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Overview

� Introduction

� Weighted distance and power
diagrams

� Medial Axis Transform

� PowerCrust Algorithm
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Intr oduction
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Intr oduction

� What is Surface Reconstruction?

� Applications

� Difficulties

� Survey of techniques
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SurfaceReconstruction

Given a set of points assumed to lie near an
unknown surface , construct a surface model

�

approximating .
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How it usually works

� Input points sampled from the surface either “by hand”
or via a physical process (e.g. 3D scanning).

� Assume:

� Real surface

�

is “nice” ( = “smooth”)

� Samples

�

are “dense enough”, especially near
features such as edges, points, bumps, etc.

� Output

�

in usable format for processing

� Triangulation of
�

� Fitted “splines” (i.e. low-dimensional surfaces)

� CSG model
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Applications of 3D Scanning

� Reverse engineering / Industrial design

Performance analysis and simulations
(e.g. drag)

Realistic virtual environments

Medical Imaging

...
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Modeling a claw I
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Modeling a Claw II
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Modeling hand-madeparts
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Medical ShapeReconstruction
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Difficulties

� Surface not smooth

� Noisy data

� Lack of orientation data

� Surface not watertight
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Techniques
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Techniquesfor SurfaceReconstruction

Technique Assumptions

Fit parametric surface Data fits model

Piece together parallel contours Data from known device

Fit Gaussian Kernels Given normal at each point

�-shape Triangulation Noise-free

“Mesh” methods Dense Sample

Crust Methods Dense Sample
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Fitting Parametric Surfaces

?

� Assume surface is from some known family
(e.g. sphere, cylinder, plane, hyperboloid, etc)

� Find best parameters to fit data
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Fitting Parametric Surfaces

?

� Fast, accurate for good data

� Useless when data is of unknown type
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Contour Data Reconstruction

� Piece together image from parallel slices

� Assumes data is “pre-structured”

� Applications: medical, topographic terrain maps
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Techniquesfor SurfaceReconstruction
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Fitting Gaussianballs

� Take linear combination of 3D Gaussians�	�
 � 
 ��� � ������ ���� � ����� ���� ���� � �

� Surface

� 
 �	� ! �	� � 
 " #

(inside = positive, outside = negative)
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Fitting Gaussianballs

Problems:

� Must know surface normal at each point

� Output always watertight, bubbly-shaped

� Useful for range scanner data

Surface Reconstruction – p.21/60
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-shapetriangulation

� Start with Delaunay triangulation

� Take subset of the edges “on” the surface

�

(In fact, just take shortest edges in graph)
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-shapetriangulation

� Bad when samples unevenly spaced
(can be fixed using weights on sample points)

� Works only for noise-free data
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Meshmethods

� Exploit local information to find a mesh

�

approximating surface

� Simplify mesh afterwards
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Meshmethods

� Handles noisy data

� Assumes only sample dense near features
(edges, bumps)

� Methods ad hoc; Rigorous analysis difficult
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Techniquesfor SurfaceReconstruction

Technique Assumptions

Fit parametric surface Data fits model
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Technique Assumptions
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Crust methods

� Focus of this lecture

� Assume only dense sampling

� Provide other information on

�

:
Volume, Skeletal Structure
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Techniquesfor SurfaceReconstruction

Technique Assumptions

Fit parametric surface Data fits model

Piece together parallel contours Data from known device

Fit Gaussian Kernels Given normal at each point

�-shape Triangulation Noise-free

“Mesh” methods Sample Dense Near Features

Crust Methods Sample Dense Near Features

Surface Reconstruction – p.31/60



Overview

� Introduction

� Weighted distance and power
diagrams

� Medial Axis Transform

� PowerCrust Algorithm
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WeightedDistance

and Power Diagrams
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WeightedDistanceand Power Diagrams

� Weighted distance

� Power Diagrams ( = Weighted Voronoi)

� $-shapes
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Unionsof balls

Key concept:

Solids can be roughly approximated (exact
in the limit) as a union of balls (discs in
2D).

Given a set of points , we can view as
centers of balls. How can we use this?

Try to visualize “shape” of .
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Adding weights

Some points are “bigger” than others.

� sampled from a surface 
 points where
sampling is less dense are “bigger”.

� = centers of atoms in a molecule
 heavier atoms are “bigger”.

� In Power Crust (later), this will be crucial.

Each point 
 % gets a weight &� (its radius).
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WeightedDistance

� Work with weighted distance. Distance from a

point ' to a ball

�(
*) &� �

:

&,+ - . -
/

0 1

/
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Normal Distance: 0 /

distance 
from x

yx z

In 1D, the (normal) squared distance induced by

each point 
 gives a parabola centered at 
 .
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& - . 0 / 0 1 /
yx z

r

Point 2 has radius &43 
 parabola gets lowered
to intersect axis at distance & from 2.
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Power Diagram

� Distance:

5687 �
 ) ' � 
 5 �
 ) ' � 9: &� 9

� Weighted Voronoi cell of

�
 ) &� �
is set of points' that have smaller weighted distance to 


than to any other point in :

� � ; ; �(
 � 
 � ' ! 5687 �(
*) ' � 567 < �(
 =) ' � for all 
 = % #

� When all weights are equal, get the usual
Voronoi diagram.
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Power Diagram Demo

Demo
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& - . 0 / 0 1 /
yx z

r

Point 2 has radius &43 
 parabola gets lowered
to intersect axis at distance & from 2.
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& - . 0 / 0 1 /
yx z

r

Weighted Voronoi cell for > doesn’t necessarily

contain >.
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& - . 0 / 0 1 /
x y z

Some Voronoi cells may be empty!
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Power Diagram Demo
More Demo
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Intersections

Power diagram edges always go through the
intersections of circles
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WeightedDelaunayComplex

Weighted Delaunay Complex
= Dual of Power Diagram

� Add an edge

� 
*) 2 #

if cells of 
 ) 2 interesect

� Add a triangle

� 
 ) 2) > #
if cells of 
*) 2) >

intersect

� Add a tetrahedron...
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WeightedDelaunayComplex
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WeightedDistanceand Power Diagrams

� Weighted distance

� Power Diagrams ( = Weighted Voronoi)

� $-shapes
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Dual Complex

� Subset of weighted Delaunay graph

� Only keep edge

�(
 ) 2 � if balls at 
 ) 2 intersect:5 �(
 ) 2 � &� &?3 .
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Changing the radii

� Fix a parameter $ 9 % �: ) �

(i.e. $ % )

� Consider new radii & =� 
 & 9� $ 9

� Power diagram stays the same since56 < �(
 ) ' � 
 56 �(
 ) ' � : $ 9.

� Weighted Delaunay graph stays the same.

� Dual Complex

� grows if $ 9A@ "

� shrinks if $ 9AB "
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-shapes

As $ 9 grows from: to , progress from empty
graph to full weighted Delaunay graph:
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-shapes

As $ 9 grows from: to , progress from empty
graph to full weighted Delaunay graph:
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-shapes
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-shapes
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Who cares?

This ordering is useful for visualizing structure of
the point set.
Example: Simple surface reconstruction

Other apps: chemical modeling, visualization
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Overview

� Introduction

� Weighted distance and power
diagrams

� Medial Axis Transform

� PowerCrust Algorithm
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