Lecture 8: 5 October 1999

Administrative:
Asst 4 (scene modeling) due Friday 5pm
Today:
Inventor note — modifying DEF’ined objects
Polygon Scan Conversion (H&B §14.5)
Hidden Surface Elimination
Assignment 3 (uid object exhibition)
Assignment 5 (ivscan) demo, handout
Thursday:
Generalized Polygon Clipping
Generalized Back-Face Removal

Q: “How can I instance objects in my own color?”
A: “You can’t.” (Fundamental Inventor limitation.)
Workaround: edit object (e.g. as ascii):

sed < foo.iv > bar.iv
-e "s/diffuseColor 0.8 0.7 0.2
/diffuseColor 0.3 0.6 0.8/g"

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 1

Visibility resolution with full Z-buffer

Keep an array of depth values, one per pixel

tF |+ |+

N N B R

B S A R T

Ea A I S A B N

L I I o I A S B

+ |+ +‘+‘+‘+‘+‘+‘+‘+‘+‘+ +

L 2 T B A I N B B I N

L e e A R S N
L I e B e e I A S S A

++++++++++++++‘+

At start of frame, all depths initialized to “far away”
Now, scan convert each polygon independently
Write color value conditionally at each pixel:
If 2 < Zgoreq then

update stored color

Zstored = %
Advantages?
Simple; Running time function only of screen area

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 3

Hidden-Surface Elimination

So far, have scan-converted only one polygon
If polygons overlap, must eliminate hidden portions

+

4-4-4-‘4-‘4-‘4-‘4-‘4-‘4- + |+

k|t

+ |+ || F |+ +

L I S B I

C A I S B B

F e I o S B B S B R B A

N AR R R A R RS

L I B e e I e I I R
L I e e A I S N

-
N
N
N
N
N
N
N
N
-
-

++++++++++++++‘+

FillSpan() bottomed out to setPizel(z,y,)
Now, must arbitrate among competing spans
Several methods:
Full-frame z buffer
No z buffer — maintain ASL (Active Span List)
Single-span z buffer — intermediate choice

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 2

Z-buffer Memory Requirements

What are framebuffer memory requirements?
1024 x 1280 = 1} Mpixels
R, G, B, a channels 8 bits / pixel = 4 bytes / pixel
Depth (z) values 32 bits / pixel = 4 bytes / pixel
Double-buffering doubles storage requirement
Total: [5Mb (RGBa) + 5Mb (z)] x2 = 20 Mb!

First framebuffer (512) cost $80,000 (late '60s)!

Even today, z-buffer, logic runs ~$50+

[s there any reason not to use a z-buffer?

Today, we’ll assume no z-buffer
(Classical techniques, lots of literature
Introduction to visible-surface algorithms
Later in term: object-space visibility

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 4

Scan-line Hidden Surface Algorithms

“Sweep” horizontal scanline downward over scene

Assume polygons are convex
Exactly | | edges at each scanline
Each polygon has IN/OUT flag (used later)
Algorithm Invariants:
Maintain portion of scene intersected by current
scanline, ordered by x intercept of edges
Output all pixels on scanline before proceeding

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 5

Initialization (cont.)

0-‘0-‘0- +

Event list of buckets, one per scan line
Event: start/finish of an edge (i.e., vertex)
occurs within interval
In each bucket, events sorted by x coordinate
Active edge list (AEL): initially empty
(Will be incrementally maintained to store
all edges intersecting scanline, ordered by x)

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 7

Initialization

Precompute: Edge Table (ET), one entry per scan line

7y

depth, Aseon

¥ ¥ Y 0 ne

Each entry is a linked list of EdgeRecs, sorted by 2,
Yend: Y of top edge endpoint
Tint, Ag: current z intersection, delta wrt y
coleurr, Aeop: current color, delta wrt y
Zeurr, Az current depth, delta wrt y
Pointer to polygon from which edge came
(for matching edges across shared vertices)
next: pointer to next record, or NULL
At BOT, insert all non-horizontal edges into ET

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 6

When Does AEL Change State?

y+1

When a vertex is encountered
I.e., when an edge begins or ends
All such events pre-stored in event list!
When two edges change order along a scanline
I.e., when edges cross each other!
How to detect this efficiently?

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 8

Processing a Scanline 1

Y2
Y1

T
LR N
O
|| Mie]e|+]+
LR N
L N N N N N
LR N

||t

Add any edges which start in [y, y + 1)
How can z, y pre-sorting be exploited ?
Traverse AEL, left to right:
When edge encountered, toggle poly’s IN/OUT flag
If entering, scan for matching edge (how?)
Determine visible polygon at each pixel center
1) Interpolate z along each span, & find min; or...
2) Render each span into one-raster z buffer; or...
3) Use more elegant ASL method (in a minute)
Extract interpolated color from visible span
Write winning color using setPixel(zx,y, C)

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 9

Raster Filling Without a z Buffer:

Use Active Span List (ASL)

= e

poly span

TT———

pixel centers

z_ndc =+1

Completely analogous to AEL ...
Except one dimension lower !

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 11

Processing a Scanline 2

Y3

Y2
Y1

L I o O S N - S O I S O I B S S A I

A3
**4+++‘)§4+++++++++¢-+

For each edge in AEL:
If edge ends in (y — 1,9], |
Otherwise, for next y: update z, color, 2z
Once after each scanline is processed:
Sort AEL by x (mostly sorted, so...)
Increment scanline variable y

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 10

Algorithm Summary:

Initialize Polygons, ET, AEL

For each scanline y
Update AEL (insert edges from ET[y])
Assign raster of pixels from AEL
Update AEL (delete, increment, resort)

Clean up data structures

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 12

Scan Conversion Pitfalls

Careful: singularities!

Omitted pixels (gaps)

Twice-filled pixels (problem when blending)

Sliver polygons (aliasing)

Horizontal edges (consistent coverage rule)
Each polygon should own certain pixels:

don’t want pixels owned by multiple polygons

don’t want to “drop” pixels

polygon owns all pixels centered in poly interior

Shadow Rule

“Shadow” Rule: polygon owns boundary pixel unless:

Edge is horizontal, and on “top” of poly
Edge is right-facing (normal has ng > 0)
Pixel at upper extremum of polygon

Still must handle special case of shared vertices!

polygon owns no pixels centered outside poly interior

MIT 6.837 Computer Graphics Tuesday, 5 October 1999

Spatial Coherence

Exploit spatial problem structure for efficiency
Across scanlines: edge, polygon coherence
Edge intersects scanline — likely that
edge will intersect subsequent scanline
Within scanline: span, depth coherence
Other kinds of coherence?

MIT 6.837 Computer Graphics Tuesday, 5 October 1999

Page 13 MIT 6.837 Computer Graphics Tuesday, 5 October 1999

Extensions

Non-convex polygons
Multiple active intervals per polygon
Non-simple (i.e., self-intersecting) polygons
More general “inside-outside” rule

S I Y

¢¢¢¢¢‘¢¢¢¢¢¢‘¢v

+| 4|+ 4‘0‘4‘#‘4‘#‘0 ¢‘¢‘¢

S
|||+] H
LN N N N

k
.
A
:
.
:
.

Tttt

+
+
+
+

More sophisticated visibility maintenance
Use of coherence to defer resorting
Writing fast, robust scan-converter

Page 15 MIT 6.837 Computer Graphics Tuesday, 5 October 1999

Page 14

is hard!

Page 16

Assignment 4: ivscan Pixels outlined:

InVentOI‘ lnput: File Edit Viewing Selection Editers Manips Lights

File Edit Viewing Selection Edifors Manips Lights

Robe Rty I

Rotx Roty Dolly
MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 17 MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 18
Edges outlined: Scan conversion [calls to setPixel()]:

File Edit Viewing Selection Edifors Manmips Lights File Edit Viewing Selection Fditors Manlps Lights

Rots Rty o] Rotx_Roty | Dally

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 19 MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 20

Resulting image:

g Selection Edifors Manips Lig)

Roo Rty o o]

MIT 6.837 Computer Graphics Tuesday, 5 October 1999

Scan conversion [calls to setPixel()]:

Fite Edit Viewing Selection Editers Manips Lights

Rote_foty [Ir———m|

MIT 6.837 Computer Graphics Tuesday, 5 October 1999

Page 21

Page 23

Another Example

Edit \iewing Selection Editers Manips Lights

Fife
=

Rotx Roty (i | Dally

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 22

Screen Space Depth Interpolation

Pitfall of naive (eye-z) depth interpolation:

screen X

£ eyez e

This is what happens when you interpolate
Eye z in screen space

(Geometric equivalent of Gouraud flaw from L7)

How to correctly interpolate depth? Hints:
Work through homogeneous computation of z
Read through comments in ivscan source:

EdgeRec.h

ScanWrap.C

MIT 6.837 Computer Graphics Tuesday, 5 October 1999 Page 24

