Lecture 11: Thursday, 14 October 1999 INlumination in Classical Pipeline

Reminder: Shading computed with a constant amount of state
Asst 5 (ivscan) due tomorrow 5pm Typically, some number of h/w light sources
Follow posted turnin instructions !

Today:
Demo of Asst 6A/B (ivray), Damian
Recursive Ray Tracing (H&B 14.6, 14.8, 4.8)
Asst 6B (ivray) out
Next Week:
Tuesday: Final project brainstorming
Start thinking about project ideas, teams !
Thursday: Special guest lecture Consequences:
plastic look; incorrect highlights; no
shadows
secondary illumination
transmission
focusing effects

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 1 MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 2
Local Illumination Model Alternative: Ray Casting, Semi-Local Shading
X — Idea (Appel, 1968):
___.:‘Iight source n eye

Cast ray from eye through each pixel
(m) Determine closest object along ray
A Am Shade by summing unoccluded lights
How?
” Non-recursive! (But improved quality, realism)

(Primary) shadows handled w/ existing capability!

light
g

Point light sources only (non-physical)
No occlusion testing (no shadows)

Primary light sources only (no inter-refl.)
N eye

light_
B Y

% ivray raycast.iv -e raycast.env -s S

% ivray raycast.iv -e raycast.env -s L

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 3 MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11)

Page 4

Recursive Ray Tracing

Extend to reflection, refraction
Shading must take entire scene into account
Ray tracing is a “global illumination algorithm”
Idea: Light originates at light sources, so
“trace” photon paths from the light source
Known as Forward Ray Tracing:
At each interaction, surface properties dictate
absorption, reemission, transmission probability
light_

[¢]
Typically expressed as BRDF f(6;, ¢;, be, pe) €
0..1]
Disadvantages?
MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 5

Backward Ray Tracing

Insight: we only “see” rays that make it to eye
So, trace “eye rays” E backward into scene

Find contributions to shading at surface points
light _

% ivray raycast.iv -e raycast.env -s R -d 1
Shadow rays S (to light sources)
Reflection rays R (along specular direction)
Refraction rays T (along refraction direction)
Note: Shading operation is recursive !

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 7

Forward Ray Tracing

Disadvantages
very few of the photons end up at the eye
very hard to know in which directions
photons should be sent
enormous number of cycles expended per photon
(can be ameliorated by packet tracing)
result is usually objectionable noise

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 6

Recursive Ray Tracing: Examples

% ivray raycast.iv -e raycast.env -s R -d 0
% ivray raycast.iv -e raycast.env -s R -d 1

% ivray raycast.iv -e raycast.env -s R -d 2

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 8

Secondary Rays: Reflection

x

N L Ly
L R ~ —
Ly
L R
p o

Compute reflection ray R as:

L = N(L-N)
R=L-L,

— N(L-N) — (L - N(L - N))
N(L-N) - L+N(L-N)
= 2N(L-N)-L

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 9

Reflection, Transmission Rays

Radiance is attenuated by reflection!

In these units, no attenuation due to distance
(unless, of course,

)

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 11

Reflection, Transmission Rays

Consider a ray bouncing among perfect mirrors

[s there an equivalent situation with no mirrors?
Now assign mirrors coefficients of reflection kg, kg < 1
What happens?

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 10

Backward Ray Tracer Pseudo-Code

RayTrace (frustum, viewport) {
For each raster y
For each pixel x
E = ray from eye through pixel x, y
FrameBuffer[x] [y] = Trace (eye, E, 1)
} // RayTrace

Note: RayCast () now returns hit:
scene object hit->object
intersection parameter hit->t
surface point hit->P, normal hit->N
Radiance Trace (Point R, Ray D,
int depth) {
Hit *hit = RayCast (R, D);
if (hit)
return Shade (hit->object, D, hit->P, hit->N, depth);
else

return Background (R, D);
} // Trace

Radiance: physical unit of radiant energy (see app’x)
Constant along a ray (in some media)
Sensor response proportional to radiance

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 12

Backward Ray Tracer Pseudo-Code

// Shade obj surface at point ShadeP, normal ShadeN,
// as seen along direction Along
Radiance Shade (Object obj, Ray Along,
Point ShadeP, Vector ShadeN, int depth) {
Radiance r;

r = ambient radiance;
For (each light) {
Ray sRay = Ray from point to light;
if (sRay . ShadeN > 0) {
r += diffuse contribution * light visibility
r += specular contribution * light visibility

}

// terminate recursion
if (depth == maxDepth) return r;

// continued

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 13

Secondary Rays: Refraction

All media have index of refraction n
ratio of ¢ (in vacuum) / light speed (in material)
Of course, n > 1 for all physical materials

I N >N

M sparse

Consider boundary admitting incident (i)

and transmitted (t) rays
Snell’s law says that, at this boundary

sint;

sinf;
or
n; sin 6; = 1 sin O
(actually, n depends on A, causing dispersion)

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 15

Backward Ray Tracer Pseudo-Code

// Shade() continued

if (object reflective) {
Radiance rRefl;
Ray rRay = reflection ray
rRefl = Trace (ShadeP, rRay, depth + 1)
r += rRefl * specular coefficient

}

if (object transparent) {

Ray tRay = refraction ray

if (not total internal reflection) {
Radiance rRefr;
rRefr = Trace (ShadeP, tRay, depth + 1)
r += rRefr * transmission coefficient
}

else {
// ... see discussion of TIR

}

// return aggregate radiance
return r;
} // Shade

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 14

Snell’s law

| Nt > N;

N 8

M sparse

Qualitatively:
Consider rays traveling from a sparse medium
(above) into a denser medium (below)
What happens as ny — oo?

0 = sin_l(@ sin 6;)
it

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 16

Snell’s law Computing Refraction Ray (Heckbert, 1990; Glassner 1994)

Consider rays traveling from a denser medium N
(below) into a sparser medium (above) |

............ I
£ Ny >N
) 8;
T Ni >Nt e e e e

sparse

Decompose I into components I| and I” w.rt. N

Total internal reflection at critical angle 0. I, = Nsin6; ;1) = Ncost;
™

1

sin @ = (

Construct M L N, in plane of I, N:

M = (Ncosb; —I)/sinb;

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 17 MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 18

Refraction Ray Computing Refraction Vector

Want to express T in terms of cosf; = N - I
. sinfy .

Plug in ﬁ = %, collect:

T = —ﬂ(l — cos §;N) — N cos 6;

it
_ _&I + N(m cos §; — cos 6t)
Nt Tt

Express cos ¢ in terms of cos 6;:

cos @y = |1 — sin’ 6y

Decompose T into components T | and T“ wrt. N
(know that [T | | = cos by, |'T)| = sin)

-2
T =T, +T = 11— (") sin2g,
= M sin 6; — N cos b; th
sin 6y _ _ (M 29,
— —Sinai(I—cosél-N) — Ncos by (m) (1 — cos* ;)

KDOWHI I: N: 67,7 Th, 77n
Solve for 6, plug in to find T
But: computationally inefficient

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 19 MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 20

Computing Refraction Vector

Plugging it all in:

Revised Backward RT Pseudo-Code

Want to avoid spending many cycles for little radiance

N Parameter maxdepth has no notion of radiance
yan Trace takes an additional parameter, weight
f Nt > N; . .
NG e We define a new global: float minweight
' = global int maxdepth = d; // trace only d bounces, or
L 8, T global float minweight = w; // until attenuation exceeds w
L:i/‘T RayTrace (resolution, view frustum) {
b For each raster y
For each pixel x
E = ray from eye through pixel x, y
FrameBuffer[x] [y] = Trace (eye, E, 1, 1.0)
m; U/ m; 2 } // RayTrace
T=—"T+N|"cosf; — 1— () (1 —cos?b,)
Uy Uy U
Eliminating cosines:
)) .9
T=-"T1+N"N-1- 1 - ™ 1-(N 1?2
Nt Mt Nt

What if expression under radical is negative?

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11)

Backward Ray Tracer Pseudo-Code

Modified definition of Trace:

Radiance Trace (Point R, Ray D,
int depth, float weight) {
Hit *hit = RayCast (R, D);
if (hit)
return Shade (hit->object, D, hit->P,
hit->N, depth, weight)
else
return Background (R, D)
} // Trace

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11)

Page 21 MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 22

Revised Shade() Pseudo-Code

// Shade obj surface at point ShadeP, normal ShadeN,
// as seen along direction Along
Radiance Shade (Object obj, Ray Along,
Point ShadeP, Vector ShadeNl,
int depth, float weight) {
... // same as previous pseudo-code

// conditionally spawn reflection ray
if (obj->k_s * weight >= minweight) {
Ray rRay = reflection ray
radiance += obj—>k_s
* Trace (ShadeP, rRay,
depth + 1, obj->k_s * weight)

// conditionally spawn transmission ray
if (obj->k_t * weight >= minweight) {
Ray tRay = refraction ray
if (not total internal reflection)
radiance += obj->k_t
* Trace (ShadeP, tRay,
depth + 1, obj—>k_t * weight)

return radiance;
} // Shade

Page 23 MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 24

Call Stack

kSl

oy
A
source

kSZ

Trace (R, D, 1, 1.0);
Shade (object, D, R’, N1, 1, 1.0) // 1st mirror
// radiance += k_s1 * Trace (R’, D’, 2, k_s1)
tmp = Trace (R’, D’, 2, k_sl)
Shade (object, D’, R’’, N2, 2, k_s1) // 2nd mirror
radiance += k_s2 * £ (D’, R’’, N2, src)

return radiance L; // k_s2 * ... src

radiance += k_sl1 * L;
return radiance; // k_s2 * k_sl * ... src
return radiance; // k_s2 * k_sl * ... src

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 25

Recap: Ray Tracer Components

Sample generator
One eye-ray per pixel
(You will do antialiasing in Asst 6B)
Intersection finder
Workhorse function RayCast
Later in course, discuss acceleration techniques
Shader, Secondary Ray generator
Radiance Aggregation (base case)
Shadow (uses RayCast — how ?)
Reflection
Refraction

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 27

Ray Spawning / Termination

Termination conditions:

Ray leaves the scene

maxdepth exceeded

minweight arises from multiple reflections
Another kind of “termination”:

Rays that are never spawned!
When might these criteria work poorly?

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 26

Appendix: Physical Units for Ray Tracing

From radiometry, measurement of EM energy (distinct

from photometry, visual sensation of EM energy)
Radiance L:

[POWER] / ([SRC AREA] [RCVR STERADIAN])
“Power per unit projected area perpendicular

to the ray per unit solid angle

in the direction of the ray”

TOTAL EXITANT POWER POWER _ papiosity ——F2WER - pabIANCE
AREA AREA STERADIAN
RECEIVER
SOURCE AS SEEN FROM SOURCE

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 28

Radiance Propagation

Consider two virtual spheres of radius r1, 9
centered at differential source element dA, and
the patches Rq, Rg defined on them by dw

Power flowing through R is Pj, through Ra is P,
P P
Aldwl AQd(,dz
How are Lj and L9 related?

Ly

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 29

Response of a Sensor due to Radiance

Consider a small exposure meter whose field of view
impinges on a large, uniformly illuminated surface
Sensors: retinal cells; film grains; CCD elements...

Aperture Sensor

(after Hanrahan, 1993)

What is total POWER impinging on sensor?
Proportional to total surface area visible to sensor
Proportional to solid angle subtended by sensor!

(this is just fraction of energy received by sensor!)

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 31

Radiance Propagation

Clearly P1 = PQ; A1 = A2 = dA; dwl = dLU2

Ly

= dAder dAdws 2
Radiance is constant along a ray!

(What does this assume about propagation medium?)
Analogous derivation for fixed-size receiver

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 30

Response of a Sensor due to Radiance

Once again, radial dependence cancels; conclude:
Sensor response proportional to surface radiance!

Aperture Sensor

(after Hanrahan, 1993)

Thus, for two reasons:

RADIANCE constant along a ray

sensor response proportional to RADIANCE
RADIANCE is the quantity that should

be associated with a propagating ray!

MIT 6.837 Computer Graphics Thursday, 14 October 1999 (L11) Page 32

