Lecture 1: September 6, 2001

Welcome to 6.838J, Geometric Computation!

e Introductions

e Overview and Goals
e (General Information
e Syllabus

e 2D Convex Hull
e Signup sheets (return by end of class)

MIT 6.838J/4.214J Geometric Computation L1: Thursday, September

Course Overview

Geometric Computation is Pervasive

Robotics, Graphics, CAD/CAM, GIS, Medicine, Net
Geographic resource discovery

Classic examples: nearest post office, hospital

GIS overlay: efficient geometric co-occurrence
Resource simulation and management

Art-gallery problem: place minimal set of guards

Air-traffic control: when is next collision
Computer graphics

Scalable visibility tests for rendering

Global lighting simulations (ray-tracing, radiosity

Collision detection for realistic physically-based a
Computational drug design and discovery

Spatial indexing for protein folding

Spatial signatures for docking studies
Robotics

Motion planning among obstacles

Scalable map construction and localization
Location-aware computing

Location-based services, Mobile dynamic networlk

MIT 6.838J/4.214J Geometric Computation L1: Thursday, September

Course Goals

Solid introduction to fundamental geometric data stru
Experience with algorithm design and analysis (and oy
Intuition about what methods might be applicable as

MIT 6.838J/4.214J Geometric Computation L1: Thursday, September

General Information

Class has no final, or final project
Components of course grade:

50% Lecture/presentation (typically, one per stude
Developed jointly with one or both professors
Start with list of concepts (two weeks beforehar
Review slides, figures, demos (one week beforeh
Expect to devote significant time with us, and «
Use signup sheet to rank your preference for ea

50% Assignments (part mandatory, part optional)
Four assignments, roughly one every three weel

Two weeks to complete each one (see syllab
Mandatory component: problems with written
Optional component:

Either: additional written problems

Or: a Java programming assignment

Open Problems (Optional)

Problems stated upon request

Solving a significant open problem yields an A-

MIT 6.838J/4.214J Geometric Computation L1: Thursday, September

Syllabus

Low-dimensional computational geometry
L1: 2D Convex Hulls
L2: GIS Overlay and Segment Intersection
L3: Low-Dimensional Linear Programming
L4: Polygon Triangulation
Organizing Objects and Spaces
L5: Orthogonal Range Searching
[L6: Point Location / Spatial Indexing
L7: Voronoi Diagrams
L8: Robustness and Perturbation Schemes
L9: Arrangements and Duality
L10: Delaunay Triangulations, CDTs
Surface Representations and Algorithms
L11: Representing Polyhedra
L12: 3D Convex Hulls
L.13: Representing Smooth Surfaces
L14: Binary Space Partitions

MIT 6.838J/4.214) Geometric Computation L1: Thursday, September

Syllabus (Cont.)

Accounting for Motion

L15:
LL16:
L17:

Kinetic Algorithms
Robot Motion Planning
Quadtrees and Non-Uniform Meshing

L18: Visibility Data Structures
Higher Dimensions

[.19:
1.20:
L21:
1.22:
[.23:
1.24:
[.25:
1.26:

Medial Axis, Surface Reconstruction

Higher- and High-Dimensional LP
Closest-Pair Algorithms

Approximate Nearest Neighbor

[terative Algorithms

Approximate Nearest Neighbor (Hamming)
Low-Distortion Embeddings

Reductions to Approximate Nearest Neighbor

MIT 6.838J/4.214J Geometric Computation L1: Thursday, September

Convexity

A set is convex when every line segment connecting
two points in the set is itself contained in the set

< <
DS

MIT 6.838J/4.214) Geometric Computation L1: Thursday, September

Convex Hull

What is the convex hull of a set of points?
Several equivalent definitions:

intersection of
all convex sets
containing points

small_es:_t convex set
containing points

1. The smallest convex set containing the points
2. The intersection of all convex sets containing the poin
3. The union of all points expressible as convex combinat

n) T
Uv = ‘Zl c;p;; Vi,c; > 0; and 3
1= 1=

(“Convex combination” means coefficients ¢; are non-n
Relax non-negativity requirement: get “affine combinat

None of these are particularly well-suited to algorithm

MIT 6.838J/4.214) Geometric Computation L1: Thursday, September

2D Convex Hull

The 2D Convex Hull problem:

Given a finite set S C R2 of n points on plane,
determine the convex hull of S, denoted Conv(S).

We'll compute the boundary of the convex hull:
In this case, a closed polygonal chain of vertices and
(or simply an ordered list of vertices, with edges implic

For a set S of n points:
What is worst-case complexity of Conv(S)?
... Best-case?
What if all n points are distinct?

MIT 6.838J/4.214)J Geometric Computation L1: Thursday, September

2D Convex Hull

Seemingly simple, but illustrates several recurring issu
Algorithm design, analysis, correctness
Progression from brute-force to efficient algorithms
Underlying geometric predicates
Robustness / Underlying number representations
Genericity assumptions / input degeneracies
Output-sensitive running time

MIT 6.838J/4.214J Geometric Computation L1: Thursday, September |

Extremal points

The planar convex hull is a convex polygon.

It can therefore be specified completely by a list of its e
These corner points are drawn from the set S.
For now, assume S contains n distinct points

MIT 6.838J/4.214)J Geometric Computation L1: Thursday, September

Brute-Force Algorithm

Check each point pair: does it form a boundary edge?

[e. for all pairs p,q € S, if for all x € S — {p, q}, x lies
of the oriented line pg, emit an edge pg on the boundary «
To determine whether point r = (ry, ry) lies to the left

(where p = (pg, py) and ¢ = (g2, qy)), compute the sign o
L 7y 1y

1 py Py
1 gy Qy

MIT 6.838J/4.214) Geometric Computation L1: Thursday, September

Leftof Predicate

q-p
r=p

Why? Just z component of (q — p) X (r — p):

i j k

dr — Px 4y — Py 0
Iy — Pz Ty — Py U
Running time of brute-force algorithm?

Each LEFTOF predicate takes O(1) time

There are (g) candidate point pairs

Checking one candidate edge against n — 2 points ta

Chaining isolated hull edges takes O(n?) time, naive

Thus total time is (5) - n + O(n?) = O(n?)

MIT 6.838J/4.214) Geometric Computation L1: Thursday, September

Degeneracy

As defined, LEFTOF must return either true or false

What if three input points happen to be collinear?
Suppose LEFTOF returns true. What happens?
Suppose LEFTOF returns false. What happens?

Problem: sidedness test alone isn’t sufficient.

~

P

r leftof pqg

o

How can this be fixed?

MIT 6.838J/4.214J Geometric Computation L1: Thursday, September

Robustness

Suppose three input points are nearly collinear

r o

f

Finite-precision (integer, floating-point) arithmetic can
r is LEFTOF pq, and
p is LEFTOF qr, and
q is LEFTOF pr !
What happens?
Algorithm is not robust.
It can produce non-sensical output.

MIT 6.838J/4.214) Geometric Computation L1: Thursday, September

Robustness Issues

How can this be fixed?
Several options:
Use arbitrary-precision arithmetic
Often overkill
Incompatibility with downstream implementati
Use precision as necessitated by data
Composite quantities
Custom predicates
Overhead in ordinary case
Robustness is a major, recurring issue in design of geo:

MIT 6.838J/4.214J Geometric Computation L1: Thursday, September

Andrews’ (1979) modification of Graham

Idea: sort points left to right, then add to hull increme
Particularly simple; handles degeneracies; robust.

CONVEXIFY(S, p)
/* S is a stack of points; TOS is ¢ */
while (S.len > 2) and (p LEFTOF (p7_1,p7))
Popr(S)
PUSH(S, p)

SWEEP-HULL(Array p;)

Sort p; in place, by x coordinate
STACK UpperHull = { p; }
For:=2ton

CONVEXIFY (UpperHull, p;)
STACK LowerHull = { p;, }
For : = n — 1 downto 1

CONVEXIFY (LowerHull, p;)
Remove first, last points of LowerHull
Output UpperHull concat LowerHull

MIT 6.838J/4.214)J Geometric Computation L1: Thursday, September

Andrews’ Algorithm: Example

Intuition: Repeatedly
Compare py. to directed line from pp_1 to pr
If ps. is leftof this line, pop pr off of stack
Otherwise, push p; onto stack

n=12

.[:H.

2 3 4 5 678 9 1011 17

HHW H\H\M\l\ HW\‘\ (HH{
HJHHEMH MM HJHM HJHEM

Running time: O(nlgn)+2-0(n) = 0(nlgn)

MIT 6.838J/4.214J Geometric Computation L1: Thursday, September

Degeneracy

Are three collinear points a problem?
Middle point should not occur on output hull
Make LEFTOF true for this case
Note how x ordering simplifies things

Is this algorithm well-defined?

MIT 6.838J/4.214) Geometric Computation L1: Thursday, September

Degeneracy (cont.)

Algorithm assumed that all x coordinates distinct
What if multiple points with same x coordinate oc

| y
P P “p P
° P ° °
p, 5 py 10 p, 5
P
p,
| X

What is solution?
Called “lexicographic sorting”

MIT 6.838J/4.214J Geometric Computation L1: Thursday, September

Robustness, Running Time

Algorithm is guaranteed to produce a closed polygonal
Insufficient precision can still cause erroneous output:
Omission of input point that should occur on hull
Inclusion of input point lying inside hull (“dent” in
So the algorithm is robust, but not necessarily correct.
Running time:
Dominated by initial sort, O(nlgn) time
PoP and PUSH can happen at most O(n) times

MIT 6.838J/4.214) Geometric Computation L1: Thursday, September |

Example homework questions

Written questions:
Give a linear-time algorithm to compute the conve
Make reasonable assumptions, and state them
How can isolated hull edges be chained together in
Assume each input vertex occurs on either zero
Programming questions:
Implement and animate Andrews’ convex hull algo
Free to use public-domain GUI, graphics code 1
Implement a solution to either of the written quest
OK to work with someone who is writing up th

MIT 6.838J/4.214J Geometric Computation L1: Thursday, September

