Lecture 10: Tuesday, 12 October 1999 Scan Conversion and Visibility

Reminders: Hidden surfaces eliminated at each pixel

Asst 4 Exhibition — Inventor Scenes scanline algorithms

Asst 5 (ivscan) due Friday 5pm z buffering

Asst 6A (Ray Casting) out today Shading computed many times at each pixel
Today Each pixel stores only constant state

Ray Casting (Prelude to Ray Tracing)

Thursday
Recursive Ray Tracing
Asst 6B (Ray Tracing) out
This is the last assignment !
Next Week:
Tuesday: Final Project Brainstorming

Start thinking about project ideas, teams ! Limitations: o
Thursday: Special Guest Lecture Restricted to scan-convertable primitives
Solid Modeling Requires polygonalization of objects

Causes faceting, shading artifacts
Effective resolution h/w dependent (aliasing)
No handling of shadows, reflection, transparency

MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 1 MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 2
Ray Casting for Visibility Ray Casting for Visibility
Object Cast (Point R, Ray D) { f\d\&uﬂt&geS?
find minimum £>0 such that R + t D hits object Smooth variation of normal, silhouettes

if (object hit)
return object

else
return background object
} // Cast
A eye
"" / . . .
\;\:\—\J\ / Generality: can render anything with
which a ray can be intersected !
Compactness of representation
- Disadvantages?
FrameBuffer Render (frustum, viewport) { Time Complexity (N objects, R pixels)
For each raster y Wasted work at “background” pixels

FOE zaigypz)r{:i Zye through pixel x, y Why aren’t ray casters usually found in h/w?
obj = Cast (eye, E);
FB[x] [y] = obj->color

return FB

} // Render by Ray Casting

MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 3 MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 4

Ray — Scene Intersection

Fundamental operation in ray tracing:
Given: a ray, and a scene of transformed primitives
Determine:
Closest ray-primitive intersection P, if any
Primitive’s surface normal N at point P
eye

[y
|

Typically do this by computing ¢ for each
intersection, and retaining t,,,;y,, the least ¢

MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L.10) Page 5

Intersection in World Space

Option 1: transform primitive into world space
Reexpress it there, then perform intersection

world space X

object space

Polygon: vertices as Mp, plane as HM !
Polyhedra: collections of polygons

Quadrics: transform as MQM 1
But: quadric class is not invariant !

Torii, spline surfaces, other primitives: harder.
Each requires a different transformation rule

MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 7

Ray — Primitive Intersection

First concentrate on individual primitives
Ray is typically generated in world space
Primitives defined in object space, then transformed

object space world space X

What are our options?

MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L.10) Page 6

Intersection in Object Space

Option 2: transform ray into object space!
Intersections straightforward, even trivial there

Ros
/ Dos

object space world space X

How do we transform the ray’s origin and direction?
Careful: must deal with isotropic, anisotropic scaling

MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 8

Ray Transformation Direction vector transformation

Know how points transform: p’ = Mp What’s going on?
Thus, transforming ray origin is easy “Endpoints” of ray have equal translations
V=M - Mp’ Equivalently: ray is a pure direction
|v| ’ " So: transform both ends, subtract results

M v is not correct !
Y,

But how to transform the ray direction ?
Clearly not as a point [see example, T(1,1,0)] Equivalent to ignoring translation part of M

My My My T,
My My My T,

M= My Mz My T,
My My Mgz My
Instead, use
My Mis Mz 0
M — My My Mo 0O
Mz Mz M3 0O

My Mg Mgz My

Again: can treat direction (a, b, ¢) as homogeneous (a, b, ¢, 0)
[Inventor supplies this as M.multDirMatrix (v, v')]

MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L.10)

Page 9 MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 10

Ray Scaling — Transforming ¢ Primitive Intersection

Problem: ray might be scaled anisotropically by M Now we can work in object space, then
Ok; can still compute intersections in object space
(Unit length of N often comes in handy...)
How to get tyyg from tpng?

revert to world space to return values
Wish to compute closest intersection point,

and normal at that point (if any intersection)
Consider ray-primitive intersection, with primitives

object space

Two options:
Don’t normalize Dgg; compute tpg
Then| |
Must handle unnormalized vectors, but xform easy

Normalize Dgg; compute g
Then‘ ‘ !

Axial parallelepiped; sphere of radius r; polygon

Need handle only normalized vecs, but xform harder

MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 11 MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 12

Ray-Parallelepiped Intersection

«R+tD

y=+hi2

y=-h/2

e

X=-W2 x=+w/2

static Vector hats[3] = { xhat, yhat, zhat };
// ray is of form R + t D; assign min t as thit; normal N
float t1, t2, tmin = 0, tmax = HUGE; // from <math.h>
Vector extent = Vector (width / 2, height / 2, depth / 2);
// intersect ray with x, y, z ‘‘slabs’’ (k = 0, 1, 2)
for (int k = 0; k < 3; k++) {
if (D[k] !'=0.) {
t1 = (-extent[k] - R[k]) / D[k]; // plane x_k = -dx_k
t2 = (extent[k] - R[k]) / D[k]; // plane x_k = +dx_k
tmin = fmax (tmin, fmin (t1, t2)); // intersect [tmin..
tmax = fmin (tmax, fmax (t1, t2)); // tmax], [t1..t2]
if (tmax <= tmin) return FALSE; // no intersection
else if (tmin == t1) N = -hats[k]; // hit x_k = -dx_k
else if (tmin == t2) N hats[k]; // hit x_k = +dx_k
} // if
}// k
thit = tmin; // return parameter of closest intersection
return TRUE;

MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 13

Ray-Sphere Intersection

z

Y
o G
R

\—

This is just a quadratic at® + bt + ¢ = 0, where

a=1
b=2D-R
c=R-R-
With discriminant
d = b2 — dac
and solutions
—b+d
te=—
2a

Three cases, depending on sign of b2 — 4ac
Which root (¢4 or ¢_) should you choose?

MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 15

Ray-Sphere Intersection

el

Ray equation (explicit): =R +tD, with |[D| =1
Sphere equation (1mp1101t). P P =12
Intersection means both are satisfied, so

0=P.-P—¢?

= (R+tD) (R+tD)—r?
=R-R+2D -R+#D?—
=£2+20D-R+R-R —1?

MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 14

Ray-Polygon Intersection

Options:
Project polygon to shadow on principal plane
Choose principal plane
Project 3D edges to this plane
Solve 2D inclusion problem
Intersect ray with support plane
Compute intersection point
Express 3D edges as plane constraints

Solve 3D inclusion problem
Tradeofts?

MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 16

Aliasing Super Sampling

So far, both rasterization and raycasting We can average multiple samples per pixel:
compute one color per pixel:

Look closely at:

Notice “jaggies” at object boundaries
Why do they happen ?
Can we do better? How?

MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 17 MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (1.10) Page 18

More Antialiasing Placing Samples

Important when rendering high-frequency textures:

Demos: Asst 4 Exhibition; ivray (Damian)

More about this in L15 (28 Oct, Justin Legakis)

MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 19 MIT 6.837 Computer Graphics Tuesday, 12 October 1999 (L10) Page 20

