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Abstract
A method for two-dimensional ray casting with arbitrary angle walls is presented.  The system was
implemented for DOS 3.0 in order to compare to a popular game of the same nature called Wolfenstein. 
The basic method is discussed first, followed by a description of the implementation process.  Wall
intersections are calculated by first pre-computing a grid data structure containing lists of the line
segments that pass through each square.  Cramer’s Rule and a simple loop are used to calculate the
closest intersection.  Textures are also applied to the walls and optimizations made in an effort to
achieve between 15 and 20 fps on the test platform, a high-end 486. 

1  Introduction

Wolfenstein 3D (c)  was a popular first person "shoot ’em up" in the early nineties and late eighties.  At
the time it provided a clever alternative to the traditional polygon-based flight simulators that people
associated with "3D games," and judging by the trend of clones that followed it, looked to be the wave
of the future.  After all, ray-tracing, in all of its elegance, is a very attractive idea;  all Wolfenstein did
was take that idea from three dimensions to two. 

A fully functional ray tracer casts a ray (or multiple rays) through each pixel in the viewport out into the
virtual world.  When the ray returns, it contains information about how to shade or color that particular
pixel of the viewport.  The advantage of this approach is the ability to view the scene from any angle
and observe a nearly exact picture.  The quality of a ray traced image does not come without its costs,
though--ray tracing is extremely CPU intensive and therefore usually too slow to run in real time on
current desktop machines.  However, the ray tracing algorithm does not have to be so general simply to
create a video game.  For instance, Wolfenstein places numerous restrictions on the world in order to
create a ray casting algorithm that can be run in real time without much computing power (the game was
designed to run on 386 and 486 IBM compatibles in the early 1990s): 

The camera is always located at the position z = 0 
The camera angle has no z component (cannot look up or down) 
All objects in the world are perfect cubes of the same size 
All objects are located in discrete positions, far enough apart so that they never overlap 
All objects are located at z=0 as well 

This essentially reduces fully functional, three-dimensional ray tracing to two-dimensional ray casting. 
The difference between casting and tracing is very subtle here:  Ray casting only involves using rays to
find the location of objects, whereas ray tracing is a recursive process that regenerates rays at each
object collision until a light source is found.  More simply put, ray casting tells us what object is visible
at a certain pixel on the screen, but ray tracing tells us both what object is visible and how to shade the



pixel. 

A simpler statement of the above restrictions might be that the world is composed of square blocks
arranged in a grid on the XY-plane (Figure 1).  The observer walks around this plane, always looking
straight ahead.  Since we are now only dealing with a two dimensional space, we can send out one ray
for each vertical sliver on the screen instead of for each pixel.  Depending on the size of the display, this
alone speeds up the process by a factor of a hundred or even a thousand (A viewport of size 320 by 200
pixels would normally require 64000 rays to be cast, but if we only have to cast one ray for each vertical
sliver we reduce that number to 320 rays--a two hundred fold improvement!).  In addition, calculation of
intersections in two-dimensional space is much simpler than in three dimensional space, and the
restriction of objects to squares in a grid makes it almost trivial. 
Furthermore, since there are only so many directions that a ray can be cast in the XY-plane (some small
multiple of 360), we can now precompute lookup tables for virtually every necessary calculation as well.

 

Thus the algorithm becomes very simple: 

   1.Send out a ray for each vertical sliver and calculate its first intersection with a wall and how far
away that wall is. 
   2.Take a vertical of the texture for that wall, scale it vertically based on its distance, and paste it to the
screen 

Of course, our goal here isn’t simply to recreate Wolfenstein, it is to improve upon it.  The problem with
this algorithm is that all walls have to be at 90 degree angles, in cube shapes.  Unfortunately, this doesn’t
make for a very exciting video game.  Instead, we would like to envision an engine that could handle
walls at any angle.  This leads to a much more capable engine that can recreate winding halls and caves
and allow a (somewhat) more realistic representation of the real world. 

Now, despite whatever the trend seemed to be in 1992, experience has shown that first person 3D
engines have moved decidedly away from the ray casting methods used in Wolfenstein.  Ironically,
they’ve gone back to using polygons.  Perhaps this is because polygons are easy to implement in
hardware (i.e. in the grain of the ever more powerful graphics cards), but it still begs the question of
whether or not it is the right direction.  If Wolfenstein can be generalized to arbitrary angle walls
without hurting the performance very much, perhaps there’s hope for real time ray casting.  In this
project, I hope to show that the "big step" of moving from cubes to arbitrary angled walls is not that big
of a step at all, and that perhaps more attention should be paid to this seemingly "antiquated" method. 



Throughout the implementation of this project, I’ve come to form opinions on both sides of this issue,
which will be discussed in more depth in the Conclusion. 

2  Design Goals

This section is copied directly from the project proposal.  We will analyze later how successful we were
in meeting these goals. 

This project aims mainly to create an engine that will run in real time, but also to create a very general
shell that can be easily expanded.  At this point, I plan to provide hooks for: 

Running the engine under any screen resolution or palette 
 Running the engine on any platform 
Any input module 
Sprite overlay before double-buffer updates 
(Hopefully) A standard graphics file format for wall textures and sprites 

The primary design goal is, of course, to make the engine run in real time.  Wolfenstein 3D was written
for high-end 386’s and low-end 486’s.  Considering the desired addition of functionality, this project
will aim to perform at least 15-20 frames per second on a high-end 486 or low-end pentium (60 or 66
Mhz).  Development will therefore be done in DOS using Borland Turbo C++ 3.0 and the same display
mode as Wolfenstein 3D: 
320x200 pixels and 256 colors. 

Although the engine will be developed for a specific screen resolution, hooks will be included to allow
for any screen resolution or any graphics platform.  This will most likely be accomplished by a language
constrained interface to the graphics routines, so that the core of the code could be used on any machine,
as long as a library of basic graphics routines satisfying the interface is provided. 

Input will most likely come in the form of either the keyboard or a mouse, but this too will be goverened
by an interface so that any type of input device (like a joystick) could be used as long as the appropriate
routines are supplied to satisfy the interface to the engine. 

Furthermore, no game engine would be complete without the ability to overlay sprites on the rendered
image.  Therefore, hooks will be left in the rendering pipeline to allow for monsters, explosions,
weapons, or any other possible effects to be added.  Since the scene will be re-drawn with each frame,
this will probably come in the form of a direct paste into the offscreen buffer before each screen update. 

Finally, I hope to use a standard graphics file format for wall textures and sprites.  This would allow for
easy graphics development in any popular graphics package.  At the very least I hope to provide a utility
for converting from a common format to whatever graphics format I come up with. 

3  Implementation

The concept is simple:  We will compute an intersection with a grid square, just like we’re creating a
primitive cube-based ray-casting engine.  However, instead of stopping there, we’ll find out which walls
(drawn between arbitrary points on the field) pass through that square, and find the closest intersection



inside that grid square.  In practice this was implemented one step at a time, but can be broken down into
essentially three steps:  square wall intersection, arbitrary angle wall intersection, and optimization. 

3.1  Square Wall Intersection

At this stage of the project, nothing new was being created; the goal was only to mimic existing engines
which sent out rays looking for X and Y intersections and returned the closest grid square.  Of course,
this alone was quite a feat to accomplish.  Knowing from the very beginning that speed would be an
issue, we used exclusively fixed point arithmetic--a method of arithmetic where the bottom 8 bits of a 32
bit integer are used as the "decimal places".  This idea is driven by the fact that most computers are very
slow at doing "infinite precision" arithmetic. 

Intersection is composed of two parts:  Finding intersections with vertical edges of the grid squares, and
finding intersections with horizontal edges of the grid squares.  In reality, a ray is cast for each of these,
and the closest of the two intersections is used.  This translates to pseudo code similar to the following: 

long scan(int direction) { // Returns distance to closest intersection 
  // First vertical intersection 
  x = horizontal distance to first grid line 
  y = function of x based on tan(direction) 
  if (x and y designate that ray is entering non-empty square) { 
    distance1 = sqrt(x * x + y * y); 
  } 

  // Subsequent vertical intersections 
  dx = width of one grid square 
  dy = function of dx based on tan(direction) 
  while (!intersection) { 
    x += dx; 
    y += dy; 
  } 
  distance1 = distance to intersection 

  // Now look for intersections with horizontal walls 

  // First horizontal intersection 
  y = vertical distance to first grid line 
  x = function of y based on tan(direction) 
  if (x and y designate that ray is entering a non-empty square) { 
    distance2 = sqrt(x * x + y * y); 
  } 

  // Subsequent horizontal intersections 
  dy = height of one grid square 
  dx = function of dy based on tan(direction) 
  while (!intersection) { 
    x += dx; 
    y += dy; 



  } 
  distance2 = distance to intersection 

  // Return closest 
  return min(distance1, distance2); 
} 

Un fortunately, using fixed point arithmetic induces error every time an operation is done, so the farther
a ray travels, the bigger the error becomes.  This can lead to disturbing cases where the X and Y rays
actually travel different paths and can possibly "bypass" a square they should hit exactly at a corner: 

 

In addition, a sort of "hack" was used to project the image to the screen.  Of course, the eye is not the
same distance from every sliver on the screen, so a correction term has to be used.  This correction is
roughly equal to the cosine of the angle between the sliver and the center of the screen, but as it turns out
this can really turn around and bite us when we’re very close to a wall, because then the approximation
isn’t so good.  This distortion can be seen in many Wolfenstein clones when you stand very close to a
wall: 

 
Image from Catacomb 3-D from Apogee Software 



Thus, the entire scheme for projection had to be re-designed some ways into development to use the
more correct (and more mathematical) 6.837 method.  The distance from the eye to each sliver on the
screen is pre-computed and stored in a table.  The base height for a wall standing exactly at screen
distance is also computed to ensure that the width to height ratio of walls does not vary with changes in
the viewing angle.  The actual size of each sliver on the screen is then computed using its distance from
the eye (the return value of the scan routine) and similar triangles. 

All of this worked remarkably well, except for the error propagation mentioned above, which I was not
able to find a way around.  Nonetheless, perserverence yielded a generic engine: 

 
A wall composed of two grid squares, all in correct proportion! 

 
Correct projection provides very sharp angles. 

 
But we never managed to fix that hole... 



3.2  Arbitrary Angle Walls

The next step was to move to arbitrary angle walls.  We precompute which walls pass through which
squares on the grid, and when we intersect a grid square we loop through all those walls doing a simple
ray-ray intersection.  Originally, the list of walls was to be kept in a linked list, but in the end an array
was used, paired with a number telling how many items that array contained: 

struct GridSquare { 
  int num_lines; 
  WallSegment *lines; 
} 

The playing field itself is simply a collection of grid squares, along with other information necessary to
play the game: 

struct GridStruct { 
  GridSquare *grid; 

  // Playing field dimensions in units of grid squares 
  unsigned int width, height; 

  // Playing field dimensions in world space units 
  unsigned long int world_width, world_height; 

  Player player;  // The observer 
  unsigned long eye;  // Distance from eye to screen in world space units 
} 

Some modification has to be made to the basic scan loop as well; namely we cannot stop as soon as we
intersect a non-empty grid square, because that grid square may not contain any lines in the ray’s path: 

 

So instead, we define another routine called CheckSquare which returns true or false depending on
whether or not a suitable intersection resides inside that grid square.  A suitable intersection is one that
resides on a wall inside the square.  To solve for this point we set up two simultaneous equations in
terms of the parameters along the two rays, ta and tb.  The parameter along the casted ray gives us the
distance to the intersection (conveniently without using a square root!), and the parameter along the



intersected wall tells us 1)  Whether or not the intersection actually occurs on the wall (as opposed to on
the equation for the wall, but beyond the endpoints), and 2)  What sliver of texture to map onto this
segment. 

 

As can be seen in the screen shot above, we still have problems with rays passing through the corners of
grid squares.  However, once again we move on and make the simple addition of adding textures to the
walls: 

 

3.3  Optimization and Hunting For Bugs

The implementation so far, although constituting the majority of the actual code, only accounts for about
half of the overall man hours put into this project.  Hunting for bugs turned out to be a painful process
(reminding us of how far development environments have come in just a few short years).  In addition,
much of the code had to be written, re-written, and written again in order to get the speed necessary. 

Error propagation remained a problem until the end, and was never actually fixed.  However I was able
to work around it by liberalizing the algorithm for intersecting two rays.  As it turns out, we don’t have
to be so stingy about clipping the intersection to the square, so we introduce several "error
terms"--constants with predefined values that designate just how stingy we will be.  Many of the
rounding errors in the fixed point arithmetic were dealt with in the same way; by allowing a couple units
of leeway we avoid not drawing a sliver because a badly-rounded number placed the intersection outside
some hard boundary.  The drawback, of course, is the extra math involved in adding in the error terms. 

Code for precomputing the grid data structure also had to be modified somewhat.  Instead of simply
"drawing a line" across the grid, we must insure that every single square touched by a line has a pointer



to that line.  Special cases also had to be added for the case where a line lies directly on the boundary
between cells.  Even as it stands now, walls cannot lie exactly on the edge of the map or they will not be
rendered correctly.  This comes from the simple fact that we check the square a ray is entering, so when
we’re on the edge of the map we would be checking a square that does not exist. 

However, it is also possible to find some big wins in optimization.  The first place to look, of course, is
the C++ routine that scales a texture and draws it onto the screen.  Instead, if we translate this routine to
assembly we see dramatic speed increases.  This actually consists of two routines--one for wall slivers
that are shorter than the screen, and one for slivers that are taller than the screen.  The following two
tables show the frame rate for a small, square room, run on an very powerful modern machine (Intel
Celeron 400+ MHz). 

Table 1:  Comparison for slivers shorter than the screen 
Frame Rate for C++ Sliver Scaling Routine Frame Rate for Machine Language Routine

Frames 1-100 59.847451 fps Frames 1-100 74.571203 fps

Frames 101-200 59.709923 fps Frames 101-200 74.113105 fps

Frames 201-300 60.057020 fps Frames 201-300 77.081279 fps

Frames 301-400 59.380997 fps Frames 301-400 77.843956 fps

Frames 401-500 59.137954 fps Frames 401-500 78.168815 fps

Frames 501-600 59.498908 fps Frames 501-600 76.376743 fps

Frames 601-700 59.611420 fps Frames 601-700 74.316259 fps

Frames 701-800 58.976774 fps Frames 701-800 78.592255 fps

Frames 801-900 58.264710 fps Frames 801-900 78.275119 fps

Frames 901-1000 60.582391 fps Frames 901-1000 78.832410 fps

Avg:  59.506755 fps; Stand Dev:  0.632766 Avg:  76.817114 fps; Stand Dev:  1.858721

Table 2:  Comparison for slivers taller than the screen 
Frame Rate for C++ Sliver Scaling Routine Frame Rate for Machine Language Routine

Frames 1-100 56.113501 fps Frames 1-100 85.097137 fps

Frames 101-200 54.694388 fps Frames 101-200 83.402129 fps

Frames 201-300 54.450805 fps Frames 201-300 77.758830 fps

Frames 301-400 54.922889 fps Frames 301-400 81.788404 fps

Frames 401-500 55.982441 fps Frames 401-500 78.948102 fps

Frames 501-600 54.330579 fps Frames 501-600 80.197651 fps

Frames 601-700 52.100028 fps Frames 601-700 82.536911 fps

Frames 701-800 55.424745 fps Frames 701-800 82.589757 fps

Frames 801-900 54.785198 fps Frames 801-900 84.314863 fps

Frames 901-1000 54.442929 fps Frames 901-1000 77.173662 fps

Avg:  54.724750 fps; Stand Dev:  1.117698 Avg:  81.380751 fps; Stand Dev:  2.740778

These optimizations yielded a 29.0% increase in frame rate for slivers shorter than the screen and a
48.7% increase for slivers taller than the screen!  Obviously a huge payoff! 



After the wall scaling routines we look to the scan routine.  Realizing that the slowest operation is
division, we try to completely eliminate it from our code.  This led to creating tangent and cotangent
lookup tables, as well as (ironically), leaving the code for Cramer’s Rule in floating point arithmetic (it
turns out that floating point division is faster than long integer division for a machine with a math
coprocessor). 

Finally, we notice that the program scales very badly with a large map.  Of course this should come as
no surprise; imagine a map consisting of a small square in the middle of a huge field.  One of the rays
cast for each sliver (for horizontal or vertical intersections) is bound to slip by the squares actually
containing data and lead to a redundant loop that simply recurses over and over until the ray exits the
field.  We also notice that if we’re looking horizontally, it’s usually the vertical intersections we keep,
and if we’re looking vertically, it’s usually the horizontal intersections we keep.  This leads to the
following optimization: 

1. If cosine(direction) is greater than sine(direction), compute vertical intersections first, otherwise
compute horizontal intersections first. 

2. When finding the first intersection (for instance vertical intersections), keep track of the squared
distance from the observer. 

3. When finding the second intersection (for instance horizontal intersections), do not recurse past the
point such that the squared distance to the next possible point of intersection is greater than the
squared distance we found in the first intersection. 

In other words, we won’t keep looking for intersections if we know it will be farther than the one we
already have!  Between all of the optimizations listed above, we can push the frame rate up to around
100 frames a second on a powerful computer (the Celeron mentioned above), but the addition of error
terms and other corrections to ensure an accurate picture bring this down somewhat.  In the end,
however, we actually get a very pleasing result.  Using a large map (30 x 28 cells) with a total of 140
wall segments, the program was tested on a 133 MHz 486 class computer (well in the range stated in the
design goals): 

Table 3:  Frame Rate on Target Computer 
Frame Rate on a 133 MHz 486 Computer

Frames 1-100 19.940599 fps

Frames 101-200 17.859979 fps

Frames 201-300 10.440381 fps

Frames 301-400 14.096029 fps

Frames 401-500 12.262596 fps

Frames 501-600 16.404513 fps

Frames 601-700 13.296622 fps

Frames 701-800 21.517080 fps

Frames 801-900 17.402784 fps

Frames 901-1000 18.367161 fps

Avg:  16.158774 fps; Stand Dev:  3.538985

And, finally, some screen shots from the final product: 



 
Finally!  No holes! 

 
Walking around in the maze. 

 
Depiction of what a "cave" might look like. 



 
Another picture of the cave. 

 
View of a room consisting of 50 wall segments in a circular pattern. 

 
Walking into a large, very detailed room. 



 
The columns are made up of 8 wall segments in a circle.  With 6 columns in the room it slows down the
frame rate dramatically. 

 
A tribute to our favorite actor... 

 
...and our favorite movie.  This illustrates how multiple smaller wall segments could be use to make a
longer, panoramic segment.  This particular display combines three separate wall tiles. 

 
Showing off a nice marble texture.  I used background images from the web, scaled to 64 by 64 pixels,
for the wall tiles. 

4  Lessons and Acknowledgements

I actually learned quite a few things from this project (more than I ever thought I would, in fact, but alas,



as the say "se la vi").  First and foremost, though, I learned the importance of mathematical correctness
when doing 3D rendering.  I spent countless hours trying to make the projection work using a cheap
hack, but failed miserably.  It was not until I started pouring over lecture notes and actually sat down
and worked out the equations that I got it right.  I had to completely redesign several elements of the
program, as well as really think about the difference between my world coordinate system and the
screen coordinate system--somehing I had always just discounted as a picky "technical detail" in the
past. 

In addition, I also learned a lot about optimization.  I found myself more than once writing test programs
to time how long it took to do various calculations using integers, long integers, and floating points.  I
have also never been forced to write any substantial code in assembly up to this point (other than a
handful of assignments in Computer Science classes). 

Finally, I had to think very critically about 1)  Where most of the work was being done, and 2)  Which
computations could be "slow" and which had to be lightening fast.  For instance, I keep track of the
frame rate using double-precision floating point numbers, my code for pre-computing the grid data
structure uses exclusively floating point arithmetic (and some hacks that would make any respectable
Computer Scientist feel nauseous), and my code for "moving" the player around the playing field is
anything but optimized.  But none of this really matters--all of these things are either done only when
loading the program (the justification behind lookup tables), or they are done so seldom that they make
no noticeable difference.  For instance, let’s say each ray has to check two grid squares before finding an
appropriate intersection, and that each grid square has five walls to check.  Two rays are sent out for
each sliver, and there are 320 slivers on the screen.  Multiplying this out tells us that the code inside the
wall checking routine is run 6400 times just to draw one frame!  Therefore, whereas I could care less
how efficient my code for moving the player is, I found myself on a hunt and destroy mission for every
division I could feasibly get rid of in the scan routine. 

I would have to say that the most valuable part of this experience was the experience itself.  I have done
a lot of very structured programming in the past, with and without groups, but never on a project as
mathematically challenging as this one.  Truly, even though the effort was to produce a somewhat
out-of-date product, the methods by which I got there are not out-of-date. 

Acknowledgements go to Christopher Lampton and The Waite Group Press, publishers of a very good
book on 3D graphics called Flights of Fantasy in 1993.  It is from this book that I got most of my
background in programming the VGA video card in DOS for an IBM PC.  In addition, I also imported
several modules of code from Flights of Fantasy, including those for: 

Clearing the screen 
Pasting the double buffer to the screen 
Drawing basic rectangles on the screen 
Loading and parsing .pcx files 
Loading and setting the palette 
Getting input from the keyboard and a mouse 

5  Conclusion

The other day I heard someone remark that video game programming in the future would no longer
involve doing the graphics, but doing the physics.  Indeed, considering the power of graphicis



accelerators today, this is probably true.  But why polygons?  Probably because it’s easy for a piece of
hardware to keep track of a bunch of vertices and simply rotate them around, but from my experience I
would say it also has to do with completeness--if a polygon goes from pixel number five to pixel 50,
there’s no worry that there will be a hole in the middle; it is a single, solid polygon and will be drawn as
such.  The fact that my program had problems with holes in the middle of (what should be) homogenous
wall segments seems to indicate there might be something fundamentally incorrect about this way of
thinking (after all, it is a sort of hack), but I am not qualified to positively make a statement like that. 

However, there are other problems with this ray casting method.  First of all it doesn’t allow us room to
optimize for cases where there aren’t very many obstacles; a square room with four walls should run
amazingly fast because there’s not a whole lot to compute, but with ray casting we’re stuck with casting
a ray for every sliver.  It would be much more efficient if we could save some of that work for other
parts of the scene which might require more computation (for instance the columns in my large example
map). 

This is not to say there are not positive points to this methodology as well.  Although complete
3-dimensional ray casting still seems too computationally intensive to do in real time, that is not to say it
is impossible.  In just a few short weeks I was able to improve on the basic idea.  With more time and
energy, who know what could happen.  But in the meantime, polygons will continue to
dominate--they’re mathematically correct, they’re easy to implement in hardware, and most of all, do
not require a supercomputer to be done in real time. 

6  Appendix:  Using the demo

Ideally, the latest version will be available here.  I might also continue to work on the project in my free
time, in which case I will post those updates here as well: 
  

demo.zip Original demo, has a lot of problems

final_v10.zip Final version turned in for 6.837

How to operate the demo: 

1. Type final at the command line; final -h lists options 
2. Enter in the name of the map to use; look at square.txt for a simple example of the map format 
3. Type a capital "G" to start running the program 
4. Move the mouse left and right to turn, press the left mouse button to go forward, and the right

mouse button to go backward 
5. Press ESC to exit the program 


