extreme point in direction d of P& R
is the sum of the extreme points of P and R

Theorem 2 - Let P and R be two convex polygons with
n and m edges, then P & R is a convex polygon with
at most n + m edges.

Intuition - an edge e of P @ R must come from an edge
in P or R. An edge in P or R cannot contribute more than once.

Peeudodiscs pairs
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Pseudodiscs Pairs

A pair o1, oz of planar objects are a pair of pseudodiscs
if it satisfies the pseudodisc property that o, \ 02 and

0z Y\ 01 are connected.
Pseudodisc pairs have the property of having at most two
proper intersections at their boundaries.

Mot pseudodise pairs

>
Nam

Proper intersection

ot a proper intersect
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Directions

Given two convex polygons, one is more extreme in
direction d if its extreme point in direction d is further
than that of the other polygon.

The range in which polygons are more extreme can be
modelled by a unit circle.

QObservation 4 N p——
Let P1 and Pz be convex polygons with disjoint B\ mare |:'F ]e:-c:eel.vu:
interiors. Let d. and ds be directions in which P, is extreme . di\

more extreme, then Py is more extreme in all \M-_...

directions from either d, to d. or d: to d..
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Theorem 3 - Let P: and P: be convex polygons with disjoint
interiors, and let R be another convex polygon. Then Pid& R
and P; @ R are pseudodisc pairs.

Proof by Contradiction

Define OP1 = 1@ R and CP2 1= P2 @& R. By symmetry
it suffices to show that CPy \ CP; 15 connectad,
Suppose CPy '\ CP: is not a pseudodisc pair because it forms two unconnected components.

Then there are two different directions oy and d> such that CPy Is more extreme than CPs.

Since CPy; and CP; are both Minkowski Sums involving R, P: must also be more extreme than
Fa in directions 1 and da.

This means Py is more extreme for all directions in the range ds to dz or dz to ds, implying
the two components are connected which is a contradiction to our assumption.



Robot Mofion Planning > Minkowski Sums o  d20/43p |

Theorem 4 - Let 5 be a collection of polygonal pseudodiscs with n edges total.
Then the complexity of their union is O(n).

Proof W

A bound of 2n on the maximal complexity of the union

can be found by charging every vertex of the union to ’
a pseudodisc vertex s.t. any pseudodisc vertex is

charged at most twice.

Two types of vertices in the union boundary - original boundary pseudodisc
viertices and vertices formed from intersections.

Pseudodisc vertices are charged to themselves whereas intersection wvertices are
charged to an interior vertex found by following one of the edges that formed it.

Mow each original pseudodisc vertex was charged at most twice.
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Finding the pointsof P& R

For each polygon, sort vertices in counter-clockwise
order, starting with the bottom-most one.

Mow we will compute the points in the Minkowski
Sum in counter-clockwise order.

V3

D w

W1

V2

Vi
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Start by adding point V; + W, the lowest
paoint on the Minkowski Sum

Since the Minkowski Sum is carved by

sliding R around the border,
should Vz + W; be the next point?

Wi

Robol Mofion Plonning > Minkowski Sums

Mot necessarily, in the first case the next
point was indeed V: -+ W; but in the
second case R did not move,

In the first case, R moves along the border
of P and carves a parallel line. But if
angle{\W,,Wz) is smaller than angle{V.\V:)
then a side of R extends further.

For the algorithm, repeat these comparisons
until you've circled around both polygons.
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Algorithm MinkowskiSum(P.R)

3 + W'l
else 1 b angle (WjW]+
MNent EXNTE a5
‘Both edge i
P L)
Running Time: O{n + m)
where n and m are the number of edges in
Vi+ W Pand R
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Ok, so how do we find the Minkowski Sum
of non-convex polygons?

A By triangulating the polygon, finding the
Minkowski Sums, and then taking the union
of the results.

L= Tty T
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Ok, so how do we find the Minkowski Sum
of non-convex polygons?

A: By triangulating the polygon, finding the
Minkowski Sums, and then taking the union
of the results.

Triangulate Obstacle P
to get triangles T1 and T2
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Ok, so how do we find the Minkowski Sum
of non-convex polygons?
A: By triangulating the polygon, finding the
Minkowski Sums, and then taking the union
of the results.
CT1

Compute the two Minkowski Sums,

CT1 and CT2

CTi=Ti&R

CT2=T2a&R

cT2
Cortinee
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Ok, so how do we find the Minkowski Sum
of non-convex polygons?

A: By triangulating the polygon, finding the
Minkowski Sums, and then taking the union
of the results.

Mow just merge the two polygons
CT1 and CT2 together to obtain the
C-obstacle of the original obstacle P
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Ok, so how do we find the Minkowski Sum
of non-convex polygons?

A: By triangulating the polygon, finding the
Minkowski Sums, and then taking the union
of the results.

Mow just merge the two polygons
CT1 and CT2 together to obtain the
C-obstacle of the original obstacle P
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If P is non-convex and R is convex

Say P and R have n and m vertices respectively
Triangulate P into n-2 triangles {Chapter 3)

For each triangle t, find t @ R {at most m+3) vertices
Find the union of all the Minkowski Sums

Complexity ‘ R

All triangles are disjoint, thus the Minkowski Sums
of each triangle with R form a collection of
pseudodiscs. {Theorem 3) The Complexity of

their union is linear to the sum of their
complexities. There are n-2 polygons each with
m+3 complexity so the total complexity

is Q{nm).
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If both P and R are non-convex

Triangulate them into n-2 and m-2 triangles
respectively. Find the Minkowski Sum of all
pairs, this creates (n-2)}{m-2) polygons of
constant complexity.

The union of all these polygons is thus of
O(n*m?) complexity. One such example
is shown here.
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In summary, the complexity of a Minkowski Sum is as follows
O(n+m) if both polygons are convex

O({nm) if only one of the polygons is convex

O(n*m?) if both polygons are non-convex
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Polygonal Robot Motion Planning

Mow that we know how to calculate C-obstacles we can
solve the polygonal robot motion planning problem.

With a convex robot of constant complexity,
the complexity of the free config space is O(n)

Triangulated obstacles

-= O{n) triangles

-= (Wn) C-obstacles each with constant complexity
-= O{n) set of pseudodiscs

Since the complexity of the union of pseudodiscs is linear in the sum of their
complexities, the resulting union has linear complexity
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How do we find the free configuration space?

The forbidden config space is the union of all the C-obstacles
Use divide-and-conguer to compute all the unions
The free config space is then the complement of this
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The free configuration space can be computed in
O(n log? n) time where n is the total number of edges

Triangulation - O(n log n)
If obstacle P; has my complexity, it can be triangulated in O{m log m) time
Total time to triangulate all obstacles is proportional to

L !
2 milogmi< 2 milogn=nlogn

Computing C-obstacles - O(n)
Minkowski sum of O{n} triangles with a robot of constant complexity takes O{n) time

Merging - O(n log® n)
One merge step can be done in O({ni+nz+k) log {n:+nz2))} {Chapter 2)
where ny, ny, and k are the complexities of Cumiy, Crorbz, @8nd Crorby U Crarbs

The complexity of the fordidden space is O(n) so the merge step is O(n log n)
With divide-and-congquer we get this recurrence

Ti{r) = T([n/2]} + T{[n/2]) + O{n log n} which is O(n log* n)

Total Time = O(n log n) + O(n) + O{n log? n) = O(n log® n)
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Polygonal Robot Motion Planning Solution Summary

L.et R be a convex robot of constant complexity translating among aset S
of disjoint polygonal obstacles with n edges in total. We can preprocess 5
in O{r log* n) expected time, such that between any start and goal
position a collision-free path for R can be computed in O(n) time if it exists.
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Motion Planning with Rotations

Restricting robot motion to only translations is a major disadvantage since
some robots may need to change their orientation to pass through a narrow
passage or corner,

The configuration space we have seen so far represents only one angle

As a robot changes orientation, the C-obstacles alter to represent the new
Minkowski sum.

Each possible orientation creates a different configuration space - resulting
in multiple levels of configuration spaces.
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Each level corresponds to a given angle @ and contains its own roadmap G,
With multiple levels of rocadmaps, we need some way to connect them

Movements across a particular level still represents a translation at a fixed
angle. Mowving from one level to another {adjacent upward or downward)
represent a rotation in the object.

For each adjacent levels, compute the overlay
{chapter 2) to find the common intersection of
their configuration spaces. These enable
passage from one level to another,
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Since arbitrary orientations would require an infinite number of levels,
we need to sample the possible angles.

So to find a path, change orientation to the closest level then follow
the computed path that may go across levels. At the goal change
to the closest level and do a final rotation.

Problems
A start orientation may be in free space but if the closest level is
not then a false negative will be given.

Moving from one slice to another could be an undetected caollision if
the discretization wasn't enough.
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Both problems can be reduced by increasing the number of levels,

One solution is to modify robot R in the following way.

& '3 i
Rotate R according to the interval A R Ay, R
between levels. If there is a level Jiiy,
every 10 degrees, rotate R left and -3 | L =)
right by 5 degrees. R'is the new il

robot formed by the sweeping.

Configuration spaces based on new C-obstacles

Levels now represent intervals {ie thicker levels)
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Both problems can be reduced by increasing the number of levels,

One solution is to modify robot R in the following way.

" #
Rotate R according to the interval £ ' R ) R
between levels. If there is a level
every 10 degrees, rotate R left and ‘ -3 | [ -
right by 5 degrees. R'is the new

robot formed by the sweeping.
Configuration spaces based on new C-obstacles

Levels now represent intervals {ie thicker levels)
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Since R'is larger, the free configuration space
at each level is smaller.

Mowing from one level to another with
R" will no longer result in R (the actual
robot) colliding with a level midway.

Rf

This might make some previously possible
paths impaossible.

In practice these issues are avoided by using sufficient levels in conjunction with
the R' trick.
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Summary

The first step to solving the robot motion planning problem was to create
the configuration space as our representation.

\y
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Lse trapezoidal decomposition to
create graphs for path queries

Studied C-obstacles to C-obstacle
enable polygon robots
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Used Minkowski Sums
to create C-obstacles
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Used Minkowski Sums
to create C-obstacles
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Used Minkowski Sums
to create C-obstacles
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Rotation creating multiple levels of configurations spaces
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Questions?




