
Billiards Sim

Team #11

Ira Cooper (ira@mit.edu)

Miro Jurisic (meeroh@mit.edu)

Krishnan Sriram (sriram@mit.edu)

Abstract

Billiards Sim is a system that allows you to go from an initial scene description of a billiards game to an
animation with sound.

Billiards Sim is a based on a time-step based simulation. At every time step a basic set of computations
is performed to see what actions have to take place. Billiards Sim then takes all of the actions and runs a
physics model across them, which produces the state for the next step. While all this is running Billiards
Sim deals with the cinematography in addition.

The cinematography adds an additional dimension to the problems in this project. The major problem
added was the question of how the camera should act as balls collide with each other and impact the
rails. This all ends up being solved in an automated and reasonably simple manner. In addition, from all
the data the system generates it can create a sound track that is synchronized with the rest of the action
in the simulation.

Finally, based on the simulation and the cinematography, the rendering layer emits frames and a sound
track. The frames are fed to a third party renderer, and assembled along with the sound track into the
final animation.

Introduction

Billiards Sim was conceived because the team was interested in creating a full simulation, in addition to
being interested in the sport of billiards. First, the team members find an actual joy in playing the game
of pool, and in the beauty of its physics. In addition, there is the challenge of actually producing a
system that goes from beginning to end - from an initial simulation to a final video.

Billiards Sim is a time-step based simulation, that creates an animation of a game of billiards. It is
assembled using many different techniques of simulation, graphics, cinematography, and animation.

The simulation portion of Billiards Sim is based on a standard time stepped architecture. This allows for
the easy forward propagation of state, and makes that propagation easy to segment, allowing multiple
people to work on the project.

To create the simulation, Billiards Sim needed objects, a way to render the graphics, models of all the
objects in the scene and finally a way to animate them. The team chose the freely available renderer

POV-Ray to render the graphics. The objects in the scene were all hand modeled by members of the
team.

Lastly, and most importantly, Billiards Sim has cinematography and animation. These components are
what allow the system to actually transform the graphics components into the final animations. This part
of the system deals with problems such as moving balls to the right location, getting the cue stick in and
out of the scene, and determining the correct location for the camera. From all of this the system
assembles frame descriptions. These are rendered by the rendering components of the system and put
together to produce the final animation.

Goals

Primary Goal:

To produce a believable computer generated movie of billiards being played.

Primary Supporting Goals

Object models:
Table model
Ball models

Physical simulation:
Infrastructure for time-stepped based simulation
Ball motion without spin
Friction
Restitution

Cinematography:
Scriptable camera movement relative to the balls and table

Supporting Goals

Object Models:
Cue stick

Physical simulation:
Realistic trajectories of balls into pockets
Balls spinning
Transfer and activity of angular momentum in collisions

Cinematography:
Music sound track
Scriptable cue stick
Scriptable camera

Achievements

Complete Set of Physical Models

Pool Table

The pool table was the most difficult model due to its geometric complexity, and in fact took two tries to
do correctly.

The first attempt at the table failed due to the fact that seams could be seen in the bumpers’ interaction
with the table surface. This is a common problem in using our renderer of choice, POV-Ray, if the
model is created without using Constructive Solid Geometry (CSG).

The second attempt at the table used CSG, and was done without using a modeling package. Due to the
creator’s inexperience with CSG, producing the table model was a lengthy process.

creator’s inexperience with CSG, producing the table model was a lengthy process.

Pool Cue

The pool cue is modeled using cones and cylinders. The tip of the cue is actually a cylinder; in most of
the scenes the difference from a real lens shape is minimal.

Pool Balls

Texture was applied to the pool ball to attain the white spot and numbers.

Texture was applied to the pool ball to attain the white spot and numbers.

Physical Simulation

Overview

Problems faced

The team spent too much time trying to figure out multi-ball impacts before realizing that this is in fact a
difficult problem, especially considering angular momentum and non-ideal surfaces. In the end, despite
some progress, this was dropped due to implementation complexity and lack of time.

It is possible that some of the time taken above could have been lessened through a better allocation of
staff; this was learned after the production of the third set of collision equations.

Solutions

The physics for Billiards Sim was simplified by resolving all the collisions in a pairwise manner instead
of considering all the balls as a system. This also allowed for more complexity in the physics of the
simulation in terms of angular momentum and restitution.

Actual implementation

System Architecture

The system architecture is broken down into several parts. The first of these is the simulation’s
architecture itself.

The simulation’s architecture is a simple object oriented architecture. The primary object of the
simulation is the world object. The world object manages the balls, the rails, and the system clock for
the simulation. The world time-steps all of the objects forward in time and detects and lists all collisions
between objects.

The other components of the simulation architecture are classes subclassed from the virtual base class
Impactor. These include the rails, balls and pockets. These classes have a method which allows them to
detect if a ball has impacted them. It is only necessary to detect impacts by balls, because balls ore the
only moving objects. There is a method in the world object which will then take all the collisions and set
the balls to their new states. This allowed an incremental approach to the physics of the simulation, and
independent work on collision detection, friction, and the physics of impact.

The world calls the rendering layer on the appropriate steps of the simulation. Here the rendering layer
transforms the current state of the world into a description that our renderer, POV-Ray, would accept.

After the simulation is run and all the frames are completed, the operator just runs POV-Ray on each
frame one at a time, or in parallel on multiple machines. The operator then takes all the resultant frames
and collapses them into a QuickTime movie, which is the final product of the simulation.

Ball Trajectories in Pockets

The trajectory of a ball falling into a hole is modeled in a simple manner by Billiards Sim. As a ball in
the pocket will not interact with other balls and will only spend a small amount of time on camera, there
is no need for high accuracy in the physical model.

The actual physics model for the trajectories deals with two cases. The first case is where the ball’s
velocity is less than the square root of the radius times gravity, where the ball rolls over the edges; in the
second case the velocity is greater, this is when it flies into the hole. Once the ball enters the pocket, the
first case simplifies to the second case.

Additional collisions with the inside of the pocket are handled with a simple collision mechanism, so
that the ball appears to bounce off the end of the pocket.

Once the ball hits a fixed depth below the table plane, it stops moving. The ball stays in the pocket
forever, and its collision handling is disabled, so that the collision handling code will not be run if two
balls fall into the same pocket. This implies that if someone were to look at the bottom of a pocket that
more than one ball fell into, they would see several inter-penetrating balls. This will never be seen in the
movie due to the choices that the team will make in cinematography.

Ball Motion without Spin

Ball motion without spin is implemented using the velocity of the ball to determine location and
quaternions to deal with the rotation of the ball.

Ideal Ball Collisions

This model is the case of ideal Newtonian Mechanics. It was very simple to get up and running.

Friction and Restitution

Friction was taken care of by the standard physics equations as shown below. This effectively slows
balls down by a constant amount regardless of their weight. The constant amount is determined by a
constant called table speed which is the reciprocal of the typical friction coefficient mu.

Restitution is handled by incorporating the restitution factor "e". This models all effects properly except
for issues dealing with spin.

The equations used to implement this are the same as the ones listed for Ball Collisions with Spin
Transfer, but there is no spin transfer and therefore there are no equations involving omega.

Ball Collisions with Spin Transfer

When two balls with initial spin collide, there is linear momentum transfer from collision and angular
momentum transfer from relative slipping of the objects at the point of contact. By implementing both
of the above phenomena, a simulation as close to reality as possible is achieved. In addition, it was
found that the simulation could detect when balls jump due to spin transfer, but this effect was discarded
due to the complexity inherent in implementing it.

Cinematography

Cinematography consists of three parts: scriptable camera movement, scriptable cue stick movement,
and a sound track. Scriptable camera movement was added so that camera would be automatically
generated for each frame, without hand editing. Scriptable cue stick movement adds realism to the
scenes. The sound track also adds realism to the simulation, as it provides the sounds the viewer would
expect to hear.

Scriptable Camera Movement

Scriptable camera movement relies on the idea of events. Any collision between a ball and a ball, a
bumper, or the cue stick is considered an event. There are no events that relate to pockets, and therefore
camera movement can not automatically synchronize with balls falling into pockets. In addition, there is
a synthetic event at the beginning and the end of every scene.

The desired camera movement can be specified between any two events, including the start and end of
the scene. The movement can be specified in one of three ways:

Hovering: The camera is at a fixed location and looking at a fixed point between two events.
Looking: The camera is at a fixed location and looking at a specified ball between two events.
Following: The camera is at a location relative to a specified ball between two events, looking at
the ball.

In the case when the camera is following a ball, the position of the camera is given by a vector which is
interpreted relative to the velocity of the ball. This allows for more intuitive specification of camera
movement, as <-1, 0, 0> always means "one unit behind the ball" regardless of the direction the ball is
moving in.

Using only the specific camera movement would clearly result in jerkiness, as the location and direction
of the camera would not have C1 continuity. To solve this problem, camera is interpolated between

every two consecutive events.

For every event, camera setup time is specified as two fractions between 0 and 1: pre-event setup time
and post-event setup time. Pre-event setup time specifies how much before the event the camera starts
interpolating, and post-event setup time specifies how long after the event the camera stops
interpolating. For pre-event setup time, the times are relative to the preceding event; for post-event setup
time, the times are relative to the following event.

For example, if events 1, 2, and 3 occur at t = 0, t = 6 and t = 10, respectively, and event 2 has pre-event
setup time of 2/3 and post-event setup time of 3/4, then:

between t = 0 and t = 2, camera uses the location and direction specified between events 1 and 2,
at t = 2, camera starts interpolating around event 2 (because 2/3 of the time between events 1 and 2
are spent interpolating camera),
at t = 6, camera is still interpolating, and event 2 occurs,
at t = 9, camera interpolation ends (because at t = 9 3/4 of the time from event 2 to event 3 have
elapsed),
between t = 9 and t = 10 camera uses the location and direction specified between events 2 and 3.

There are some desirable properties for the camera movement when interpolating camera around an
event:

camera trajectory should have at least C1 continuity,
camera direction should be continuous,
camera object (what the camera is looking at) should not deviate much from the object(s) being
followed.

There are cases when the object followed will make sharp turns or even move discontinuously, like
when following a ball through a bumper collision or following one ball before a collision and another
ball after the collision. Therefore, camera object is interpolated during the time that the camera is
interpolated. At the beginning and the end of the interpolation period, the camera object coincides with
the point being observed. Between those two points, the object follows the Beziér curve with the
following control points:

camera object at the beginning of the interpolation,
specified camera object at the beginning of the segment from the event to the next event,
camera object at the end of the interpolation.

The velocity of the object that the camera is observing is not a boundary condition for interpolation. If it
were, the interpolation could lead the camera past the object being followed and then back, along a
self-intersecting curve, which would be unnatural.

The second part of interpolation is the camera location. Initially, camera location was going to be
interpolated using another Beziér curve dependent on the location and velocity of the object the camera
is observing. This yields C2 continuity for camera movement. After this was implemented, however, it
was noticed that the camera location and object were varying in a way that made the distance from the
camera to the object change significantly between every two events. This lead to the strange feeling that
the table was swaying closer and farther from the observer, so this implementation was scrapped.

It was replaced by the second version of camera location interpolation. This calculates distance from the
object at the beginning and the end, interpolates it with a C1-continuous curve, separately calculates the
direction of the camera at the beginning and the end, and slerps the camera direction between the two
vectors. Camera location is then finally determined by placing the camera at the calculated distance from
the object.

Therefore, if t = 0 at the beginning of the interpolation, t = 1 at the end, and d0, v0, p0, and d1, v1, p1
are distance to the object, direction to the object, and the location of the object at t=0 and t=1,
respectively, then at time 0 <= t <= 1, camera is calculated with:

CameraObject (t) = Beziér (p0, p2, p1, t)

CameraDirection(t) = slerp (v1, v2, t)

CameraDistance (t) = Smooth (d1, d2, t)

CameraLocation (t) = CameraObject (t) - CameraDistance (t) * CameraDirection (t)

where p2 is the object being observed at the time of the event being interpolated around, and

Smooth (x) = 2*x^2, x<.5

Smooth (x) = 1 - 2 (x-1)^2, x >= .5

This interpolation gives a reasonable display of the camera following balls through collisions.

Scriptable Cue Stick

The scriptable cue stick is specified by the ball it strikes and the angle of impact.

The movement of the stick consists of 4 phases:

Approach: The stick is brought from elsewhere to the field of view, until its tip is near the target
ball.
Preflight: The stick moves back and forth twice in preparation for impact.
Impact: The stick accelerates linearly, hits the ball, and then slows down.
Retraction: The stick is removed from the field of view, and then disappears after a short period of
time.

Care was taken to ensure that the stick enters and leaves the frames in a reasonable way - it will avoid
penetrating the table, and it will not disappear while still in sight. The latter is achieved by moving the
stick far enough and then removing it from the scene.

The stick is smoothly slerped into the view. Then the stick follows the path of two sinusoidal waves to
prepare for impact. After accelerating and decelerating at the appropriate time to give the illusion of
setting the ball in motion, it is slerped away from the view and removed.

During the impact, the maximal velocity of the cue tip and the initial velocity of the target ball are

related, although not as realistically as might be desirable. The amplitude of the preflighting
displacement is not related to the initial velocity of the target, although it would be in reality.

Sound track

Since event listing was already generated for the scriptable camera, it was extended to include event
type with each event. This extension allows the creation of code that generates a composite audio file
from audio cues for every type of event. Therefore, given the sounds of a ball-ball collision, ball-bumper
collision, and ball-cue collision, and the event listing, the system can generate the sound track which has
the sounds appropriately synchronized with the actions.

Playing the sound files in perfect synchronization with events made the sound track appear lagged. This
was probably because the sound files used have a very short buildup sound leading up to the peak of the
impact. It was empirically determined how much to shift the sound track. Therefore, the sound track is
imperfectly synchronized when examined in a sound editor, but well-synchronized when viewed on
screen.

Individual Contributions

Ira

Project proposal editor
Second version of the collision physics (added restitution)
Friction
Initial software architecture and software for physical simulation
Pool table model
Cue stick model
Background research:

Researched pool physics and papers
Investigated other billiards and physics software
Found the texture maps used on the balls
Matrix library to use

Editor of the final paper

Miro

First version of the collision model
Selection of rendering software
Setup and configuration of source control system
Implementation of the third collision model
Interface between the simulation and the renderer
Cinematography of the camera
Cinematography of the pool stick
Quaternion implementation
Ball models
Debugging and integration of the project
Physics and implementation of balls falling in holes

Final production/cinematography

Sriram

Author project proposal
Physics behind the third physics model (angular momentum and angular momentum’s effect on
collisions between both balls and balls, and balls and rails)
Physics behind ball motion with spin
First implementation of the object models

Lessons Learned

Please note that much of this is talked about in the achievements section.

1. Animation is more difficult than it looks.

Animation has many aspects to it, just like the rest of computer graphics. Often the largest issues
are not the technical ones but the artistic ones. Issues like how a ball should fall into a pocket,
which ball should the simulation try to hit next, where should the camera be, what options should
it use so it can follow the action going on, on the table best. Other artistic things are also needed
such as, a model of the pool table and a model of each of the balls. When all of these factors are
finally added up, the amount of minutia can be overwhelming.

2. Get simple models to work and work on complicated models if one has time.

This actually turned out to be the most painful lesson. The team did quite a bit of research into
multi-ball collisions, and ended up discarding all of it. The team believes that it should have gotten
more of the physics working for the basic two ball case and then finally if it had time really look at
the multi-ball case. As the project went the physics did get done, but it was more rushed and less
detailed than it should have been, due to the early focus on complicated models.

Acknowledgments

Thanks to Dr. Roger W. Webster, Nathaniel G. Auvil, Paul Flory, and Patrick Gillisse of Millersville
University for the ball texture maps, and for source code of a similar system.

Thanks to Cathy Coury for being the other set of eyes that every editor needs.

Bibliography

Amateur Physics for the Amateur Pool Player: by Ron Shepard, Argonne Pool League, Argonne
National Laboratory.

Engineering Mechanics : Dynamics by J. L. Meriam, L. G. Kraige, 4th edition Vol 2 (March 1997)

Appendix 1

Scene description file format

Scene description file consists of tokens separated by whitespace. There is no syntax for comments in a
scene description file. Tokens can be integers written in decimal, floating point numbers written out in
decimal, or keywords.

Keywords used for the scene description file are:

<keyword> := ball | rail | cue | camera | endcamera | event | follow | hover | look

Vectors are represented as 3 floating point numbers, and quaternions as 4 floating point numbers:

<vector> := <float> <float> <float>

<quaternion> := <float> <float> <float> <float>

A scene description file contains a cue description, a number of ball descriptions, a number of rail
descriptions, and a camera description:

<scene> := <cue-description> <ball-description>* <rail-description>*
<camera-description>

Cue description consists of a number which refers to a ball (the target ball of the cue) and a number
which is the angle of the impact:

<cue-description> := cue <integer> <float>

The target number of the cue has to be greater than or equal to zero, and less than the total number of
balls in the scene description. It is the zero-based index of the ball in the file (i.e. 0 is the first ball in the
file, 1 the second, etc.)

Ball description consists of an integer ball number, the initial position of the ball as a vector, the initial
velocity of the ball as a vector, and the initial orientation of the ball as a quaternion:

<ball-description> := ball <interger> <vector> <vector> <quaternion>

Rail description consists of two vectors that are the two endpoints of the rail. They must be listed in
clockwise order (as seen from above the table):

<rail-description> := rail <vector> <vector>

Camera description consists of a sequence of event camera descriptions:

<camera-description> := camera <event-camera-description>* endcamera

An event camera description specifies motion of camera between two consecutive events and consists of
an event descriptor and a camera specifier. An event descriptor specifies the first of the two consecutive
events and the camera pre-event and post-event interpolation time. A camera specifier consists of
camera motion type (look, hover, or follow) and a description of camera location and camera object
which depend on the motion type:

<event-camera-description> := <event-descriptor> <camera-specifier>

<event-descriptor> := event <integer> <float> <float>

<camera-specifier> := <hover-camera-specifier> | <look-camera-specifier> |
<follow-camera-specifier>

<hover-camera-specifier> := hover <vector> <vector>

<look-camera-specifier> := look <vector> <integer>

<follow-camera-specifier> := follow <integer> <vector>

The numbers in an event descriptor, in order, are the event number, the pre-event interpolation time, and
the post-event interpolation time. The event number has to be greater than or equal to zero, and either
smaller than the total number of events (including the two synthetic events), or equal to 65535 (which is
considered equal to the highest event number). The special meaning of 65535 is a magic value that
would ideally be implemented as a keyword. The pre- and post-event interpolation times must be greater
than or equal to zero, and less than or equal to one.

The vectors in the hover camera specifier are the location vector and the object vector, in that order.

The vector in the look camera specifier is the location of the camera. The integer is the ball the camera is
looking at.

The integer in the follow camera specifier is the ball the camera is following. The vector is the location
of the camera relative to the coordinate system in which the ball is at <0, 0, 0> and moving along the +x
axis, and z is up from the table plane. For example, the vector <-1, 0, 1> means "one unit behind the ball
in the direction opposite from its velocity, and one unit up away from the table".

The actual parsing code is somewhat more liberal than this specification: it allows any order of cue, ball,
rail, and camera specifications.

This specification should be treated as the authoritative description of valid scene description files.

