Lecture 2: 14 September 1999

Notes from last time:
Please sign the circulating sign-up sheet
only if you haven’t already done so
Final projects:
Examples were meant to be inspiring !
Don’t confuse animations with video
Substantive design, implementation experience
Administrative stuff:
Linear Algebra review session
Tomorrow (W), 7-9pm in 34-101 (Damian)
Textbook (Hearn & Baker)
Book is not available at Coop (my mistake, sorry)
Available at Quantum Books now ($57.60, no tax)
Barnes & Noble (bn.com) quotes $63.75 next-day
Copies on reserve at LCS reading room
Assignment 1 (web signup, etc.) due this Friday
Make sure to make your page readable via NFS:
% chmod a+r homepage.html
Asst. 2 (2D Segment processing) due next Friday

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 1

Framebuffer Model

Raster Display: 2D array of picture elements (pixels)
Pixels individually set/cleared (greyscale, color)
Window coordinates: pixels centered at integers

h-tf[+ [+]+]+]+

?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 3

Today: 2D Segment Processing
Rasterization, Clipping
H&B §3.1-3.6; §6.5-6.7

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 2

2D Scan Conversion

Geometric “primitive:” specified or rendered object
2D: point, line, polygon, circle...
(3D: point, line, polyhedron, sphere...)

Challenge: primitives are continuous; screen is discrete
Solution: compute & display discrete approximation

+‘++++++++++++

Scan Conversion: algorithms for efficient generation
of the samples comprising this approximation

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 4

Scan Converting 2D Line Segments Algorithm Design Choices

Given: For m = dy/dx, assume: 0 < m < 1 (Why?)
Segment endpoints (integers x1, y1, 9, Y) Exactly one pixel per column (Why?)
Framebuffer access via setPizel(x,y) fewer = disconnected

Identity: more = “too thick”

Set of x,y for which to call setPizel(z,y) “connectedness” with just 1 pixel per column
Le., the set of pixels to “light up” for segment Note: brightness can vary with slope

How could we compensate for this?
Answer: antialiasing

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 5 MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 6
Naive algorithm Efficiency

First attempt: simply compute y as a function of x Computing y values is expensive (how?)

(Conceptually: move vertical scan line from z1 to) Observe: y += m at each z step (m = dy/dx)

First example of spatial coherence

e Fixpress y as function of x: How?
Incremental algorithm:

Start at (x1, y1)
e Round y (Why?) Thereafter, increment y value by slope m
. Note: z integer, but y floating point

e Call setPizel (z, md(y(z)))

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 7 MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 8

Bresenhams “DDA”

DDA = Digital Differential Analyzer
Select pixel vertically closest to segment

Justification: intuitive, efficient
Also: pixel center always within 0.5 vertically
Is selection criterion well-defined ?

What other rules could we have used?

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 9

Bresenham Step

Which pixel to choose: E or NE?

. . NE‘. . . . NE‘.
Me Me
/E./ —Fe Ee

Choose E' if segment passes below or through M
Choose N E' if segment passes above M
Use implicit equation for underlying line L:
F(z,y) =0, where F(z,y) =y — mxz — b (Why?)
F positive above L, zero on L, negative below L

What is the meaning of the value of F(z,y) 7
Define an error term e as e = —F(z,y)
choose NEife| ~ |: otherwise choose FE.

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 11

Bresenham Segment Algorithm

Another scan line algorithm
Same output as naive & incremental algorithms
Observation: after pixel P at (zp,yp)

next pixel must be either £ or NE

Why?

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 10

Using the Error Term

Compute €’ under (unconditional) z increment:

g

-

o

—F(zp,yp)
—yp+mzp+b
—F(zp+1,yp)
—yp+m(zp+1)+b
—yp+mzp+b+m

1]
Under what condition should we choose E?
Under what condition should we choose N E?

m\

\
// le <o0. e>05
.

-

In this case, how should e’ be computed?
So: initialize x, y, e; loop over x1..x9, plot, update

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 12

Bresenham Implementation

We've sketched case in which 1 < z9, m <=1
This is Assignment 2, part A (demo, Damian).
Required:

Implement using integer arithmetic only
Optional:

Handle all eight octants

Ditto, but do so using one for loop

Minimize the total number of Java statements

Generalize to circles, conics, etc.

MIT 6.837 Computer Graphics Tuesday 14 September 1999

2D Clipping

So far, assumed line segment lies within viewport
But, some vertices might be specified outside
Want geometry confined to clip region

Today: clip region is convex polygon

Most frequent case: clip rectangle
Tmin < T < Tmag

Ymin < Y < Ymaz
Clipping is the process of pruning geometric
primitives to the clip region

MIT 6.837 Computer Graphics Tuesday 14 September 1999

Page 13

Page 15

Circle Scan Conversion

Circle of radius R centered at origin

Need generate pixels for 2nd octant only
vv‘
B

Why use the second octant?
Slope progresses from 0 to -1
Analog of Bresenham Segment Algorithm

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 14

Clipping Approaches

1) Scan convert elsewhere; copy bitmap to viewport
2) Scissor: clip on the fly during scan conversion
3) Clip analytically: revise input geometry
Today: analytical clipping of
Points
Segments
Later:
Wireframe polygons
Filled polygons

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 16

Point Clipping

Idea: retain point iff it is inside clip region

Clip region described by 4 inequalities:

T < Tmazx
Y 2 Ymin
Y < Ymax

Generalization to arbitrary convex regions?

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 17

Brute-Force Clipping

Classify endpoints to identify relevant case

Compute intersection with each clip region edge
(Identify 0, 1, or 2 clipped points)

How to compute intersection points?

Express segment parametrically as function of ¢:

z = zo+ t(z1 —)
y = Yo+ t(y1 — Yo)

(What values does t take on?)
Plug in to expressions for clip boundaries:

Example: x = ,,;, yields t =
Check t to make sure it is inside [0, 1]
(Careful: what if segment parallel to boundary?)
Brute force algorithm is expensive

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 19

Segment Clipping: Cases

Output must be a single segment, or vacuous (why?)

—

/ //
L e
N
Both endpoints in clip region? Trivial accept.
One endpoint in clip region, one endpoint outside?
Must exist intersection point p with edge of
clip region; replace outside endpoint with p
Otherwise, both endpoints outside (two cases):
No intersection with clip region
Absorb segment (report “external”)
Intersections with two edges of clip region

Output segment between intersection points
Handle degeneracies (e.g., corner crossing)

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 18

Cohen-Sutherland Algorithm

Reduces number of intersection computations
Works for any convex polygonal clip region
Observation: can often trivially reject segment (how?)

Strategy: classify each endpoint with respect
to T,B,R,L half-planes (1 bit per plane):
[v > Ymaa] (outside Top)
[y < Ymin] (outside Bottom)
[> Zmaz] (outside Right)
[< Zyinl (outside left)
Easy: each bit is sign bit of difference

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 20

Cohen-Sutherland Algorithm Cohen-Sutherland Algorithm

If neither trivial reject nor accept, then:
There is at least one 1 bit
Each 1 has corresponding 0 at other endpoint
Thus each 1 implies crossed boundary!
Thus, if half-plane H’s bit = 1 at endpoint A
A outside H, other endpoint inside H
Clip endpoint A to halfplane H, replace A

Concatenate TBRL bits into 4-bit “outcodes”
Trivial accept iff both outcodes are zero
Trivial reject iff some bit 1 for both endpoints
Otherwise, what do we know about segment?

Idea: Clip segment in order Left, Right, Bottom, Top
After each clip, recompute appropriate outcode
Continue clipping until trivial accept/reject

(Must get one or the other, eventually)

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 21 MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 22

Cohen-Sutherland Implementation

We’ve sketched OutCode and ClipSegment
This is Assignment 2, part B (demo, Damian).
Required:

Implement using floating point

Report cliptype as internal, clipped, external
Optional:

Minimize the total number of Java statements

Generalize to convex/concave polygons

Generalize to convex/concave clip regions !

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 23

