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Abstract

I use images acquired by a camera with a fisheye lens to represent illumination
incident from all directions at a point in the real world. Using the lighting visualization
package Radiance, I render simple objects with a variety of surface properties under
such complex illumination. I develop two different techniques to accomplish this task,
each of which performs best in certain situations.

1 Introduction

The bulk of traditional computer graphics work assumed simple surface illumination models
which took into account only direct lighting and limited indirect specular lighting. Recently,
the development of radiosity and enhanced ray-tracing techniques has enabled renderings
to take global illumination, including diffuse reflections from other surfaces, into account.
Such techniques are still limited in their ability to simulate natural lighting because natural
primary light sources such as a partially cloudy sky are difficult to model and because the
global illumination of a single surface requires the accurate modeling of all surfaces visible
from that point. In fact, to ensure that the illumination of a single surface is correct under
such an approach, one must solve the global illumination problem for the entire surrounding
world.

This project explores the alternative possibility of capturing illumination models
directly from the physical world. One can measure the illumination of a small patch of
a surface by photographically recording the radiance incident on that surface from each
direction in the hemisphere surrounding its normal. If all visible objects are relatively
distant, the illumination will not change significantly as one moves over a small area of the
surface. Thus, I use photographic information to render surfaces under physically accurate
illumination.

Similar approaches have been utilized recently by Debevec [1] and Sato [8] to render
synthetic objects into real scenes. Debevec rendered the local scene explicitly, and cap-
tured illumination from the distant scene by taking photographs of a reflective metal ball.
Sato and colleagues used a pair of fisheye lenses and a stereo algorithm to measure both
the illumination from each direction and the distance to direct and indirect visible light
sources. Such techniques might be used to create special effects, to generate augmented



reality environments, or to simulate the appearance of a piece of furniture or artwork before
physically adding it to a real scene.

2 Goals

The basic goal of this project is to use an illumination model represented by photographic
images to render surfaces as they would appear in the real world. Such a rendering task relies
on two essential models — one representing the light incident on the surface, and the other
representing the bidirectional reflectance distribution function (BRDF) of the surface. To
measure illumination, I use a camera with a fisheye lens, which measures incident radiance
over more than a hemisphere. Each pixel of the resulting image maps to a direction in the
physical world. I assume initially that the surface to be rendered is small relative to the
distance to the nearest objects in the photographs. Under this assumption, illumination
from any physical direction is the same at any point on the surface unless occluded by
the rendered surface itself. T also assume that the surface is opaque and convex, and that
reflectance does not vary over the surface. I followed my proposed goal of implementing
the rendering process first in this relatively simple case, and then relaxing several of these
assumptions.

I also proposed using a BRDF representation more realistic than the Phong model.
In the actual implementation, I did not use the Phong model at all, adhering instead to
models which are physically plausible in the sense that they obey energy conservation laws.
I experimented with a moderately simple empirical reflectance model as well as a more
complex physically-derived model, both from the computer graphics literature.

3 Radiance Rendering Algorithms

When all the initial assumptions described above hold, rendering each point on the surface
requires performing an appropriately weighted integration over a hemisphere of the full
illumination sphere. Although expensive, a naive implementation of this integration would
not be difficult to code. I chose, however, to use the lighting visualization tool kit Radiance,
developed by Greg Ward at Lawrence Berkeley National Laboratory over the past 15 years.
The primary advantage of using this software is that once I have a basic implementation,
I can draw on the existing capabilities of the software package to easily extend my results.
Also, Radiance provides a ready interface and a fast implementation for certain rendering
tasks.

Radiance differs from most rendering packages in that it aims to simulate the effects
of physical illumination rather than to simply produce photorealistic images. That is,
Radiance is designed as a predictive tool rather than as a means of producing artwork that
looks like it might have been a photograph. Radiance accomplishes this with a hybrid
stochastic and deterministic ray-tracing technique. It comprises a collection of programs
which interact on the Unix model rather than through a graphical user interface. One
might think of Radiance as a graphical programming environment, with input specified in
text files. The remainder of this section describes the details of the rendering algorithms



most relevant to this report, based on [7, 6, 5] and on personal e-mails from Greg Ward.
Note that this description is far from complete; I read at least three hundred pages of
documentation relevant to this project. Several of the algorithms involved were published
by Greg Ward as SIGGRAPH papers.

Radiance breaks the complete radiance equation, an integration of a complicated
function over a hemisphere, into three parts. One must understand each of these algorithms
in order to properly set a long list of algorithmic parameters for rendering and to fully
understand the results.

e Direct component. Radiance handles the direct contributions of physical light
sources and virtual light sources due to mirrors separately from those of indirect light
sources. Light sources in Radiance always have nonzero surface area. A jittered
sample is chosen at random from this surface area and used to compute the radiance
contribution of that light source.

This simple routine works for light sources of finite size because Radiance precedes the
jittered sampling by an adaptive light source subdivision process whose termination
condition depends on the ratio of the source’s maximum side length to the distance
between the source and the point being rendered. Both the adaptive subdivision
process and the jittering process are designed for rectangular light sources. In fact,
light sources of certain shapes, such as spheres and sources (discussed below), are
not subdivided at all. If a non-rectangular light is subdivided and direct jittering is
enabled, certain samples may miss the light completely, causing rendering errors.

e Indirect specular component. Radiance assumes a default reflectance model, dis-
cussed later in this section, whose specular lobe is specified by a Gaussian model. At
each rendered point, Radiance uses a Monte Carlo technique to choose a single sample
ray direction from a probability distribution proportional to this lobe. The contribu-
tion of that ray is computed recursively by standard ray tracing techniques. While
one can specify an arbitrary BRDF for a material, the indirect specular contribution
is computed only for variants of the default model, because the algorithm depends
on an analytical Monte Carlo inversion formula specific to the Gaussian form of the
specular lobe.

e Indirect diffuse component. Computation of the indirect diffuse component poses
a challenge to ray-tracing algorithms because it requires one to cast rays over an
entire hemisphere for each surface point. Radiance deals with the formidable putative
expense of this computation by using a sophisticated caching mechanism to avoid
casting these rays at every point. The details of this algorithm, which involve a
method for extrapolating diffuse illumination from that of nearby surface points as
well as an octree separate from that used for ray intersection, are beyond the scope
of this report, even though this is the most interesting part of the Radiance package.

While Radiance allows specification of arbitrary surface bidirectional reflectance-
transmittance distribution functions (BTRDFSs), the fast indirect lighting algorithms de-
scribed above depend on a particular form of the reflectance. The indirect diffuse lighting



Figure 1: Two sample fisheye photographs representing illumination at a given point. One
is taken indoors, the other outdoors.

algorithm assumes simple Lambertian reflectance. The indirect specular algorithm assumes
anisotropic reflectance which, in the isotropic case, simplifies to [7, 5]
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where 6; and phi; represent the incident angle, 6, and ¢, represent the reflected
angle, ps is the specular reflectance, § is the angle between the surface normal and the
bisector of the incident and mirrored reflection directions, and « is the roughness measured
as the RMS standard deviation of the surface slope. Although empirical, this model satisfies
physical conservation laws and fits measured BRDF data closely [?].

4 Algorithms and Results (Achievements)

4.1 Image acquisition and geometry

I deduced distant global illumination at several indoor and outdoor locations from images
acquired by Ted Adelson using a Nikon COOLPIX 950 digital camera with its standard
fisheye lens adapter. Two sample images are shown in Figure 1. Adelson took these
photographs with the center of the lens pointed straight upwards. The distance of a given
pixel from the center of an ideal fisheye lens image is proportional to the angle between
the direction corresponding to that pixel and that corresponding to the center of the lens.
While the administrators of Nikon’s technical support forum refused to disclose data on
additional geometric distortions introduced by their lenses, they did inform me that the
field of view of the fisheye lens is 183 degrees. I assumed an ideal fisheye lens with a 183



degree field of view and wrote a Radiance function to map illumination directions to the
image.

While the CCD array of a digital camera has an inherently linear luminance response,
the pixel values output by the Nikon camera are not proportional to luminance. First, they
suffer from saturation. Three eight-bit values represent the color at each image pixel. I used
Matlab to compute histograms of each component of the color values for each image, and
found significant peaks at the highest intensity values in all the images due to saturation.
Second, the camera passes luminance values through a compressive nonlinearity, so that
pixel values are not proportional to luminance even within the dynamic range. Nikon
refused to share this nonlinearity (the gamma function of their camera). Debevec and
Malik [2] demonstrated a method for obtaining luminance values over a high dynamic range
using multiple images at different exposures, but I have not yet collected the necessary
data or implemented this optimization. I also ignored for the time being the luminance
nonlinearities inherent in display devices. Radiance provides utilities to deal with these,
but they require data on the specific display device to be used.

Although a hemispherical image suffices to describe the illumination of a small sur-
face patch, capturing the illumination of an object such as a sphere requires a full 360 degree
field of view. This might be captured by taking two fisheye lens photographs in opposite
directions and fusing them together. I have found software specifically for this purpose [3],
but I have not had a chance to collect the necessary pairs of photographs because the Nikon
camera has been out of town for some time recently. I therefore rendered objects using only
the upper natural illumination hemisphere. I created the renderings from a viewpoint 45
degrees from a direct top view, which somewhat ameliorates this shortcoming, but portions
of the resulting images are nevertheless inaccurate.

4.2 Indirect illumination approach

The recommended method for dealing with distant wide-angle light sources in Radiance
is to force their contributions exclusively into the indirect lighting computation by repre-
senting them as “glow” materials, a special luminous material type ignored in the direct
lighting computation. This leads to a highly efficient algorithm which takes advantage of
the speed of the specular and diffuse indirect lighting computations described in Section
3. In addition to polygons, spheres, and cones, Radiance supports a special surface type,
“source,” representing infinitely distant solid-angle light sources. My first approach was
to map the fisheye photographs onto sources slightly large than hemispheres with “glow”
characteristics and then to adjust the parameters of the indirect lighting computation to
obtain acceptable accuracy in the renderings.

Figure 2 shows a sphere of oxidized copper, generated using the standard metal
reflectance type in Radiance. 1 obtained the color, specularity, and roughness parameters
for this surface from a data file of standard material properties included with the Radiance
distribution. I originally rendered an image at a resolution of 1024 by 1024, then down-
sampled it to 512 by 512 using the pfilt program. This is standard Radiance technique;
pfilt reduces aliasing within the image and at its boundaries by filtering and down-sampling,
and also automatically adjusts image exposure. Note that the specularities in this image



Figure 2: The upper left image is a Radiance rendering of an oxidized copper sphere under
the illumination represented by the left-hand image in Figure 1, generated at 1024 by 1024
resolution and then filtered and down-sampled to 512 by 512. The upper right image is
the same rendering after post-processing with the Radiance pcond function, which mimics
the human visual response by defocusing dark regions, adding glare to very bright regions,
using human contrast sensitivity to determine exposure, and shifting to a blue-dominant
response function in scotopic regions. All other images in this report show images before
processing by pcond. The two lower images are similar to the upper left image except that
their illuminations are derived from different indoor and outdoor photographs. For the
purposes of comparison, all other images in this report use the illumination map pictured
on the left of Figure 1.



Figure 3: At left, a sphere coated by emerald green paint. At right, an orange whose
surface is rendered using a bump map. Both images were generated using photographically
acquired illumination at 1024 by 1024 and down-sampled to 512 by 512.

are somewhat speckled. This artifact results from the indirect specular evaluation routine,
which sends out a single, jittered ray for each image pixel. If jittering is turned down, the
surface will appear less speckled, but the simulation will be less accurate. One can improve
results by generating a larger image and using pfilt to low-pass filter and down-sample it.
Of course, this increases computational cost. Generating the 1024 by 1024 image takes
between 5 and 10 minutes on a fast Sparc Ultra. Also, note that in each image certain
areas do not exhibit any specular reflectance. The specular lobes for these regions fall in
the lower illumination hemisphere, outside the range of the fisheye lens image.

Figure 3 shows two more spheres with different reflectance properties. One is coated
with slightly specular, smooth, emerald green paint. Although the specularity is weak, the
reflection of the incident light sources is well-defined due to the smoothness of the surface.
The image of an orange illustrates Radiance’s capabilities to represent texture as a bump
map. One defines a texture as a Radiance function, then maps it onto a surface. In this
case, I found a texture function in a texture library and estimated color, specularity, and
roughness myself.

Using Radiance, I can easily extend my rendering capabilities to arbitrary 3D ge-
ometries. Figure 4 shows a few examples. The tile at left has a purely diffuse reflectance,
with an added pattern or color map (or, to use the standard computer graphics misnomer,
“texture”). This particular wooden texture has a three-dimensional description, so that the
grain runs in consistent directions on the different surfaces. The coffee table rendering, on
the other hand, must take accurate account of inter-reflections. Note that different parts
of the table cast shadows on each other, although the external scene does not cast shadows
on the table because the photographed objects are modelled as infinitely distant.



Figure 4: On the left, a patterned wooden tile. On the right, a table based on a model in
[7]. Both images were rendered at 512 by 512 and down-sampled to 256 by 256.

The basic Radiance reflection model also includes anisotropic reflectors, as well as
transparent and translucent materials. While I have not included example images in this
report, all of these could be easily rendered in Radiance under photographically acquired
lighting using the indirect illumination approach.

4.3 Direct illumination approach

Using only indirect lighting leads to several limitations. As mentioned in Section 3, the
indirect specular calculation is automatically disabled when a specular lobe other than Ra-
diance’s general anisotropic default is specified, and the indirect diffuse calculation assumes
that the diffuse reflectance has a Lambertian form. Radiance allows the user to disable the
diffuse reflectance computation and specify an arbitrary BRDF as an analytic function or
as a data file, but in this case only the direct lighting contribution will be computed. A
second limitation of the indirect lighting approach was mentioned in Section 4.2. Since the
specular computation uses only a single sample at each point, rough specular images are
prone to speckle of the type observed in Figure 2.

I solved both of these problems by representing the photographically acquired illu-
mination as a direct light source. The simplest approach to accomplishing this would be
to simple convert the “source” surface from a “glow” material to a “light” material so that
it will be included in the direct computation. This fails because Radiance does not apply
adaptive source subdivision to “source” surfaces (Section 3); the whole hemisphere would
effectively be concentrated into a tiny disk at its center. Perhaps the next most obvious
strategy is to replace the source by a large sphere tessellated by polygons, each of which
Radiance will subdivide. I implemented this scheme initially, but it produces poor results



Figure 5: At left, the copper sphere of the previous section rendered using the direct lighting
approach. This image was generated at a 512 by 512 resolution and down-sampled to 256
by 256. At right, a similar sphere with reflectance given by the He-Torrance model. Due
to the expensive rendering process, this image was generated at 128 by 128. It was not
down-sampled by pfilt, leading to the jagged appearance of the edges.

because many of the polygons are non-rectangular, so that many of the jittered samples
miss their intended surface entirely (Section 3). A much better strategy is to simply map
the photographic illumination map onto the faces of a large cube surrounding the scene to
be rendered. Radiance then handles the subdivisions automatically, and all the regions to
be subdivided and jittered are rectangular. Note that regions near the corners of the cube
will be subdivided at a higher resolution than necessary because the termination condition
of the subdivision algorithm ignores the relative orientation of the light source polygon with
respect to the rendered surface (Section 3).

This method works accurately, but at great computational expense. The copper
sphere of Figure 5 has the same material properties and the same illumination as that in the
upper left of Figure 2. The speckle artifacts have been eliminated. However, this image took
over ten times as long to compute at half the resolution. The direct lighting computation
does not utilize the clever caching algorithm of the indirect diffuse lighting calculation
(Section 3); it does something more akin to a simple integration over the hemisphere.

I also used the direct lighting method to render a sphere with a reflectance given by
the He-Torrance model [4], one of the most accurate available physically-derived reflectance
models. The He-Torrance model includes a diffuse component, a specular component, and a
directional diffuse component. The standard Radiance distribution includes a complete im-
plementation of the BRDF predicted by this model, as well as a slightly simplified version
which ignores some of the variation of reflectance between color bands at great compu-
tational savings. Even with the simplified model, the combination of a computationally



complex reflectance model and complex direct lighting leads to renderings at least three or-
ders of magnitude slower than in the indirect lighting case. Figure 5 also shows an example
of a rendering using this spectrally simplified He-Torrance model. I chose model parame-
ters to generate a surface similar to that of Figure 2. Specifically, this sphere has the same
diffuse color as that of Figure 2. T used a surface height standard deviation o9 = .4um
and an autocorrelation length 7 = 3um, based on parameters used in the examples of
He’s paper [4] !. T produced other renderings for this surface using simple light sources
instead of photographically acquired lighting. Renderings generated with the He-Torrance
model do appear more realistic to me than those generated with Radiance’s default model,
but the difference is relatively small given the amount of additional computational expense
involved.

5 Lessons Learned

I learned a great deal from this project. I spent over half my time learning to use Radiance
rather than working on my specific application. During that time, however, I simultaneously
learned to use a powerful rendering and visualization package and learned in much more
detail the algorithms used to compute surface luminances. Once I passed the learning
phase, Radiance enabled me to accomplish some of the goals I did not expect would be
possible during the course of this project.

This project exposed me directly to a large portion of the concepts we covered in
class, including ray tracing, radiosity, illumination and material models, visibility, octrees,
texture mapping, bump mapping, and geometrical modeling. It helped me understand
important tradeoffs in rendering and the importance of fast computation in graphics. I also
gained a detailed physical understanding of certain reflectance models, and an appreciation
for the importance of dynamic range in illumination.
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