Lecture 23: Thursday, 2 December 1999

Administrative:

Class evaluations final 15 minutes

Final project items:

4-035 reserved for 6.837 (see my email)

Written reports (ps, html, pdf) F 5pm

Presentations in 3-133 (schedule posted)

Friends, supporters &c. welcome

Artifacts to TAs at end of session

IAP/S2000 "6.837 night" in 26-100

Today, Final lecture:

Future directions in graphics

Other contexts

Academia

R & D

Industry

Class overview & summary

Gaming / Entertainment

Interaction techniques

Disambiguating 2D/3D motions

Rendering acceleration

Incorporating Sound/Haptics

Networking / large # 's of characters

Autonomous characters ("AIs")

Geometric indexing & algorithms, e.g., for

Efficient collision detection

Efficient intervisibility/interaudibility

MIT 6.837 Computer Graphics

Thursday, 2 December 1999 (L23)

e 1 MIT 6.837 Computer Graphics

Thursday, 2 December 1999 (L23)

Page 2

Page 4

Rendering Algorithms

Realism vs. CPU, Storage Cost

Static/dynamic aspects:

Observer

Structural scene elements

Detail scene elements

Realism:

Procedural

Physically-based

Use of parallelism, precomputation

Scientific Visualization & Analysis

Physical Phenomena

Visualizing Sensor Data

Simulation of Mechanical systems

Linked rigid body kinematics

Energy, momentum conservation

Efficient collision detection

Fluid flow, rendering – line w/ physics

MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 3 MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23)

Design/Evaluation Tools

Rapid specification and prototyping Input devices, 2D/3D disambiguation Exploring design spaces Evaluation of design alternatives Coupled simulations:

Fire spread, egress routes, etc. Acoustic, illumination analysis Optimization loops, auto-design

Performance/Entertainment

Synthesis of live and CG characters
Segmentation, masking, composition algorithms
Coupling visuals with audio streams
Synchronization algorithms
Generation of gestures, vocal tract & mouth
CG Puppetry (e.g., Paris Media Lab)

Medical Applications

Image-guided surgery
Tele-robotic surgery
Education (visible male & female)

MIT 6.837 Computer Graphics

Thursday, 2 December 1999 (L23)

Page 5

MIT 6.837 Computer Graphics

Thursday, 2 December 1999 (L23)

Page 6

Modeling & Animation

Shape Definition

Human-specified? Procedural? Sensed?

Static or dynamic?

Texture Acquisition / Generation

Articulation & Kinematics

Lighting definition & preview

Key Framing Objects, Camera, etc.

Algorithmics:

Computer Vision, Image Processing, Comp Geom, Numerical Optimization, Artificial Intelligence...

Academia (Alphabetical Order)

Typical sequence:

PhD (3-6 years)

PostDoc (Common, 1-2 years)

From there: industry, academic lab, academia

UC Berkeley

Brian Barsky

Splines, cornea modeling

Paul Debevec, Jitendra Malik

Semi-automated modeling from images

David Forsythe

Computer vision, global illumination

Carlo Séquin

Walkthroughs, fire-spreading simulation

Geometric modeling and interaction

British Columbia (UBC)

Dave Forsey

Geometric modeling

Alain Fournier

Global illumination, real/synthetic imagery

MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 7 MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 8

Brown Carnegie Mellon (CMU) Andy van Dam Paul Heckbert Direct manipulation 3D UI's Rendering, modeling, sampling John Hughes Steve Seitz Ceiling head-trackers, VR Image-based modeling & rendering Gestural 3D user interfaces David Baraff [to Pixar] Cal Tech Physically-based simulation (e.g., collisions) Jim Arvo Andy Witkin [to Pixar] Global illumination (theory) Procedural textures, image processing Barr, Blinn, Kajiya Cornell Classical modeling, rendering Don Greenberg, Peter Shirley Peter Schröder Architecture, Global Illumination Global illumination, wavelets Dan Huttenlocher Chapel Hill (UNC) Computational geometry, computer vision Fred Brooks UC Davis Virtual design & simulation systems Ken Joy, complex CAD modeling/rendering Henry Fuchs Georgia Tech Pixel-Planes, PixelFlow architectures Jessica Hodgins, human figures, p-based modeling Jack Snoeyink Greg Turk, 3D scanning and editing Computational geometry, GIS Harvard Dinesh Manocha Steven Gortler, multiresolution methods, IBMR Very large CAD, occlusion culling MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 10 MIT: Montreal Steve Benton Pierre Poulin Holography, static & dynamic Rendering, reflection models, particle systems Leonard McMillan NYU Specialized rendering hardware Ken Perlin Plenoptic (image-based) rendering Rendering, multi-resolution desktop UIs Julie Dorsey Princeton Modeling and simulation; realism David Dobkin Olivier Faugeras, Berthold Horn Comp geom, spatial data structures, discrepancy Mathematical Vision Bernard Chazelle Eric Grimson Computational geometry, surface partitioning Image-guided surgery Adam Finkelstein Ken Salisbury Image indexing, animation, multi-res techniques Tom Funkhouser Haptic interfaces Seth Teller Interactivity, large many-user environments 3D Capture; Comp. Geom.; Visib; Educational s/w Paul Viola Machine Vision, Formula understanding

MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 11 MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 12

Academia (cont.)

UC Santa Cruz

Jane Wilhelms

Volume rendering

Stanford

Bill Dally

Parallel, image-based rendering h/w

Leo Guibas

Comp geometry, global illumination

Pat Hanrahan

Volume rendering, global illumination, workbench

Marc Levoy

3D scanning, volume rendering

Digital Michelangelo Project

Toronto

Demetri Terzopoulos, solid modeling

UW (Seattle)

Brian Curless: high-resolution 3D scanning

David Salesin: Rendering, modeling

MIT 6.837 Computer Graphics

Thursday, 2 December 1999 (L23)

Page 13

Industry

Development position (BSc, MSc, MEng, etc.) R & D lab (usually requires advanced degree...)

R & D (mostly "R")

Lucent/Bell Labs

Tom Duff: Rendering, digital imaging

Ken Clarkson, Steve Fortune, Peter Shor

Comp geom, randomized algs, quantum computing

Microsoft Research (Redmond)

Michael Cohen, Jim Kajiya, Andy Glassner, Jim Blinn...

Rendering, animation, agents

Talisman architecture, Direct3D

MERL (Mitsubishi Electric Research Labs), Cambridge

Perception, Haptics, Interaction, Vision

CRL (Compaq/DEC Research Labs), Cambridge

Facial anim., smart-kiosks, vision-based interaction

IBM Watson, Yorktown, Almaden

Gabriel Taubin, Holly Rushmeier...

Solid modeling, surface design, visualization

Satyan Coorg
MIT 6.837 Computer Graphics

Thursday, 2 December 1999 (L23)

Page 14

Page 16

Occlusion culling, computer vision, optimization Xerox PARC

Data browsing, direct-manipulation UIs, CG & vis DEC SRC

INRIA (France, many centers)

Industry R & D (some "R", lots of "D")

LEGO Futura (Boston)

LEGO design, "smart" bricks

Viewpoint DataLabs (Oregon)

Acquisition, motion capture (new VC rounds)

BDI (Boston Dynamics Inc.; Marc Raibert)

Motion capture & merging, Haptics, VR

Very good at autonomous motion & transitions

SRI, SDRC, Mitre, TASC, Aberdeen

Military pursuits

Photogrammetry, radar, range-finding...

Schlumberger

3D modeling, site exploration

MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 15 MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23)

Government Labs

Lawrence Berkeley Labs
Illumination engineering, goniometry
NIST
Illumination standards, goniometry
NIMA/DMA
Imagery & photogrammetry archives

Graphics Hardware

SGI GT, GTX, VGX, RE, REII, IR, 02, N64, Octane... Cutting (bleeding) edge h/w development
Near massively parallel, many \$\$ are OK
Development: ASIC, off-shelf, μ-coding!
Workstation competition: IBM, Sun, HP, etc.
6-18 month lag
Recently, low-end graphics, e..g, Indy, N64
PC-cards (NVidia, ATI, etc.) catching up at low end
Even Microsoft (Talisman, still a bad idea)

MIT 6.837 Computer Graphics

Thursday, 2 December 1999 (L23)

Page 17

MIT 6.837 Computer Graphics

Thursday, 2 December 1999 (L23)

Page 18

Graphics Libraries, UI Toolkits

OpenGL, Mesa, Inventor, Performer Template ports, etc.
Pixar RenderMan
IBM 3DIX, Brush
RenderWare, RenderMorphics
Direct3D
FLTK (cross-platform, very nice)

Graphics Application Development

Boeing

Design/simulate jet with 10¹⁰ parts

AutoDesk

AutoCAD modeler, on many/most designer desks

Kinetix/3D Studio Max

InterGraph (CAD)

Heavy use of scans, semi-automatic acquisition

Trumbull, Disney

Interactive (sometimes autonomous) Vis Sim

Autonomous ride development! (Raiders of Lost Ark)

NASA (including JPL)

Large-scale scientific visualization

Creative Tool Users/Builders

Startup CAD/Visual Simulation hybrids
LightScape (radiosity, illumination engineering)
Virtus (rapid architectural prototyping, rendering)
Other tools for fast house/room "sketching"
Foto-Builder, Canoma: photogrammetric modelers

MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 19 MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 20

Interaction Devices

FakeSpace Boom (mechanical eye tracking) Polhemus (6 DOF mouse: full-body motion capture) SensAble devices Phantom (haptic device) SpaceBall (6 DOF, torque + stick + push/pull) Hi-Ball (6DOF LED-based head tracker from UNC)

Geometry Acquisition

CyberWare scanner (laser stripe with triangulation) Video-brush, real time stereo acquisition, &c. Satellite-imagery (side-looking + photogrammetry) Range-scanners (AM; time-of-flight) Need UI, signal processing, geometry expertise

MIT 6.837 Computer Graphics

Thursday, 2 December 1999 (L23)

Page 21

MIT 6.837 Computer Graphics

Thursday, 2 December 1999 (L23)

Page 22

Cinematic "production" houses

Old days: animator, TD, s/w producer all one Now: strong division

Animators (artistic types)

Be animators, express motion, emotion, etc. Engineers

Craft tools that let animators be animators PDI. Pixar

"Puppeteering" view of world

Animator is given lots of abstract strings

Bottleneck: instrumenting models with "avars"

SoftImage/Alias

Hierarchical modeling, DAG nodes Animator must specify causes, effects

Job directions

If you want to be an animator requires "classical" art skills How (much) involved in production? Make pictures, or... Develop tools & infrastructure For example, at Pixar, many s/w

engineers write per-surface "shaders" What kind of coding?

Infrastructure, steady tool development "Front lines", weird code for particular shot E.g., stretching fabric on moving characters Often, front line stuff "migrates" to corpus

MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 23 MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 24

Examples

Pixar, modeling Mr. Potato Head There is no hierarchical (say, ascii) model All modeling is procedural, with "strings" MPH's mouth is a piece of code!

Toolmakers

Fast

Good high-level interface

Not too many strings / DOFs!

Support for subtle timing adjustments

Trends

Procedural modeling

Stop-motion animation vs. bag of clay

Code, rather than object, toolkits

Example: Prisms (SideEffects, Toronto)

Pixar, RenderMan (C-like API + linear algebra)

Also, Digital Domain

2D world

Animo (2D system, bought by DreamWorks)

Animator draws keyframes

Animo: high-level control of spline shapes

Near-intelligent systems for coloring, etc.

Image-Based Modeling and Rendering

Generating novel views from real images

MIT 6.837 Computer Graphics

Thursday, 2 December 1999 (L23)

Page 25

MIT 6.837 Computer Graphics

Thursday, 2 December 1999 (L23)

Page 26

Tech Houses

Lyon-Lamb
WindLight
Motion capture, R/T performance animation
Sony Picture, ImageWorks
Disney – hiring for coming films (CGI Dinosaurs)

Decisions

S/W only? Production (tool use) only? Both? Huge CGI production for CDrom games (market?) Increasing use of fancy animation

Focus mostly on user-level s/w

Metropolis, Origin Systems

Electronic Arts, Broderbund

Commercial spots

PDI, Editel, PostPerformance, TapeHouse

Tight-focus effects, synthetic/real blends

MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 27 MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 28

Decisions

Effects? Live action? Synth/ Integration? Or...
Lots of compositing issues
Animation (fully synthetic)
PDI does mixture, e.g., 3D Simpsons
R&H does mixture, Coca-Cola Polar Bear
ILM does mostly effects (Jurassic Park, Casper)

Small Studios

Buzz (Montreal)
Animatics (LA)
CORE Digital Pictures (Toronto)
Outer Limits, TekWar
Foundation Imaging (LA)
Babylon 5, SeaQuest
Area 51 (Burbank)
Space Above and Beyond
Tippet Studios (Berkeley)
Stop-motion, recently moving to CGI
Verhoeven's "Starship Troopers"
"... a fun place, full of motor heads and other oddities..."
"An MIT graphics jock who has his/her head screwed on right and is interested in film could have a lot of fun there..."

MIT 6.837 Computer Graphics

Thursday, 2 December 1999 (L23)

Page 29

MIT 6.837 Computer Graphics

Thursday, 2 December 1999 (L23)

Page 30

6.837 Overview

Rendering Fundamentals (Classical Pipeline) Modeling Fundamentals (Coord. systems, Objects) Illumination Methods

Local (diffuse, specular)

Ray Tracing (Global, specular only, view-dep)

Radiosity (Global, diffuse only, vie-indep.)

Hardware Acceleration (Graphics Arch.)

Advanced Topics

Texture Mapping

Conversational Interfaces

Color Spaces & Perception

Splines

Animation

Physically-Based Modeling

Acceleration of Ray-Casting/Tracing

Visibility Computations

This Class

At this point, we hope you:

have mastered CG abstractions, some techniques are familiar with state of art & practice feel confident deploying CG for visualization and communication in your own discipline have had genuine, nearly unconstrained design and implementation experience can confidently initiate R & D in CG in industrial or academic setting

Thank you.

MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 31 MIT 6.837 Computer Graphics Thursday, 2 December 1999 (L23) Page 32