
Motivation for BSP Trees:
The Visibility Problem

We have a set of objects (either 2d or 3d) in space.

We have an “eye”  at some point in this space, looking 
at the objects from a particular direction. 



Drawing the Visible Objects

We want to generate the image that the eye would 
see, given the objects in our space.

How do we draw the correct object at each pixel, 
given that some objects may obscure others in the 
scene?



A Simple Solution: 
The Z-buffer

• Keep a buffer that holds the z-depth of the 
pixel currently at each point on screen

• Draw each polygon: for each pixel, test its 
depth versus current screen depth to decide 
if we draw it or not



Drawbacks to Z-buffering

This used to be a very expensive solution!

• Requires memory for the z-buffer – extra 
hardware cost was prohibitive

• Requires extra z-test for every pixel

So, a software solution was developed …



The Painter's Algorithm

Avoid extra z-test &  space costs by scan 
converting polygons in back-to-front order

Is there always a correct 
back-to-front order?



How Do We Deal With Cycles?

In 3 dimensions, polygons can overlap, 
creating cycles in which no depth ordering 
would draw correctly.

How do we deal with 
these cases?



BSP Trees

Having a pre-built BSP tree will allow us to 
get a correct depth order of polygons in our 
scene for any point in space.

We will build a data structure based on the 
polygons in our scene, that can be queried 
with any point input to return an ordering of 
those polygons.



The Big Picture

Assume that no objects in our space overlap.

Use planes to 
recursively split our 
object space, keeping a 
tree structure of these 
recursive splits.



Choose a Splitting Line

Choose a splitting plane, dividing our objects into 
three sets – those on each side of the plane, and 
those fully contained on the plane.



Choose More Splitting Lines
What do we do when an object (like object 1) is 

divided by a splitting plane?  

It is divided into two objects, one on each side of the 
plane.



Split Recursively Until Done

When we reach a convex space containing 
exactly zero or one objects, that is a leaf 
node.



Continue



Continue



Finished

Once the tree is constructed, every root-to-leaf 
path describes a single convex subspace. 



Querying the Tree

If a point is in the positive half-space of a 
plane, then everything in the negative half-
space is farther away -- so draw it first, 
using this algorithm recursively.

Then draw objects on the splitting plane, and
recurse into the positive half-space.



What Order Is Generated From 
This Eye Point?

How much time does it take to query the 
BSP tree, asymptotically?



Structure of a BSP Tree

• Each internal node has a +half space, a -half 
space, and a list of objects contained entirely 
within that plane (if any exist).

• Each leaf has a list of zero or one objects inside it, 
and no subtrees.

• The size of a BSP tree is the total number of 
objects stored in the leaves & nodes of the tree.

• This can be larger than the number of objects in 
our scene because of splitting.



Building a BSP Tree From Line 
Segments in the Plane

We’ ll now deal with a formal algorithm for building 
a BSP tree for line segments in the 2D plane.

This will generalize for building trees of D-1 
dimensional objects within D-dimensional spaces.



Auto-Partitioning

Auto-partitioning:  splitting only along planes 
coincident on objects in our space



Algorithm for the 2d Case
• If we only have one segment 's', return a leaf node containing s.
• Otherwise, choose a line segment 's' along which to split.
• For all other line segments, one of four cases will be true:

1) The segment is in the +half space of s
2) The segment is in the -half space of s
3) The segment crosses the line through s
4) The segment is entirely contained within the line through s.

• Split all segments who cross 's' into two new segments -- one in the 
+half space, and one in the -half space.

• Create a new BSP tree from the set of segments in the +half space of s, 
and another on the set of segments in the -half space.

• Return a new node whose children are these +/- half space BSP’s, and 
which contains the list of segments entirely contained along the line 
through s.



• Different orderings result in different trees

• Greedy approach doesn't always work --
sometimes it does very badly, and it is 
costly to find

How Small Is the BSP From This 
Algorithm?



Random Approach Works Well

If we randomly order segments before 
building the tree, then we do well in the 
average case.



Expected Number of Fragments: 
O(n Log n)

Let Distsi(sj) = The # of segments intersecting line(si) 
between si and sj, if line(si) intersects sj,
or +infinity otherwise

Thus, the expected number of fragments = O(n + n log n).



Expected Running Time: 
O(n2log n)

The time taken at any particular node is linear 
in the number of fragments in its input set. 

Each call to the algorithm thus takes O(n) 
time, and the number of recursive calls is 
bounded by O(n log n).

Our total expected running time is then 

O(n2 log n).



Optimization: Free Splits

• Sometimes a segment will entirely cross a convex 
region described by some interior node -- if we 
choose that segment to split on next, we get a "free 
split" -- no splitting needs to occur on the other 
segments since it crosses the region.



Our Building Algorithm Extends 
to 3D!

The same procedure we used to build a tree 
from two-dimensional objects can be used 
in the 3D case – we merely use polygonal 
faces as splitting planes, rather than line 
segments.



A Slight Modification, for the 
Sake of Analysis:

• Split both the + and - half space of a node with the 
same plane, when we choose to do a split.

• An exception: When a split does not subdivide 
some cell, it isn't necessary to include an extra 
node for it.



Expected number of fragments: 
O(n2)

With that modification, we can show that the 
expected number of subdivisions for each 
polygon in our input is O(k), where k is its 
position in the random sequence.

The summation of these subdivisions over 
k=1 to n will be O(n2).  (Proof is on p.261 
of the book if you are interested in details.)



• There are sets of triangles in 3-space for 
which autopartitions guarantee Ω(n2) 
fragments.

More analysis:  How good are 
auto-partitions?

• Can we do better by 
not using 
autopartitions?



Sometimes, No

There are actually sets of triangles for which 
any BSP will have Ω(n2) fragments!



More applications

• Querying a point to find out what convex 
space it exists within

• Cell visibility -- put extra data into your 
BSP leaves, such as links to adjacent 
convex subspaces


