Lecture 12: Tuesday, 19 October 1999

Announcements:

Asst 6A and 6B (Ray Casting/Tracing) due F 5pm

Eye-ray and jittered eye-ray generation

Intersection: spheres, cones, cylinders, polygons

Utility functions (listed in README):

ReflectionDirection()

TransmissionDirection()

etc.

Turnin **6A** and **6B** together as one set of files:

turnin -course 6.837 6 foo.C bar.C ...

Final Project preparations:

Requirements

Deliverables

Timeline

Team Formation

Resources

Requirements

Final Project consists of

Some independent investigation

Significant design experience

Significant implementation effort

Realistic engineering plan, milestones

Credible overlap with 6.837

Our tasks include:

Helping you "scope" your project

Six weeks of effort for three people

That's more than four person-months

Reacting to your proposal with

meaningful technical feedback

Helping you prioritize milestones

Breadth-first, depth-first progress

Weekly meetings to identify resources,

break roadblocks, provide moral support

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

1 M

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

Page 2

Deliverables

End-to-end deliverables:

Written proposal, timeline & URL

3-5 pages, with URL

Implemented project

Source, inputs, outputs

Written report & URL

10-15 pages, with URL

Presentation & demo

15-20 minutes, in room 3-133

Presentation slides & URL

Video/audio artifact (to TAs)

Timeline

Final Project timeline:

Team formation: ongoing (class project page)

Brainstorming: today in class, and by email

Friday, 29 October: teams, Written Proposals due

Friday, 5 November: Checkpt. 2 with staff

Feedback on goals, milestones, tools

Friday, 12 November: Checkpt. 3 with staff

Friday, 19 November: Checkpt. 4 with staff

Friday, 26 November: Thanksgiving Vacation

 \rightarrow Thursday, 2 December: **Final Lecture** \leftarrow

Course summary; Using Graphics

Friday, 3 December: Written Report (Checkpt. 5)

Fri-Thu, 3-9 December: Team Presentations

F 3 Dec: 1-3pm in 3-133

M 6 Dec: 9-12am; 7-9pm in 3-133

T 7 Dec: 9-11am; 7-9pm in 3-133

W 8 Dec: 7-9pm in 3-133

R 9 Dec: 9-11am; 2-5pm; 7-9pm in 3-133

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

Page 3

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

Page 4

Team Formation

Teams of three students expected

TAs will help match members if necessary

Use your course web pages to:

Post your interests

Link to sources of inspiration

Look for like-minded teammates

Resources

Resources available to you:

Each other (see course team page)

Tools (see course tool page)

Space (several Gb on /mit/imagery4)

Staff (talk to, or email, staff)

Final Project discussion

Timeline:

Team Formation

Proposal submission (Checkpoint 1)

Feedback from Staff

Checkpoints 2-5: Meetings with staff

Project Writeup (Web document)

Project Presentation (Web slides)

A Machine Vision Object Tracker using the IndyCam

Real-time, 3D game simulation with overdraw reduction

Masquerade: 3D world with human-to-human expressive interaction

An Environment for Interactive Object Manipulation

Interactive 3D Rube Goldberg Machine Simulator

Rendering raindrops on the surface of a puddle

An Emergent Ultimate Frisbee simulation

Dancing Robot Man with Motion Capture

Interactive Radiosity Renderer/Viewer

Artifact Transfer (to TA)

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

Page 5

MIT 6.837 Computer Graphics

Light Field Rendering

Interactive Plant Growth

Java Raytracer

Tuesday, 19 October 1999 (L12)

Page 6

Projects from Previous Years

Distributed Rendering and Viewing Pipeline

Converting Inventor Scenes into Random Dot Stereograms

Distributed Raytracing over a Network

Image Morphing with Java

Dancing Graphical Flower

An Implementation of Occluder Nodes in Quake

Physical Modeling of Coin Flips

Animation: Speeder Bike Chase on Endor

Water wavelet simulation controlled by sampled/MIDI audio data

Distributed Graphics Computation and Rendering Pipeline

Escape from a room by solving interactive puzzles

Generation of comic-book style images from 3-d models

Real-time virtual fish tank in Java

Animation of a Pinball machine/game

Thin Soap Films or Soap Bubbles

One on One Basketball Animation

Melting Ice Cube

MIT 6.837 Computer Graphics Tuesday, 19 October 1999 (L12)

MIT 6.837 Computer Graphics

Page 7

Tuesday, 19 October 1999 (L12)

Elevator/Bus Route/Highway Simulation

Roller Coaster Design / Physically Accurate Simulations

An illustrated, animated storybook

A robot arm shooting a basketball

Alien Abduction Animation on Alias

 ${\tt Modeling} \ {\tt a} \ {\tt distributed} \ {\tt virtual} \ {\tt environment}$

A realistic model and display of the human body

Analyze and implement a global illumination algorithm

Meteor (Animation)

Blowing Curtain (Animation)

Interactive Parallel Radiosity

Acoustic Simulation (Concert Halls)

Trick or Treat--Gothic Animation

Luxo Jr. Animation Sequel

Dome of the Rock

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

3D Modeler for Kids

Precomputing Ray Tracer

Monk Animation (Douglas Adams)

Foosball Players Come to Life (Animation)

MIT Model & Animation

Relativistic Ray-Tracing

Human in Free-Fall

The Job (Animation)

3D Drilling for Tumors in MRI Scans Using PHANToM

Dali Animation

Flag modeling \& Animation

3D Morphing

Page 9

Fluid Simulation Haptics

Evolution of Movement

Tron Gone Wrong (Animation)

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

Page 10

Today:

Project Scope
Broad Categories
(Not just animation!)
Some example topics
Proposal specifics
What do we expect?

Project Scope

Teams of three people
Six weeks of real team effort
Effort per person: roughly 5-6 assts
Related teams are OK, **but**don't put other teams on your critical path
each team must show self-contained result

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

Page 11

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

Page 12

Project Components:

Reasonable Scope/Goals

Substantial Team Design Effort

Individual Technical Mastery (Code, Tools)

Individual Creative Expression

Substantial implementation effort

Communication of Work, Lessons Learned

Deliverables:

Source, binaries, presentation, slides

Documentation for future students

Artifacts suitable for 26-100 "6.837 night"

(to be held during IAP/January 2000)

Images, models, brief videos, etc.

All archived on the Web (via imagery)

Broad Project Areas

Modeling (Modeling *Tools*)

Generate interesting model of "something"

OR: Make a tool for generating interesting models

Rotoscope, motion capture, Facade, etc.

Animation. Requires a good plot/concept, and:

Storyboard, models, keyframes, teamwork, planning

Visualization (Science/Math)

Explain complex concept with graphics Start with, arrive at thorough understanding

Simulation

Appearance: Sophisticated illumination/rendering

Behavior: Physically-based modeling Critical: Study of actual phenomenology

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

Page 13

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

Page 14

Algorithm Profiling & Optimization
Accelerate a classical algorithm
Interactive ivscan? ivray? ivrad? ivview?
Fast particle system update method?
Interaction/Collaboration
Single-person, multi-person game
Virtual environment/workspace
Interesting new technique
Use of camera, sound, network, etc.

Modeling and Modeling Tools

Model existing spaces (outside or inside!)
Photographic textures, photoCD, etc.
Build a set of primitives, and workspace
Basic 3D modeler, on top of Inventor
Athena Tools: AC3D; Alias; ProEng; Sketch
Generative modeling/texturing techniques
Stone walls, vegetation, building facades...
Procedural modeling/texturing tools
Athena Tools: RenderMan shader/renderer

MIT 6.837 Computer Graphics Tuesday, 19 October 1999 (L12) Page 15 MIT 6.837 Computer Graphics Tuesday, 19 October 1999 (L12) Page 16

Simulation

Illumination/rendering extensions

Ray-Tracing:

Dispersion, refraction, area lights

Motion blur, depth of field, etc

Real camera model, match to photographs

Radiosity:

Equilibrium of diffuse luminaires/reflectors

Hybrid algorithms

View-independent, view-dependent effects

Algorithm Visualization

Possibilities (speed knob; debug level)

Visual debugging

Animation

Plot, storyboard, keyframes, ...

Direct specification

Simple animation language

Hand-built script of object articulations/poses

Use of uid_foo sources for objects

Direct manipulation

gview, manipulate, write (tedious)

In-betweening in Inventor

Engines, Calculators

Code against Inventor run-time library

Use Alias, RenderMan on Athena. Planning!

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

Page 17

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

Page 18

Physically-based modeling

Gravity, EM forces, wind, heat, etc.

Auto-alignment, disjointness (UI techniques)

Water; ice; fire; collapse; etc.

Particle systems, spring networks...

Optimization

Accelerate classical algorithm by exploiting:

Temporal coherence

Spatial coherence

What is the first thing to do when optimizing?

Rendering pipeline

Smart z-buffer, primitive tagging, etc.

Ray Tracing

Voxel-based ray propagation

Reusing radiance samples

Lazily-built environment maps (on-line QTVR)

Radiosity

Fluid interface

Convergence speed

Environment editing

MIT 6.837 Computer Graphics Tuesday, 19 October 1999 (L12) Page 19 MIT 6.837 Computer Graphics Tuesday, 19 October 1999 (L12) Page 20

Interaction Techniques

Of course, overlap with modeling, etc.

Games: (not 3D Tetris, Doom, Descent etc.)

Fluid Simulation/Rendering systems (*not* just algs)

Constraint-based Interaction techniques

Resources

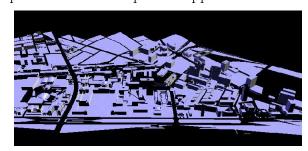
/usr/share/src/Inventor/ demos/ examples/ samples/ tools/ GamesCD/ SIGGRAPH proceedings (LCS Reading Room) ProEngineer from Parametric Technology add parametric; proeng Online help system proguide ac3D, Public domain 3D modeler Described on course Tools page Alias modeler (ditto) Renderman renderer add renderman; set_renderman; set_demos Scripting support in ivscan, ivray Single-step, continuous motion; camera scripting Inventor, Scan Converter, Ray Traced rendering Human-readable, editable format (or, can generate programmatically)

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

Page 21

MIT 6.837 Computer Graphics


Study phenomenology!

Tuesday, 19 October 1999 (L12)

Page 22

Modeling

Campus exteriors with photomapped textures

MIT Office of Facilities and Management:

http://web.mit.edu/ofms-space/www/

http://whereis.mit.edu/doc/

http://ortho.mit.edu (b&w orthos)

color orthophotos (by arrangement w/ graphics group)

Campus interiors with textures, detail geometry

arguably harder 3D modeling task

Or... model any other space of your choice

Figure Modeling

Convincing model of articulated human figure Reasonable dynamics for motion (walk, run, etc.) Could also do some part of figure (e.g., face) Perhaps model underlying bones, musculature Analogous: animals, plants

MIT 6.837 Computer Graphics Tuesday, 19 October 1999 (L12) Page 23 MIT 6.837 Computer Graphics Tuesday, 19 October 1999 (L12) Page 24

Parametric Modeling

All uid_foo programs used argparse().

Modify to generate web interface to programs
 Architect to allow continuous selection?

Can interface be extracted from arg_parse()?
 Useful for this and future classes!

Detail Modeling

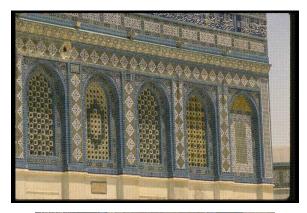
Procedural approach:

Stone walls Mosaics

Example: Dome of the Rock

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)


Page 25

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

Page 26

Dome of the Rock

Proposal specifics

Web document, send us URL (for now, host locally) State your project title, team, abstract (1 paragraph) Brief (3-5 page) writeup of project goals, including

Problem you'll solve, effect you'll achieve, etc.
Proposed **Design**, **including division of labor Resources** you will use, on what platform(s)

Milestones for checkpoints 1-5, presentation

Your document must:

Have title, team, abstract

Have four sections (Goals, Design, Tools, Milestones)

Respect reality

Pose realistic goals

Have clear weekly milestones

State fallback positions

We will:

Give detailed written & individual feedback Match each project to an appropriate TA Schedule weekly meetings, one per team per TA

MIT 6.837 Computer Graphics Tuesday, 19 October 1999 (L12) Page 27 MIT 6.837 Computer Graphics Tuesday, 19 October 1999 (L12) Page 28

Grading

Project is 40% of your total course grade This 40% is broken into five parts:

Initial proposal; checkpoint meetings; pacing (20%)

Final written report (20%)

Final team presentation & Demo (20%)

Overall quality of project (30%)

Project artifact (10%)

MIT 6.837 Computer Graphics

Tuesday, 19 October 1999 (L12)

Page 29