6.837: Computer Graphics (Omprakash D. Gnawali & Valentin I. Spitkovsky)

A Visualization for the Dictionary Approach to Gene Annotation

Report

Abstract | Introduction | Goals | Achievements Individual Contributions | Lessons Learned | Acknowledgments | Conclusion | Appendix

Abstract

Five intensive weeks of brainstorming and coding culminated in a stand-alone Java applet: the Genomic Dictionary Visualizer (GDV). The GDV tool should prove to be useful to researchers involved in computational biology. It facilitates quick and simple visualization of interesting regions of arbitrary genetic material. While a lot of features are missing, GDV's fundamental contribution is its completeness: all of the basic functionality is there and the framework for adding features exists. To the authors' knowledge, GDV is the first and only tool for visualizing genetic sequences.

Top.

Introduction

Originally begun in 1990, the U.S. Human Genome Project is coordinated by the U.S. Department of Energy and the National Institutes of Health. Conceived as a 15-year endeavor, rapid technological advances have accelerated the project to an expected completion date of 2003. Project goals are to 1) identify all the estimated 80,000-100,000 genes in human DNA; 2) determine the sequences of the 3 billion chemical bases that make up human DNA; 3) store this information in databases; 4) develop tools for data analysis; and 5) address the ethical, legal, and social issues (ELSI) that may arise from the project. Once the genes are identified and their nucleic sequences are determined, researchers will have to tackle new and more difficult problems to understand what it is that these genes do. To get a feel for

just how difficult this problem is, consider the modern central biological dogma:

- 1. genes (DNA) are transcribed into RNA by the enzyme RNA polymerase
- 2. RNA transcripts are subjected to post-transcriptional modification
- 3. mRNA molecules are translated by ribosomes
- 4. newly synthesized proteins are often modified after translation
- 5. the protein carries out its function

Not all DNA is expressed as protein. Sections of non-expression are termed introns. Introns are excised by spliceosomes during the pre-mRNA phase, and are not found in the final mRNA product. Exons are all that remain of the original DNA message upon completion of transcription. Clearly, even knowing all the nucleotides that make up a gene is not enough to predict a protein that it codes for.

Gene Recognition

In light of these complications, gene recognition emerged as a subfield of computational biology. Researchers in this area attempt to design algorithms and heuristics which would eventually compile to efficient computer programs for variations of the following problem: given a large sequence of genetic material (read: a string of hundreds of thousands of nucleotides)

- 1. Locate the promoter regions (these occur just before the genes).
- 2. Identify the genes.
- 3. Identify the exons and the introns within each gene.
- 4. Predict the initial amino acid sequences.
- 5. Predict the proteins made by each gene.

Gene Annotation

Of particular interest in the gene recognition problem is the subproblem of gene annotation. Suppose that we had access to a reliable promoter detector. Recall that promoters are short regions of DNA that occur close to the beginning of the gene. They are the chemical signals which alert the biological machinery that there is a gene to be expressed and specify how much of the protein should be made. Having identified the promoters in our large chunk of DNA, we could then split that DNA into shorter segments, each beginning with the promoter region and ending just before the next promoter region. We would then be confident that the resulting segments of DNA contain exactly one gene. The next task would be to annotate that gene: to specify which segments are introns (to be cut out) and at which point the cell begins and ends its translation of the concatenation of the remaining segments (exons). Of tremendous help in this task are several biological facts:

- 1. Translation begins after an ATG.
- 2. Translation ends at the first stop codon (one of {TAA, TAG, TGA}).
- 3. Introns start with a GT.
- 4. Introns end with an AG.

This limits the number of possible annotations or "parses" of a gene substantially, but does not reduce the solution space to a single nice crisp answer. As a result, there is a need for good tools for evaluating or scoring a parse. Armed with an arsenal of such tools, a gene annotation algorithm could intelligently decide between parses and predict the "best" one. Even if the level of gene annotation were not good enough for the gene recognition problem, it would still be extremely useful. One of the main challenges facing biologists today is the accurate annotation of newly sequenced genomic data. If the annotating algorithm could latch on to more than just a handful of the most basic signals, it would save a lot of hours of human work. Available for this task are extremely large databases of proteins, expressed sequence tags (roughly, snippets of coding regions of DNA), and much smaller databases of annotated genes.

Dictionary

One tool already developed is a fast and fully automated dictionary for looking up genomic information. Qualitatively, given a brand new sequence, the dictionary answers the question "Have we ever seen anything like it before?" Quantitatively, the answer to that question is a list of all matches (longer than a cutoff value) between the substrings of the input sequence and the substrings of all the sequences on which the dictionary was based.

Implementation

All of the dictionary code is in the C++ programming language, written and tested under the Linux operating system. It was designed and optimized to utilize the resources of the host computer as efficiently as possible. The alphabet used by the dictionary is entirely user-defined. Combined with the fact that there are no restrictions on lengths, numbers, and types of sequences in the dictionary, the uses for it are virtually endless.

Exon Prediction & Gene Recognition

Exons, the coding regions of DNA, are under high selective pressure to not mutate very much. As a result, large pieces of coding DNA are conserved between various proteins and even species. Therefore, one could build a dictionary of the known exons or proteins. Faced with a new sequence, using the dictionary, one could quickly find all the segments in it that match reasonably long pieces of known exons or proteins. These portions of the new sequence could be safely labeled as "exon," reducing the parse search space and yielding hints to the origin of the sequence. Introns, the non-coding regions between exons, are under much less of a selective pressure to conserve themselves: most changes in introns go unnoticed. Therefore, finding a reasonably long match between an exon and an intron is highly unlikely.

Repeat Masking

One could easily build a dictionary from repeat databases. Repeats are long sequences of DNA that occur very frequently in introns and very rarely in exons. A dictionary could then be used to rapidly find repeat segments in genes. This technique provides an alternative to alignment based repeat maskers such as RepeatMasker. The method is especially useful for exon prediction and gene recognition and annotation, where it is advantageous not only to mask complete repeats, but to mask segments (perhaps from repeats) that do not occur in exons.

Finding Related Sequences

The dictionary approach offers an alternative algorithm for finding similarities between sequences. The most widely used program developed for this purpose is BLAST, which is an alignment tool; it is often manually applied for the purposes of gene annotation. Alignment based algorithms do not require the

matches to be exact. On the other hand, they do run into problems because they rely on almost arbitrary scoring functions in their dynamic programming routines. Also, the notion of alignment altogether eliminates many non-consecutive matches. Consider the strings AAAAABBBBBBCCCCCC and CCCCCBBBBBBAAAAA. An alignment algorithm would find at most one set of segments that match between these two strings. A dictionary approach would find all three.

Demand for Visualization

The dictionary generates a lot of information, which can be passed on to heuristics that implement the artificial intelligence and statistical analysis which, using the raw dictionary hit data, solve high-level gene recognition subproblems. The data shuttled between these abstraction layers is very rich in information. Some of this information may be lost or masked by the high-level programs -- it would be very useful if the researchers could have access to this knowledge base. While it is possible to leave a trace of the hits found by the dictionary in the form of a text file, such communication of information is inefficient, from the human point of view: the amount of data is huge and it is virtually impossible to extract any insights for more than a few isolated regions.

A visualization tool which could depict the similarities between sequences, point out known biological signals, allow context switching between sequences on-the-fly, and just simply display rudimentary statistics is greatly needed. This demand is fueled by researchers specializing in gene recognition: if they could visualize the information their algorithms are getting, they could improve their own understanding of how those algorithms behave. That would be useful for drawing insights and for debugging. More importantly, this visualization tool would come in handy for many biologists. Having gotten a sequence hot off the press, he or she may want to know what it is he or she is looking at. Combining the GDV with some known dictionaries, the biologist could very quickly pull up the sequence on the screen and highlight the areas of activity. This would yield some clues as to what the researcher is dealing with. Parts of the genetic sequence may match some known proteins, and looking at the names of the matching sequences may even hint at the function of genes within the data.

As far as the authors know, such visualization tools either do not exist or aren't widely available. Yet from a computational point of view, the functionality sought is far from overwhelming. While the project may not have much to do with graphics per se, it is a perfect example of scientific visualization, a viable option for the final project. The tool in question has everything to do with the problem of effective communication of a wealth of knowledge.

Тор

Goals

Our intent was to rectify the problem of a missing means of communication of biological sequence data to the scientific community. We set out to solve the problem through a visualization by utilizing a very high-bandwidth communication channel we humans have: our eye-sight. The challenge we faced was finding a fast and elegant way to deliver the important information in an understandable way, while keeping the visualization intuitive and easy to use. We have been able to split our task into several logical components or goals:

• Abstract representation of a single sequence:

Global view of the sequence, local views of the sequence -- ability to zoom in on actual characters, annotation of interesting user-defined patterns -- for instance the ATG and the stop codons (in the case of DNA), annotation of interesting user-defined regions -- perhaps the user already knows that some portions of the sequence are exons or introns (in the case of DNA), etc.

• Abstract representation of a query result:

Initially, this data is a huge stream of text. We planned to set up filters, to process the information only at the desired resolution. The user may be interested in viewing only a very small subset of the result, and the abstract visualization could run very fast, as there won't be much real geometry to render. The abstract representation had to provide insights into the hidden properties of the hits.

We intended to explore varieties of abstract representations to find a subset suitable for our task. Some basic thoughts: graphing the number of hits through locations of the input sequence, somehow incorporating the lengths of the hits into the chart, highlighting the sources of the hits if multiple dictionaries are queried, using color.

• Abstract representation of just two sequences:

The plan was to enable the user to identify a particular match, take a look at the sequence from which the match came, and compare that sequence to the input sequence at a very high level of detail. An interesting representation could include a two-dimensional image with the sequences' positions on each of the axes and the color (or surface value) at each location evaluating to some informative function. A simple function could be a binary 0/1 value based on whether or not the characters at the two positions match; then the easily identified diagonal streaks would represent subsequence matches. A more complicated function could be something like the number of matches of some length that go through both of these locations.

• Interaction:

While the visualization tool would be incredibly useful even in its static form, the users could benefit tremendously if empowered to interact with it dynamically. Letting the user play with the parameters -- perhaps turning a knob hooked up the the hit cutoff level -- and immediately see the effects of the actions could bring about further insights. Being able to see clusters of hits spring up at various areas as the hit cutoff is altered may alert the user and direct the user's attention towards the interesting regions. Something like this could even be animated.

Our most important goal, however, was to end up with a finished product. In our view, it was more important to produce an intuitive, usable, stable, stand-alone tool, however simple, rather than a highly complex contraption with broken features.

Because there was a potential for visualizing a lot of data, we stressed that the tool must be fast; at the same time, the usefulness of the tool depends on its accessibility. With these concerns in mind, we choose to implement the visualization tool as a Java applet communicating with the dictionaries over TCP connections; all of the computationally intensive crunching was to be done on the host computer running the optimized C++ binaries. The applet itself was to be kept as light as possible, to maintain adequate speed. The graphics need not be glamorous: they need to be informative, efficient, and fast.

Achievements

Despite the challenge to produce a project in a matter of some four or five weeks, we managed to meet our most crucial goal: to produce a product capable of stand-alone usage. The Java applet we ended up with is as bare as could be, yet it is complete. It contains most of the basic functionality we set out to give it.

- Dictionary	Selector 🗾 🗾
Dictionary:	UCSC Genes
Machine Name:	potoo.lcs.mit.edu
Port Number:	6838
Color:	
Update	Remove
Stats	Cancel

— Pattern S	elector 🔹 🗖
Description:	Intron Stop
Color:	
AG	Update
Remove	Cancel

There is an easy way to quickly gather statistics about a known dictionary:

E	OWL Protein Dicti	ionary Statistics	•	
	Do	ne		
	Number of Sequences: Average of Sequence Length: Standard Deviation of Sequence Length: Total Length of Sequences: Accession Code Length:	312,942 322,105 473,844 100,800,059 32		
	Disr	niss		

The applet maintains an dynamic base of known dictionaries and patterns to highlight:

Тор

-	Genomic Dictionary Visu	ıalizer		· []
<u>A</u> pplet	Dictionary	Sequence	Pattern	
1921	New F1			
	OWL Protein	Genomic		
and a second sec	□ UCSC Genes	Dictionary		
	RepeatMasker Repeats	Visualizer		
3 knov	n dictionaries 1 open sequence	4 annotated patterns		

Each dictionary and pattern is associated with a color which is later used to highlight the appropriate regions in loaded sequences. The user can open multiple sequences at once, pulling them out of either known dictionaries or files / urls:

- Sequence S	Selector 🗾 🔹 🗔	
Sequence Index: 16		
O URL:	file:/tmp/seq.txt	
OWL Protein		
• UCS	C Genes	
🔿 RepeatMa	sker Repeats	
Seek	Cancel	

In addition to known patterns and dictionary queries, a sequence can be annotated via known segments

if some of the structure has been solved:

-	Highlight S	Selector 🛛 🗧 🗖
Dictionary Patter	n Known Segments	External Highlighter
۲	∎ OW	L Protein
0	□ UC9	SC Genes
0	RepeatM	asker Repeats
Cu	toff:	30
Memoryless		
	🗹 DNA TI	anslation
Cancel		
	Upd	ate

-		Highlight Se	lector	• 🗆
Dictionary	Pattern	Known Segments	External Highlighter	
0		Exon St	art (ATG)	
۲		Exon Stop (1	AA TAG TGA)	
0		🗆 Intron S	Start (GT)	
0		■ Intron S	Stop (AG)	
		🗹 Memor	yless	
		Canc	el	
		Upda	te	

-	Highlight Selector	· 🗆
Dictionary Pattern Known Se	gments External Highlighter	
Color	Description	Positions
	Exon	[604,644] [2943,3309] [5842,6057] [6
	Intron	[645,2942] [3310,5841] [6058,6962] [
	Repeat	[2192,2468] [3783,3964] [4006,4283]
	Allele	[151,258]
	Memoryless	
	Update	
	Cancel	

The user is free to add highlights to a particular sequence to light up interesting areas of activity:

	HSAT3:Olds,R UCSC Genes[16]		·····
<u>S</u> eq	uence	Highlight	
OWL Protein [30]	Hits: 3	New F4	750
Total Length: 14206	Current Position: 643	Known Segments	603,679)
CATGTATTCCAATGTGATAGGAA	СТ	OWL Protein [30]	GCCTGCCCCT
		RepeatMasker Repeats [14]	
		Exon Start (ATG)	
		Exon Stop (TAA TAG TGA)	
		Intron Start (GT)	
		Intron Stop (AG)	
			▶

The sequence depicted above is a known gene (HSAT3), see appendix. Using the known segments interface, the we've marked the exons, introns, and repeats in this sequence. We also highlighted the standard patterns: ATG, { TAA, TAG, TGA }, GT, and AG. In addition, we screened this sequence against two known dictionaries of proteins and repeats. Observe the close correspondence between areas of similarity and actual exons and repeats. The user is free to load a list of the actual matches -- the program pulls up a table of hits -- which the user can sort by all the values in any of the columns. To a biologist, the names of the sequences with long matches actually suggest the function performed by the proteins encoded for by the exons of this particular sequence:

-	OWL Protein [30] Hit Table (750)		
Input Position	Destination Seque	Destination Position	Hit Length	
12774		407	9J 02	
13774		407	93	
13774	HUMATH307 [23	406	90	
3181	JXU364 [79883]	62	102	
5842	ANT3_MOUSE [2	137	102	
5842	ANT3_SHEEP [2	137	102	
5842	ANT3_BOVIN [28	105	102	
7995	ANT3_SHEEP [2	283	111	
8022	ANT3_MOUSE [2	292	111	
3181	ANT3_MOUSE [2	94	114	
6963	ANT3_HUMAN [2	208	138	
6963	HUMATIIIV [2393	209	138	
6963	HUMATH3U7 [23	208	138	
13774	ANT3_HUMAN [2	406	174	
3130	HUMATIIIV [2393	77	183	
2941	HUMATIIIV [2393	13	192	
5842	ANT3_HUMAN [2	136	216	
5842	HUMATIIIV [2393	137	216	
5842	HUMATH3U7 [23	136	216	
2941	ANT3_HUMAN [2	13	372	
2941	HUMATH3U7 [23	13	372	
7911	ANT3_HUMAN [2	254	393	
7911	HUMATIIIV [2393	255	393	333
7911	HUMATH3U7 [23	254	393	-
	C)kay		

Finally, the user can easily pull out a matching sequence and run sequence-to-sequence comparison on the two strands:

Once the user specifies the sequences to compare, the user can select a portion of each of the images to do mutual hit comparision. Grayscale levels on each panel represent the relative number of hits for that particular location for that sequence. The user is also able to interactively change the cutoff length and see the number of hits vary. When the user changes the cutoff and hits the recompute button, the grayscale image changes dynamically displaying increasing or decreasing number of hits.

The user is presented with a two-dimensional hit matrix display where grayscale intensity at a particular position represents the relative number of matches at that position between the two sequences along horizontal and vertical axes. Sparse white dots mean very little similarity between the sequences, and the matches are very short. Small Dense white dots represent lots of small hits while large blocks of grayscale box represent long matches. The horizontal and vertical sidebar shows the accumulated hits for that sequence in that position.

The user is able to zoom in and zoom out to study the area of interest. Here is a closeup of a hit dataset.

Our final product works; it is a simple implementation of functionality that is demanded. Yet it is disappointing how few features we actually managed to implement in the short time we had. Some blatant omissions come to mind: animations of the amount of activity in a region as a function of the cutoff length, various representations of the amount of activity -- not just a gradient of colors -- graphs, nonlinear scaling of the graphs / colors, etc. A million ideas come to mind just thinking of the table of hits: we did implement the sorting of hits, but there are other features just begging to be implemented. For example, clicking on a hit could move the local viewing region of the sequence to the position where the hit occurs, information could be gathered not just based on hits but incorporating their sources: which sequence produced the most / longest hits? Which sequence had the most total / consecutive area covered? Two-sequence representation could get away from flatland and attempt to draw surface maps with peaks where the sequences are similar. The list goes on and on. We didn't get a

chance to allow for user-defined highlights, which would let a user plug in his or her own class file for annotating the sequence. However, we developed a framework for a HitSet class that would make such a future extension very simple. This would be useful for annotating structures that have variation (for example, pyrimidine tracks -- regions that are rich in G's and C's -- that occur frequently near the ends of introns) as well as the presentation of various statistical analyzers (for instance frame-tests which compute conditional probabilities -- if this segment were in an exon, what is the probability that it would be in frame 0, frame 1, or frame 2).

A basic aim that we failed to meet was to put the applet on the web. To do this, we needed to learn about jar files and how to sign applets and to create certificates to allow users to set up their browsers to trust our product. Despite these holes, we are not too upset. The number of ideas on our wish-list is growing and we are psyched enough about the project that we plan to continue working on it over IAP to produce a more robust and a more useful applet, getting away from version 0.01.

The main problem with our product is that it just sort of evolved without a real thought-through design. While we wanted to think things over before coding them up, we didn't get a chance to do that because of the limited time. We simply could not afford to spend two weeks designing the thing and have zero lines of code until then. We started work immediately after the last homework assignment and still had no shortage of stressful nights all the way till the end of the term. Before future work on this project is undertaken, the entire system should be scrapped and redesigned. However, the benefit of version 0.01 is that it highlighted the areas that need attention. They are:

First of all, the networking model. This is something that had no relevance to the class, so we made an effort to get it out of the way as soon as possible. As of now, we've got a very simple blocking server in C++ which serves as a wrapper for the dictionary code RPC. We also have a Java client model for interacting with the server. The server could be made more fault-tolerant and more reliable. The client is mostly fine, but it would be nice to come up with a good interface for passing data (right now, we are just passing strings) which would utilize the bandwidth fully; perhaps compression is in order. Speed is a problem.

Second, the user interface needs to be designed with the biologist in mind. Although we wanted to, we didn't get a chance to ask our friends in course seven for what they would want in a visualization tool -- the sort of representations of genetic material they found most expressive in their bio books, etc. We had enough trouble just trying to get the GUI to work, seeing as how neither of us programmed GUI's before.

Finally, we suspect that our usage of the Java model is highly suboptimal. Our interfaces probably generate objects right and left, sucking off memory and valuable resources from the actual visualization methods. Now that we have some idea of how Swing works, redesigning the code could produce a faster and more light-weight program.

The major source of both help and trouble was Java. The great things about it are the tremendous wealth of specifications, example code, and tutorials available on the web for this language. It was nice not to have to worry about platform-dependent issues and just to know that our code will run anywhere. It was also great to avoid dealing with motif and unix network programming, for the most part. Finally, it was very useful to be able to go home for Thanksgiving and to continue to work on the project there, now running the applet in Windows instead of Linux. But the troubles with Java almost outweighed the benefits. It's buggy... it's slow. Compiling the code takes forever, even with well-designed makefiles.

Running it takes even longer. Various bugs creep up, driving you nuts trying to pin them down, only to find out that everything works fine on a different platform, meaning that it's a Java bug. Some features of our program fail on the Suns -- sometimes the networking blocks, sometimes the menus don't get drawn correctly. On the SGI's, the networking almost always fails and the last menubar is always drawn wrong. In Linux, the program just hangs every now and then. Surprisingly enough, Windows has been the most stable platform... We can only hope that Java 1.3, to be released soon, will fix most of these bugs. When will Java compile to faster code is another question.

Тор

Individual Contributions

Om worked on the code for sequence-to-sequence visualization and also created the help and about dialogs. Val wrote everything else. Both teammates brainstormed possible representations. We really felt the impact of a missing teammate...

Тор

Lessons Learned

While we didn't write a flexible user interface, we certainly learned enough to write a better one next time. Some of the lessons that were reinforced included the idea that the first prototype will be thrown away -- when we redesign the applet for its next version, we will probably have to rewrite most of the code from scratch. As mentioned above, the hardest and easiest problems came from Java. Its speed and bugs really crippled what we could implement and how quickly we could implement it. At the same time, it really eased our life by providing us with ready-made code for GUI's through its Swing interface.

By a complete accident, we learned a bunch about fonts. We wasted the first week on the idea that our sequence representation should look cool. We wanted to render the text using ray-tracers, incorporating shadows, specular highlights and all. We even considered using the color of the shadows and the color of the text plus the color of the background to convey information about a particular character. In the process of looking for fonts, we discovered a wealth of them at sites like http://fontz.de. However, most of these fonts are true-type -- we found programs that convert ttf to bdf, bdf to pcf, etc. We found a program called font3d which creates include files for a shareware raytracer POVRAY, given a string to render and a truetype font. We even found a monospace molecular font: here are our rendered red letters a, b, and c.

But the problem was that the images took a long time to load into the Java program and didn't look so good when they were reduced to a size of a text character. Finally, we settled on a less glamorous but more efficient solution. But now we know a bunch about dealing with fonts and even a bit about using fonts with raytracers.

Other new knowledge we reaped: user interface design, Java Swing, some networking, etc. Most importantly, we gained valuable team project experience, which will improve our performance in a future team project. We learned a bit about managing a small team faced with a high-paced open-ended task.

Top.

Acknowledgments

The most useful resources have been our TA Kari-Anne Kjolaas who guided us via weekly checkpoint meetings, a great search engine Google which let us find relevant info without fail, an extensive Java API Reference and a set of Java Tutorials. Finally, we ended up using a modified version of the image from the The National Human Genome Research Institute as a front-page for our program.

Top.

Conclusion

A new visualization tool is now available for highlighting common regions between sequences. The standard applications for the dictionary tool are augmented with a graphical user interface: a high-bandwidth channel for absorbing the results. The implementation is relatively fast, light, elegant, and informative. It should be extremely useful to biologists in general and to researchers in computational biology, especially in the fields of gene recognition and gene annotation.

Top.

Appendix

This is the entry for UCSC Gene #16 (HSAT3) which we visualized using GDV.

LOCUS	HSAT3 14206 bp DNA	PRI	03-NOV-1994
DEFINITION	H.sapiens gene for antithrombin III.		
ACCESSION	X68793 S52236 S52240		
KEYWORDS	antithrombin; antithrombin III gene; A	[3 gene;	plasma protein;
	serine proteinase inhibitor; serpin.		
SOURCE	numan.		
ORGANISM	Homo sapiens		
	Eukaryotae; mitochondrial eukaryotes; N	Metazoa/Ł	umycota group;
	Metazoa; Eumetazoa; Bilateria; Coelomat	ta; Deute	erostomia; Chordata;
	Vertebrata; Gnathostomata; Osteichtnyes	s; Sarcop	oterygii; Choanata;
	Tetrapoda; Amniota; Mammalla; Ineria; F	sutheria;	Archonta; Primates;
DEFEDENCE	Catarrnini; Hominidae; Homo.		
AUTUODO	$\begin{array}{c} 1 (\text{Dases I to 14206}) \\ 0 \\ 1 \\ da \\ B \end{array}$		
AUINOKS TTTT P	Diroct Submission		
TOURNAL.	Submitted $(12-0CT-1992)$ to the FMBL/Ger	Bank /DDB	AT databageg P
UUUUUUU	Olds Institute of Molecular Medicine	John Rad	cliffe Hospital
	Oxford OX3 9DU UK		ciffe nospicar,
REFERENCE	2 (bases 1 to 14206)		
AUTHORS	Olds.R.J., Lane.D.A., Chowdhury.V., De	Stefano.	V., Leone, G. and
110 1110110	Thein, S.L.	200201107	
JOURNAL	Biochemistry In press		
REFERENCE	3 (bases 1 to 14206)		
AUTHORS	Bock, S.C., Marrinan, J.A. and Radziejews	ska,E.	
TITLE	Antithrombin III Utah: proline-407 to 1	leucine m	utation in a highly
	conserved region near the inhibitor rea	active si	te [published
	erratum appears in Biochemistry 1989 Ap	pr 18;28(8):3628]
JOURNAL	Biochemistry 27 (16), 6171-6178 (1988)		
MEDLINE	89050967		
REFERENCE	4 (bases 1 to 14206)		
AUTHORS	Olds,R.J., Lane,D.A., Ireland,H., Leone	e,G., De	Stefano,V.,
	Wiesel, M.L., Cazenave, J.P. and Thein, S.	.L.	
TITLE	Novel point mutations leading to type	l antithr	combin deficiency and
TOTIDNIAT	thrombosis	\ \	
JOURNAL MEDI INE	Br. J. Haematol. 78 (3), 408-413 (1991))	
	yisiyyyy		
COMMENT	TETALEU SEQUENCES. METOSO-METO45.		
	NCBI gi: 28906		
FEATURES	Location/Qualifiers		

source	114206
	/organism="Homo sapiens"
	/chromosome="1q 23-25"
allele	152259
	/note="polymorphism"
	/citation=[3]
mRNA	join(<605645.29443310.58436058.69647101.
	7912 8302 10336 10400 13775 >13951)
	/
oxon	
EXUII	
	/gene= Als
CDS	JOIN(605645,29443310,58436058,6964/101,/9128302,
	1033610400,1377513951)
	/gene="All3"
	/note="NCBI g1: 28907"
	/codon_start=1
	/product="antithrombin"
	/translation="MYSNVIGTVTSGKRKVYLLSLLLIGFWDCVTCHGSPVDICTAKP
	RDIPMNPMCIYRSPEKKATEDEGSEQKIPEATNRRVWELSKANSRFATTFYQHLADSK
	NDNDNIFLSPLSISTAFAMTKLGACNDTLQQLMEVFKFDTISEKTSDQIHFFFAKLNC
	RLYRKANKSSKLVSANRLFGDKSLTFNETYQDISELVYGAKLQPLDFKENAEQSRAAI
	NKWVSNKTEGRITDVIPSEAINELTVLVLVNTIYFKGLWKSKFSPENTRKELFYKADG
	ESCSASMMYQEGKFRYRRVAEGTQVLELPFKGDDITMVLILPKPEKSLAKVEKELTPE
	VLOEWLDELEEMMLVVHMPRFRIEDGFSLKEOLODMGLVDLFSPEKSKLPGIVAEGRD
	DLYVSDAFHKAFLEVNEEGSEAAASTAVVIAGRSLNPNRVTFKANRPFLVFIREVPLN
	TIIFMGRVANPCVK"
intron	6462943
11101 011	/number=1
repeat region	Complement(2193 2469)
repeac_region	/note="Alu repeat element"
evon	2944 3310
exon	2011
	(number-2
intron	/1101100000000000000000000000000000000
	55115042 /mmbore_2
wanaat waailaa	/ Inumber = 2
repeat_region	complement(3/843965)
	/note="Alu repeat element"
repeat_region	complement(40074284)
	/note="Alu repeat element"
exon	58436058
	/gene="AT3"
	/note="A"
	/number=3
intron	60596963
	/note="A"
	/number=3
exon	69647101
	/qene="AT3"
	/note="B"
	/number=3
intron	71027911
	/note="B"
	/number=3
repeat region	complement(7277 7558)
- Cherrent CATOII	/note="Alu repeat element"
evon	7010 8302
CAUII	/ appa- "AT2 "
	/yclic- Alb
maniation	/100c - 4
variacion	TEPTACE(0T3I, a)

			/gene="AT3	1					
			/note="poly	/morphism"					
	varia	ation	replace(8160,"a")						
			/gene="AT3"						
			/note="poly	/morphism; H	?stl site"				
	intro	on	83031033	5					
			/number=4						
	varia	ation	replace(85)	21,"t")					
			/note="Nhel site; polymorphism"						
	repea	at region	8670 8687	- 2100, P01	molphilom				
	Tepee	<u></u> regrom	/rpt_family="att"						
	renea	at region	$r_{pc_ram_ry} = acc$						
	repec	ic_rcgron	/note="Alu repeat element"						
	ropor	t rogion	acomplement		Nerre				
	терес	at_region		2049204	/ nont "				
			/110Le="AIU	repeat erei					
	repea	at_region	89949264						
			/note="Alu	repeat eler	ment"				
	repea	at_region	complement	(93629633))				
			/note="Alu	repeat eler	ment"				
	repea	at_region	98239867						
			/rpt_family="att"						
	repea	at_region	complement(987110152)						
			/note="Alu repeat element"						
	exon		1033610400						
			/gene="AT3	1					
			/number=5						
	intro	n	10401 13774						
	THEF		/number=5						
	varia	tion	replace(10427 "c")						
	vario		/note="Ddel site: polymorphism"						
	200000	t modion	/noce- Due.	(10722 110 ⁻					
	repea	at_region	comprement						
			/HOLE- AIU TEPEAL ETEHEHL"						
	repea	at_region	compremente(1212412405) /noto-"Alu ropost alement"						
			/HOLE="AIU REPEAT ETEMENT"						
	exon		13//513951						
			/gene="AT3"						
			/number=6						
BASE	COUNT	r 3715 a	a 3338 c	3217 g 3	3936 t				
ORIGI	ΕN								
	1	ccacaggtgt	aacattgtgt	tttccttgtc	tgtgccaggg	acaccttggc	atcagatgcc		
	61	tgaaggtagc	agcttgtccc	tctttgcctt	ctctaattag	atatttctct	ctctctccc		
	121	ctctctccat	aaagaaaact	atgagagagg	gaattacagg	tagagggcta	gaagtttttg		
	181	gacattaact	atttctatct	tctgatttag	ttaacgagaa	acaaaaaatc	ctgcagacaa		
	241	gtttctcctc	agtcaggtat	ttcctaacca	agtttgaggg	tatgaacata	ctctcctttt		
	301	ccttttctat	aaaqctqaqq	aqaaqaqtqa	qqqaqtqtqq	acaaqaqaqq	tggctcaggc		
	361	tttccctaga	cctgattgaa	ctttaaaact	tctctactaa	ttaaacaaca	ctgggctcta		
	421	cactttgctt	aaccctggga	actortcate	ageetttgae	ctcagttccc	cctcctgacc		
	481	agetetetgeee	cccaccctat	cctctggaac	ctctcccaca	tttagaggaa	agaaccagtt		
	5/1	ttaagagaga	ttaataaaa	tagagatata	tagattaga	angagatata	agaactagee		
	601	cccaggegga	tagaatataa	taggaagtat	acatataga	cagecetgeg	gaagattagt		
	661	ggccalglal	lectaalylya	laggaactyt	tagataga	aaaayytaay	agggggggggg		
	001 701		tereseere	clggglllg	lyacclocaa	aggaeteaca	ggaalgacci		
		ccaacacctt	tgagaagacc	aggecetete	cctggtagtt	acagtcaaag	acctgtttgg		
	181	aagacgtcat	ttcaagtgct	ctccctccca	ccccacctct	tggggtaagg	cctttcctaa		
	841	gctacccctt	gggtccctag	cctaagaaac	aagggggatg	tcatccctgg	tgtaaagatg		
	901	ctgtgcagga	agtcagcact	cacgggatcc	aggggacgct	ccaaggggaa	tccccagggc		
	961	ctgccatcca	tccgggaaga	gagcaaatgc	tacccatgag	gacctcctca	ctccctttt		
	1021	gctctttctt	ccactcagat	ccaccccact	ccacccccac	ccaaatccca	gtgacctttg		
	1081	actaaagggc	caaaactgct	tccttttctc	acaatgagag	ttgtccctcc	ctcaatgcca		
	1141	cacacactcc	cttcttcatc	tgagttgtca	caggaggcta	gaaacggggt	ggtggcacaa		
	1201	ctgtcttggt	tttaatttgt	gcttcatagc	cctcccaggt	cctctcagcc	tcaaattgca		
	1261	tttccaaatg	tagttgaagg	gacagagtgg	gcaaccgaag	cagcagtgga	gatgggaaga		
		-							

1321	tgaatggcag	ggtcctctcc	tctctctctc	tgcttcttca	gcctgccttc	cacatctccc
1381	ttaataccac	tacttctctc	cggctttgca	cctctqttct	tgaaaggggt	gcagaactgg
1441	actragarra	cacaaaaaaaa	caagtccccc	tragetgeec	cagettecag	ccagccccag
1501	acttacccaa	caaccacat	ccataatct	acactagata	cctatctttc	tctcccacca
1561	geeegeeeda	agatecaege	cccacacaca	geacegggeg	tatacacaca	agaaccataa
1621	gaagatggga	agazcagaat	cccacacaca	gactetete	coccected	tagaaccacaa
1601	tttatatat	ggcagccccc	geeeeacee	gicilaticia	caaaaaatat	cacaayayac
1741	LLLALCLCLL	galligelle	alcgagigic	ccaactacct	Callillia	aaalglgaaa
1/41	ttagetteat	ttaccttcat	tgaatccatg	ttggcgacta	ttaaaaattc	caggcaataa
1801	aaagggatga	gagcctgaac	taaagcagtg	gcaataactg	gtgaaagagt	aaaaaacag
1861	aactgattga	ctctggggtg	aactgattga	ctctggggtt	tgactaaatg	aggaggagag
1921	agggaggaat	ccagggtgat	tctcaggttt	ctgtacggga	ttcactgagc	ccactcacag
1981	gagcaggcct	gtgggggaga	attaattacc	agttcagttt	ggtcctgttt	ccctgaagaa
2041	cttgtaggag	ttcctggtgg	aactgtccag	caaatagtca	gtctggagct	cagtggaagg
2101	gttagggctg	gagctagaga	tgtaggaatc	ttcagcacac	agatattgcc	attgtttttg
2161	tttgtttgtt	tgtttgttgt	tgctgttttg	aagacacagt	ctcactttgt	cacccaggtt
2221	ggaggtcagt	ggcacaatct	cagctcactg	caaccttcgc	ctcctgggtt	caagtgattc
2281	ttctgcctca	gcctccctag	tagcttggga	ctacagtgtg	cgccaccaca	cccagctaat
2341	ttttgtattt	ttagtagaga	cagggtttca	ccatgttgtc	caggetgate	tcgaacaccc
2401	aacctcaaqt	gatctgcatg	cctcaqcctc	caaaqtqctq	qqattacaqc	qtqaqccacq
2461	cacccqqcca	gatattgcct	ttgctccatc	catttcttct	ttttctcttq	tattactaa
2521	atctctctqc	ctgcatctat	cagagtcctt	ccccaaacaq	tttctqtaqa	tggctccccc
2581	taccaccctq	actetteact	gggcactaaa	accatttt	taggcatgca	cattccatqt
2641	cacaaacagg	aagettetea	ttettttte	tcccaccata	addaattaad	cacataatac
2701	tccaaataac	catcadatda	ttctaattcc	aacatgacca	catacadaca	actosactot
2761	cccctccca	azatataa	actoaacto	tacargacca	ctatacttaa	ttcaaaqqat
201	ttagatta	tattagagag	actgaattga	atagaataat	atgatttaat	agagagagag
2021 2001	tataataaaa	actoggeeae	accayyryyy	actocattoo	attagaatt	tatataatta
2001	cgcggcgggc	agtggggtta	ggggttgtag	acttagetta	taggatag	tgictictitg
2941	Cayyaayyuu	atacastat	cellyelyel	callyyette	lyggaelyeg	lyaccigica
3001 2001	cygyageeet	glggadaldl	gcacagccaa	geegegggae	allocalga	alcocalgig
3001 2121	callaccgc	Leeeeggaga	agaaggcaac	lgaggalgag	ggeleagaae	agaagaleee
3121 2101	ggaggccacc	aaccggcglg	leigggaael	glecaaggee	aalleeegel	LIGCLACCAC
3181	lllclalcag	caccuggcag	allecaagaa	lgacaalgal	aacallllcc	lglcaccccl
3241	gagtatetee	acggcttttg	ctatgaccaa	gctgggtgcc	tgtaatgaca	ccctccagca
3301	actgatggag	gtacgaccaa	aggtcttctg	cccagccacc	ttgttaggag	cacctttggg
3361	cttccatagg	cccaagtcca	atgattcctc	aaccaacact	gcagccacta	gggggggtca
3421	ttatgcatta	cgattccctt	tgaacatcac	tgtgttataa	ttccctttga	aaatcatttt
3481	ttaaaaaatt	agccaaggaa	tcttggctat	ctacttttta	aatcctggtt	tcctcttttg
3541	agcaccttaa	aatgggggaa	ggcttgtatc	ttctctcaac	ttcttttcag	taattctttc
3601	atctatatgt	ttactcatta	atttgatcat	ttatttattt	attcattcag	cacttcctct
3661	gtgccaggca	atgtgtagtg	ccagtccctc	ctctggtgga	agaagagtag	ctttaccata
3721	tggtgacatc	aggcatatag	gctctcgtgg	aaaaaattc	taggatagta	tttttttt
3781	tttgagatgg	aatctcgctc	tattgcccag	gctggagtgc	agtggtgcag	tctcggctca
3841	ctccaaactc	tgcctcccag	gttcaagcaa	ttctcccacc	tcagcctcct	gagtagatgg
3901	gattacaggc	acacgccatc	acgcccagct	aatttctata	tttttagtag	agatggggtt
3961	tcaccacqtq	qccaqactqq	tctcaaactt	tttttttt	tttttqaqa	cqqaqtctcq
4021	ctctqtcatc	caqqctqqaq	cacaatacac	gatctcagct	cactocaacc	tctacctccc
4081	gggttcaagc	aattctcagc	ctcagcctcc	cgagtagctg	ggattacagg	cccccqqcac
4141	catacctaac	taatttttt	tettettagt	agagatgggg	tttcaccatg	ttaaccaaac
4201	tagtettgaa	ctcctgacct	cataatccac	ctaccttaac	ctcccaaad	actatatta
4261	caggeetguu	aaccacacat	acctcaaac	tetteactte	aaqqatqqq	cctgacttga
4321	cttcccaaa	tactagatt	acaacatca	accectacec	aagggategg	atagtatat
1201	accagagagag	rgaraggall	acaagcatga	gccactgcac	gggggcctagg	tttatata
	tagaaaatat	geeeayyada	goodayayad	attacttac	agagagtta	agagaataa
++++⊥ 1 ⊑ 0 1	Lyyyaaylat	yyallalll	ayuudayuga	cludyllCCC	accoccclCC	tastast
45UL	LLLEGEGGGA	yyyaagtagg	ycalgataag	alyaaatgtC	alayattgat	lyaccactgt
4561	Lggcctctgg	ygctatgaca	agtcatggat	ygaaacacta	yatettaat	ctgtccttgg
4621	cttggctgca	tgacagtett	tcttcaagtt	ggatcacact	ttggaagcag	agttcatcaa
4681	tagggaggca	tgagtccctt	caagatggta	tacggtgctt	atttgaaact	tggacactaa
4741	agtctgtggg	tcttaggagg	gttccttcta	ttctagtggt	caatttccat	ggaacttcat
4801	cacctttgct	cagggctctg	gggtgagtta	acccaagtct	tcactctttg	aaagaaattg
4861	tagatttaaa	aactctgaag	acacataata	ctgccttctc	tgggcccttc	agtcatttt
4921	gtatacattg	gtactggtct	caaagtactt	ccatatcact	catgtctctg	tccccaggta

4981	agatcttaaa	tgtaaccctt	cctacaagaa	gaacagaaca	gaacactgct	tccaaaccac
5041	acatgttcct	ttggtcctcc	cctctacaca	aacgccatgt	gttgggaaag	cagggtgaga
5101	ctaaatctct	ctqqaqaaaa	gagaaattca	gcaccaagct	tttgatcaaa	agcataatcc
5161	ccccctaaaa	aaaqtqccta	ttqqaqcaaa	atcaqqaaaa	ccaaaqqcaq	aqaacaqata
5221	aaaccaaaaq	gccttttgta	qcctqaqqaq	aqaqcatqqa	aaqqqcaqqa	qqqqaacaqc
5281	ctcacccatt	ttaccttaaa	gatggtgaag	qtqqqcattq	qqqqattcca	acttcaaaqc
5341	atggatgact	tctaaqtcct	tttcagccct	gagetettag	attctgagcc	totttaatcc
5401	cttgctgata	gattcactct	tcctttttca	cccctaccac	cagtatccca	gagcetecat
5461	qaqcaqctqq	ccccagtaga	tgccacaaaa	qtqtttqtta	cqaqaaqqac	accotctoat
5521	tetettetet	gtccagaatc	ассаададда	cttttcccat	tccagcaaga	aaacgtctgt
5581	atattaatct	agaggggttt	agagacttta	agtagcaacc	tagtctctct	ttttcccttt
5641	atcetteeta	cccttcattc	ttetttate	cttttattca	tragaarara	agagttgagg
5701	atttatacta	tcccaggtac	tatacttaaa	ggagttaaca	actgaggtgg	ctattagtca
5761	gagactgacc	agcatgtgct	caccacccat	attaactaga	cageeracea	aacccaccac
5821	cattttttt	tgacttctat	aggtatttaa	attracacc	atatetgaga	aaacatctga
5881	tragatorac	ttettette	ccaaactcaa	ctaccaacta	tatcoaaaao	ccaacaaatc
5941	ctccaadta	atatcaacca	atcocctttt	togagagaga	tcccttacct	tcaatgagag
6001	ctaccaggeta	atcartrart	taatatataa	agccaagctc	cagegeetag	acttcaaqqt
6061	aattacaaa	tattaccat	agenteerage	ttattaatat	ccactcaca	attaagaaga
6121	tagagaaaga	ggatggaaat	taractat	ttactacta	agactactag	accgaggagg
6181	aaaaattaaa	accotacaa	tactactget	tacttoaaac	agaetgetgg	agggetgaet
6241	adaayttaya	tataataaat	agaagaaaaaa	ataattaa	taataaatta	ttattaat
6201	acycliggat	gaaatatata	geeeagaaaa	ttttaaaat	agaagttata	appartatat
6261	tagttagtt	caaalalala	ccaaayyyuy	taagat	gecagiteta	tattaatta
6421	tactiaatti	gaactyllat	calgglcaaa	atataaagt	tataganga	tgttacatte
0421 6401	lectettyga	yallCalyaa	geacatggge	clalgaaggi	tettagadae	lelycaacaa
	agaaalClyl	lygellall	CaalogyCal	lectedaalg	lattigaciy	CalgggCall
0541		alalaaccig	ccaaccccal	alaaccigcc	aaccccalal	aaccigcaal
6601	callcallgc	llcccclggc	acalgeellg	gaaallClaC	lllglgagi	Laaggillic
6661	caaagtcaga	gaaaataata	ttttatcttc	tttttcccag	actatttcg	ccttccttct
6/21	tttcatttat	ttetteetat	ttetttgt	CTTTTTCTTC	tgataatatt	tattaactac
6/81	aggaaagatt	catggaacta	tattagatat	gtgaggette	ccaattggg	ttagagcaat
6841	ggcttcttaa	tcaaatggtg	ggaaaggaca	gagggatggt	gagaaaaata	aaatgctgcc
6901	tgggaaaatg	gagaagccaa	ttgaatagca	caggtgagta	ggtttattt	ctgttctcct
6961	caggaaaatg	cagagcaatc	cagagcggcc	atcaacaaat	gggtgtccaa	taagaccgaa
7021	ggccgaatca	ccgatgtcat	tccctcggaa	gccatcaatg	agctcactgt	tctggtgctg
7081	gttaacacca	tttacttcaa	ggtactcaga	atggccctgg	agagacccca	gggacttcct
7141	cttgctcttc	agcttacccc	ctttttttt	aaatggcgag	accgaagccc	tgagagggca
7201	aatggactgc	cgaaagctac	acaggtacag	gtcagcaggg	caggtcaatc	tattatttat
7261	ttatttattt	atttttgaca	gagtctcgct	ctgtcgccca	ggctggagtg	cagtggcgtg
7321	atctcggctc	actgcaagct	tcgcctcctg	ggttctcggc	attctcctgc	ctcagcctcc
7381	caagtagctg	ggaatacagg	cacccaccac	catgcctggc	taatttttg	gtttttttt
7441	agtaaagacg	gggtttcacc	gtgttagcca	ggatagtctt	gatctcctga	cctcgtgatc
7501	tgcccacctc	ggcctcccaa	agtgctggga	ttacaggcat	gagccaccgc	gcccggcaga
7561	ttggcttctt	tcacctagta	aaatgcattt	actgttcctt	tgtgttttcg	tggctttgtc
7621	actcatttct	tcttagcatg	gaatagcatt	acatttggtc	tggatgtacc	acagtctgtc
7681	tattcatcta	ctgaaggaca	ttttggctgc	ttccaaggtt	tgacagttat	gaataaacct
7741	actcataatt	ccatcattct	gacacagcca	ttgttaacct	ttttgtgcat	atcccgccag
7801	tctttttcc	gaataattat	atattaatgt	aacactataa	tatggatatg	tctgtgtcaa
7861	taactatcct	cctatgaatg	tttgtgttct	tactttgtga	ttctcttcca	gggcctgtgg
7921	aagtcaaagt	tcagccctga	gaacacaagg	aaggaactgt	tctacaaggc	tgatggagag
7981	tcgtgttcag	catctatgat	gtaccaggaa	ggcaagttcc	gttatcggcg	cgtggctgaa
8041	ggcacccagg	tgcttgagtt	gcccttcaaa	ggtgatgaca	tcaccatggt	cctcatcttg
8101	cccaagcctg	agaagagcct	ggccaaggtg	gagaaggaac	tcaccccaga	ggtgctgcag
8161	gagtggctgg	atgaattgga	ggagatgatg	ctggtggtcc	acatgccccg	cttccgcatt
8221	gaggacggct	tcagtttgaa	ggagcagctg	caagacatgg	gccttgtcga	tctgttcagc
8281	cctgaaaagt	ccaaactccc	aggtttgtct	aggaaggagt	ttcctccctt	ctccacccgc
8341	aaggtagtct	gaccaaaagt	ggaagagttg	gagaaagaat	agaaaggagc	aacaagtcag
8401	gactcctgga	tactgatcct	agtttctact	gctaatttgt	ggaaatctct	tttccttttg
8461	agacctcagt	ttcctcttct	gtaaaaggga	agtttgttct	tggatctcca	tgggcccagc
8521	cagcactggt	gccctgtgag	tctgtatcag	gtagaggaga	tgggaccagg	tggagaggaa
8581	tttgaaaggg	cattggaatt	cagagcaaag	agacagatat	taagagctgg	ggaaatgtgg

8641	ttcccattac	acaggcctca	ctgacattta	ttattattat	tattattact	tgagacagag
8701	tcttactctg	ttgcccaggc	tggagtgcag	cggtgcgatc	tcggctcact	gcaacctctg
8761	cctcccqqqt	tcaaqcqatt	ctcatqcctc	agceteetga	qtaqctqqqa	ttacaqqcac
8821	acqtcaccat	acctqqtaat	ttctqtattc	ttaqtaqaqa	tqqqtttcac	catqttqqcc
8881	aqqatqqtct	tgaactcttg	accttqtqat	ccacctacct	tggcttccca	aaqtqctqqq
8941	attacaggcg	tcacqaccqc	acctggcaca	ttaaaatatc	ttttaaaqaa	attaactaac
9001	cagggtggt	cacqcctqta	ataccagcac	tttqqqaqqc	tgaggtggga	qqatcqtcta
9061	agcccatgag	ttcgagacca	gcctggacaa	catagtgaga	tggtctctac	aaaaaataaa
9121	aaaaattagg	caggagaeea	gacacacac	tataateeta	acttettaga	aggragaget
9181	aaaaaaatta	cctgagtccg	gaagatcaac	actataatat	actotoatca	caccactoca
9241	ctccacctq	agraacagag	tgaggtcdde	tcactaaata	aataaataaa	taataaaata
9301	atttacata	ttaadtaatt	agatttatct	ttattgacct	++++++++++	+++++++++
9361	taacaccaac	tettactett	atccccaaa	ctacegacce	ataatacaat	cttaactcac
9421	tacaacataa	accccccaca	ttcaactcat	tataataaat	geggegedde	aggagetag
9481	attacacco	actoccaga	caccacata	attttagat	ttttagtaga	aggagetagg
9401	actacayycy	agaagataa	tattapata	atazataza	agatataga	tagettaga
9541	tagaaaata	geeaggetgg	aggatagg	agatatagata	gegaletaee	tycertygee
9001	ttttaaagug	tagggattat	aggegegage	cactytycta		citaayctay
9001	llllgaaaac	Ladaalyll	geeagaetgg	aaayaaayal	gllccllclg	galggaglga
9721	glllllclg	Laagaacaga	glellgeegl	leleleleca	caaaaagcug	aageetgaga
9/81 0041	atgaattatc	aggageeatg	ctgaacaagc	ccaaagtact	ttattattat	tattattatt
9841	attattatta	ttattattat	tattatttt	gagatgcagt	tttgctcttg	ttgcccaggc
9901	tggagtgcag	tggcgtgatc	ttggctcact	gcaacctcca	cctcccgagt	tcaagcgatc
9961	tcctgcctca	gtcttccaag	tagctgggat	tacacgatgc	gccaccacac	ctggctaatt
10021	tttgtatttt	cacgatagag	acaaggtttc	accatattag	ttagagtgtc	tccaactcct
10081	gacctcaggt	gatctgtaca	ccttggcctc	ccgaagtgct	gggattacag	gtgtgagcca
10141	ctgcacccag	cccccaaagt	actttattat	ttttaacaca	tattcattgt	gagagtatga
10201	ttaggtgaag	atttaggatt	tcttcttatg	tttcaaaaag	ccccaaagga	tctcttaatc
10261	caaactgaat	tcccatctgt	ggattgaagc	caactttctc	ccatctcaca	aagacttctc
10321	cggtcttcct	tccaggtatt	gttgcagaag	gccgagatga	cctctatgtc	tcagatgcat
10381	tccataaggc	atttcttgag	gtgagtacac	cttccccact	ctcttagggt	acagaaagga
10441	gatgcatgaa	cagcaggaac	acgtggaaaa	ggcctgtttc	cagtgttaag	gcatgcaaaa
10501	ggcctccaca	ggctgctata	atacagccct	ctccaaaacc	ttcatggtgt	gattgttctg
10561	ccttccctcc	cactacctct	tctgtagcag	gtcaagcggg	aacacaaaca	tttagggagg
10621	gtgatatagg	aaaagaagcc	agcaaaggcc	atcaagaaga	aatttacagc	atgaggagaa
10681	ccagaagagt	atggggtcgc	agaaacccag	ggagaatttt	tttttttt	tgagacagag
10741	cttcgttcgc	tcgttgccca	ggctagagtg	caatggtgcg	acctcactac	aacttctgcc
10801	tcccgcgttc	aagcgattct	cctgcctcag	cctcctgggt	agctgggatg	acaggcatgt
10861	gccatcacgc	ccggctaatt	tttgtatttt	tagtagaaac	agggtttctc	catgttggtc
10921	aggcaggtct	tgaactcccg	atctcaggtg	atccacctcc	ttggctcccc	caaagtgctg
10981	ggattacagg	catgagccac	tgcacccggc	catacctagg	gagaagtttt	aagaaaatgg
11041	atagcatcta	gtaagaagac	tcctgggctg	ggcatggtgg	ttcacacctg	taaccccagc
11101	accttgggag	gctgagatgg	aagatcactt	tgagcccagg	agtttgcaac	cagccctgag
11161	caacatagtg	agaccctgtc	tctaccaaaa	aaatcttaaa	aaaaaaaaaa	aaagtttgga
11221	gactgcccat	agtttacctt	tccctgagga	cagaatagtg	tggccacatg	cctaattgta
11281	atggatgaag	aqcaaatqqa	aqqtaaqaaa	qqqaaqctqq	tgagtgtgca	tcaqtqtctt
11341	aaaqtqtqct	ccaactagag	cactagacta	cactqqaqqa	aacqaaaaqq	tqqtcaaata
11401	aatqcatatc	ctctcatqqq	agatgaacag	tacacactga	catqctqaqq	tctqacaaqt
11461	cccacaqtaa	aqaaqacqqt	tgaatatcac	ttaacqtqtt	cccccaaatq	agatgtgcat
11521	qqaaccctqt	gttagagtaa	tagcgtgtac	agcctgtgga	acttctqqtt	ctcaaqtaaa
11581	cactaaacta	tggaccaaca	gcagtagtta	tctaaaaaaa	tttatctttg	gagattetgg
11641	atgggccctg	agaatctctg	tatgtactaa	actecteage	ggattettat	gcaaacaatg
11701	agatttagga	accactorta	tagactattt	tttacaaaaa	ccagactata	agggatagga
11761	attagacaa	taataaaat	attectadaa	tcaaaqaaat	ccaaaacaat	agggatagga
11821	atcasacaca	aagattteag	aggatgata	taadtaaata	tagatecado	gatcaaacto
11221	agaggaga	adagetttag	cadaadaaa	aaatataata	andtassa	aaccoatta
110/1	taatataaaa	aggaataatat		trassortar	antanttata	agatogooog
12001	taattyaya	agacycial	agatttaatt	aadaaaata	agggaatggt	agalggeady
12001	at an and a	atogoacat	aggetatta	ageggatata	taatgogatt	t+++++++
10101	yaryaadyad	acyyyayaul	tatacactac	acygyrdrod	Laalyayall	tatasattas
10101	atraacata	agratater	attanaaa	yuuyyaauyo	ayıyyıaıya	and
10041	cugcaaccuc	agaaaaaa	yılcaayoga			aaytagetgg
⊥∠∠4⊥	yactacaggt	yeeegeeade	acyceegaet	aaallllgt	alllagia	yayacyyyyt

12301	ttcaccatgt	tggccaggct	ggtctcaaac	tcctgacctt	aagtgatcca	cctgactcgg
12361	cctcccaaag	tgctgggatt	acaggcatga	gccacgtgcc	cggcctactg	agatatttt
12421	aattgcctca	aatgatagca	ggagttggag	tggacagaaa	ggctaagtgc	aaaaatcatc
12481	agtgtgggga	tataatctat	aggacaatga	atgtcaatga	cctttaagac	aatagcaaga
12541	gtagaggtat	tgaggtcaga	acaagggatt	ttacaagagt	gctgtattaa	tggttttgga
12601	agttaagatg	acactgctca	caccctcttt	cacatggatt	tttggaagaa	agaacactta
12661	ggaagactgc	aagggaaatt	gagtcctcag	ggttttaact	ctcattgaat	atcctctggt
12721	aaggactcca	gttagaagtg	gtcaactcag	acctccttga	ggggtctgag	ttactattag
12781	gaagaagcag	aggtctggat	tcattttatc	cacctgagcc	cagtacacaa	tatgtaagat
12841	ttttccatgg	ttcttacaac	aaagccgttt	tctttgaaaa	ccttgggaat	ccttaataaa
12901	caggacccca	actaattgta	gacctgagaa	gccattaaaa	accagaatct	gatttgaata
12961	aaaggatcct	ggtcatgcaa	acactctagt	ctgctaataa	gctaataatt	tagtgctgga
13021	atgagcatga	aataggtaat	atggggagat	agcgggtaag	gaagggagga	acaaaggaag
13081	gggaaggaag	agtgagaagg	aaggagaaga	catcatcaac	cagctccaca	aaacccaggg
13141	agccggttaa	tcatgtgctt	tcattaagag	cagaaacaga	gttttagtga	tattctgggt
13201	cctgaggcaa	aattttctga	aggtgtttcc	ctctagatcg	ctatcagcca	tgttcaaata
13261	ccattgtttc	agtctattac	tccaagaaaa	tggcatctcg	tccagccaga	gaacccacct
13321	cttttcatag	gccctaggtc	ctgagtggct	ctttggagta	gctgtatctt	ggatcttgat
13381	gctccaagag	tgaaactgtt	tctttcaact	atggagttca	gatcttgagc	caaaaatctt
13441	tcagcggctg	gtacaaaaaa	aatccgctgt	aaaaccattt	acaatggtac	cagccagaaa
13501	tgtgataacc	tgtgtacatt	cagatttctg	ggttacctga	atggaactct	tacacttatt
13561	acctagcaca	aggcttggac	aaacacaagt	accttacatt	ctctgcatga	aagaatgagt
13621	gaaagtagga	ttctggaggg	aatccaacct	gacccaaatg	tactttttac	tggaaaacaa
13681	aagcatttga	ggaattgctg	tgtctgtgga	tgatttacct	gccaaaatga	acggcagagt
13741	ggctaattta	gttttattcc	catgtgacct	gcaggtaaat	gaagaaggca	gtgaagcagc
13801	tgcaagtacc	gctgttgtga	ttgctggccg	ttcgctaaac	cccaacaggg	tgactttcaa
13861	ggccaacagg	cctttcctgg	tttttataag	agaagttcct	ctgaacacta	ttatcttcat
13921	gggcagagta	gccaaccctt	gtgttaagta	aaatgttctt	attctttgca	cctcttccta
13981	tttttggttt	gtgaacagaa	gtaaaaataa	atacaaacta	cttccatctc	acattataaa
14041	tggactctgc	atttgaaatg	aagacaagga	aaggggaaac	atgctattgg	ggcacatggt
14101	aaaatgatgc	cttcaagttg	ttctttaccc	agtaaccaca	tctggatcaa	gaaaatgagg
14161	gagagagcga	taaaagatgg	tagacagcca	gaaagggaag	ggagag	

Тор.