
Motivation for BSP Trees:
The Visibility Problem

We have a set of objects (either 2d or 3d) in space.

We have an “eye” at some point in this space, looking
at the objects from a particular direction.

Drawing the Visible Objects

We want to generate the image that the eye would
see, given the objects in our space.

How do we draw the correct object at each pixel,
given that some objects may obscure others in the
scene?

A Simple Solution:
The Z-buffer

• Keep a buffer that holds the z-depth of the
pixel currently at each point on screen

• Draw each polygon: for each pixel, test its
depth versus current screen depth to decide
if we draw it or not

Drawbacks to Z-buffering

This used to be a very expensive solution!

• Requires memory for the z-buffer – extra
hardware cost was prohibitive

• Requires extra z-test for every pixel

So, a software solution was developed …

The Painter's Algorithm

Avoid extra z-test & space costs by scan
converting polygons in back-to-front order

Is there always a correct
back-to-front order?

How Do We Deal With Cycles?

In 3 dimensions, polygons can overlap,
creating cycles in which no depth ordering
would draw correctly.

How do we deal with
these cases?

BSP Trees

Having a pre-built BSP tree will allow us to
get a correct depth order of polygons in our
scene for any point in space.

We will build a data structure based on the
polygons in our scene, that can be queried
with any point input to return an ordering of
those polygons.

The Big Picture

Assume that no objects in our space overlap.

Use planes to
recursively split our
object space, keeping a
tree structure of these
recursive splits.

Choose a Splitting Line

Choose a splitting plane, dividing our objects into
three sets – those on each side of the plane, and
those fully contained on the plane.

Choose More Splitting Lines
What do we do when an object (like object 1) is

divided by a splitting plane?

It is divided into two objects, one on each side of the
plane.

Split Recursively Until Done

When we reach a convex space containing
exactly zero or one objects, that is a leaf
node.

Continue

Continue

Finished

Once the tree is constructed, every root-to-leaf
path describes a single convex subspace.

Querying the Tree

If a point is in the positive half-space of a
plane, then everything in the negative half-
space is farther away -- so draw it first,
using this algorithm recursively.

Then draw objects on the splitting plane, and
recurse into the positive half-space.

What Order Is Generated From
This Eye Point?

How much time does it take to query the
BSP tree, asymptotically?

Structure of a BSP Tree

• Each internal node has a +half space, a -half
space, and a list of objects contained entirely
within that plane (if any exist).

• Each leaf has a list of zero or one objects inside it,
and no subtrees.

• The size of a BSP tree is the total number of
objects stored in the leaves & nodes of the tree.

• This can be larger than the number of objects in
our scene because of splitting.

Building a BSP Tree From Line
Segments in the Plane

We’ ll now deal with a formal algorithm for building
a BSP tree for line segments in the 2D plane.

This will generalize for building trees of D-1
dimensional objects within D-dimensional spaces.

Auto-Partitioning

Auto-partitioning: splitting only along planes
coincident on objects in our space

Algorithm for the 2d Case
• If we only have one segment 's', return a leaf node containing s.
• Otherwise, choose a line segment 's' along which to split.
• For all other line segments, one of four cases will be true:

1) The segment is in the +half space of s
2) The segment is in the -half space of s
3) The segment crosses the line through s
4) The segment is entirely contained within the line through s.

• Split all segments who cross 's' into two new segments -- one in the
+half space, and one in the -half space.

• Create a new BSP tree from the set of segments in the +half space of s,
and another on the set of segments in the -half space.

• Return a new node whose children are these +/- half space BSP’s, and
which contains the list of segments entirely contained along the line
through s.

• Different orderings result in different trees

• Greedy approach doesn't always work --
sometimes it does very badly, and it is
costly to find

How Small Is the BSP From This
Algorithm?

Random Approach Works Well

If we randomly order segments before
building the tree, then we do well in the
average case.

Expected Number of Fragments:
O(n Log n)

Let Distsi(sj) = The # of segments intersecting line(si)
between si and sj, if line(si) intersects sj,
or +infinity otherwise

Thus, the expected number of fragments = O(n + n log n).

Expected Running Time:
O(n2log n)

The time taken at any particular node is linear
in the number of fragments in its input set.

Each call to the algorithm thus takes O(n)
time, and the number of recursive calls is
bounded by O(n log n).

Our total expected running time is then

O(n2 log n).

Optimization: Free Splits

• Sometimes a segment will entirely cross a convex
region described by some interior node -- if we
choose that segment to split on next, we get a "free
split" -- no splitting needs to occur on the other
segments since it crosses the region.

Our Building Algorithm Extends
to 3D!

The same procedure we used to build a tree
from two-dimensional objects can be used
in the 3D case – we merely use polygonal
faces as splitting planes, rather than line
segments.

A Slight Modification, for the
Sake of Analysis:

• Split both the + and - half space of a node with the
same plane, when we choose to do a split.

• An exception: When a split does not subdivide
some cell, it isn't necessary to include an extra
node for it.

Expected number of fragments:
O(n2)

With that modification, we can show that the
expected number of subdivisions for each
polygon in our input is O(k), where k is its
position in the random sequence.

The summation of these subdivisions over
k=1 to n will be O(n2). (Proof is on p.261
of the book if you are interested in details.)

• There are sets of triangles in 3-space for
which autopartitions guarantee Ω(n2)
fragments.

More analysis: How good are
auto-partitions?

• Can we do better by
not using
autopartitions?

Sometimes, No

There are actually sets of triangles for which
any BSP will have Ω(n2) fragments!

More applications

• Querying a point to find out what convex
space it exists within

• Cell visibility -- put extra data into your
BSP leaves, such as links to adjacent
convex subspaces

