Lecture 2: 14 September 1999

Notes from last time:
Please sign the circulating sign-up sheet
only if you haven’t already done so
Final projects:
Examples were meant to be inspiring !
Don’t confuse animations with video
Substantive design, implementation experience
Administrative stuff:
Linear Algebra review session
Tomorrow (W), 7-9pm in 34-101 (Damian)
Textbook (Hearn & Baker)
Book is not available at Coop (my mistake, sorry)
Available at Quantum Books now ($57.60, no tax)
Barnes & Noble (bn.com) quotes $63.75 next-day
Copies on reserve at LCS reading room
Assignment 1 (web signup, etc.) due this Friday
Make sure to make your page readable via NFS:
% chmod a+r homepage.html
Asst. 2 (2D Segment processing) due next Friday
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Framebuffer Model

Raster Display: 2D array of picture elements (pixels)
Pixels individually set/cleared (greyscale, color)
Window coordinates: pixels centered at integers
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Today: 2D Segment Processing
Rasterization, Clipping
H&B §3.1-3.6; §6.5-6.7
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2D Scan Conversion

Geometric “primitive:” specified or rendered object
2D: point, line, polygon, circle...
(3D: point, line, polyhedron, sphere...)

Challenge: primitives are continuous; screen is discrete
Solution: compute & display discrete approximation

+‘++++++++++++

Scan Conversion: algorithms for efficient generation
of the samples comprising this approximation
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Scan Converting 2D Line Segments Algorithm Design Choices

Given: For m = dy/dx, assume: 0 < m < 1 (Why?)
Segment endpoints (integers x1, y1, 9, Y) Exactly one pixel per column (Why?)
Framebuffer access via setPizel(x,y) fewer = disconnected

Identity: more = “too thick”

Set of x,y for which to call setPizel(z,y) “connectedness” with just 1 pixel per column
Le., the set of pixels to “light up” for segment Note: brightness can vary with slope

How could we compensate for this?
Answer: antialiasing
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Naive algorithm Efficiency

First attempt: simply compute y as a function of x Computing y values is expensive (how?)

(Conceptually: move vertical scan line from z1 to ) Observe: y += m at each z step (m = dy/dx)

First example of spatial coherence

e Fixpress y as function of x: How?
Incremental algorithm:

Start at (x1, y1)
e Round y (Why?) Thereafter, increment y value by slope m
. Note: z integer, but y floating point

e Call setPizel (z, md(y(z)))
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Bresenhams “DDA”

DDA = Digital Differential Analyzer
Select pixel vertically closest to segment

Justification: intuitive, efficient
Also: pixel center always within 0.5 vertically
Is selection criterion well-defined ?

What other rules could we have used?
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Bresenham Step

Which pixel to choose: E or NE?

. . NE‘. . . . NE‘.
Me Me
/E./ —Fe Ee

Choose E' if segment passes below or through M
Choose N E' if segment passes above M
Use implicit equation for underlying line L:
F(z,y) =0, where F(z,y) =y — mxz — b (Why?)
F positive above L, zero on L, negative below L

What is the meaning of the value of F(z,y) 7
Define an error term e as e = —F(z,y)
choose NEife| ~ |: otherwise choose FE.
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Bresenham Segment Algorithm

Another scan line algorithm
Same output as naive & incremental algorithms
Observation: after pixel P at (zp,yp)

next pixel must be either £ or NE

Why?

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 10

Using the Error Term

Compute €’ under (unconditional) z increment:

g

-

o

—F(zp,yp)
—yp+mzp+b
—F(zp+1,yp)
—yp+m(zp+1)+b
—yp+mzp+b+m

1]
Under what condition should we choose E?
Under what condition should we choose N E?

m\

\
// le <o0. e>05
.

-

In this case, how should e’ be computed?
So: initialize x, y, e; loop over x1..x9, plot, update
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Bresenham Implementation

We've sketched case in which 1 < z9, m <=1
This is Assignment 2, part A (demo, Damian).
Required:

Implement using integer arithmetic only
Optional:

Handle all eight octants

Ditto, but do so using one for loop

Minimize the total number of Java statements

Generalize to circles, conics, etc.
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2D Clipping

So far, assumed line segment lies within viewport
But, some vertices might be specified outside
Want geometry confined to clip region

Today: clip region is convex polygon

Most frequent case: clip rectangle
Tmin < T < Tmag

Ymin < Y < Ymaz
Clipping is the process of pruning geometric
primitives to the clip region
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Circle Scan Conversion

Circle of radius R centered at origin

Need generate pixels for 2nd octant only
vv‘
B

Why use the second octant?
Slope progresses from 0 to -1
Analog of Bresenham Segment Algorithm
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Clipping Approaches

1) Scan convert elsewhere; copy bitmap to viewport
2) Scissor: clip on the fly during scan conversion
3) Clip analytically: revise input geometry
Today: analytical clipping of
Points
Segments
Later:
Wireframe polygons
Filled polygons
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Point Clipping

Idea: retain point iff it is inside clip region

Clip region described by 4 inequalities:

T < Tmazx
Y 2 Ymin
Y < Ymax

Generalization to arbitrary convex regions?
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Brute-Force Clipping

Classify endpoints to identify relevant case

Compute intersection with each clip region edge
(Identify 0, 1, or 2 clipped points)

How to compute intersection points?

Express segment parametrically as function of ¢:

z = zo+ t(z1 — )
y = Yo+ t(y1 — Yo)

(What values does t take on?)
Plug in to expressions for clip boundaries:

Example: x = ,,;, yields t =
Check t to make sure it is inside [0, 1]
(Careful: what if segment parallel to boundary?)
Brute force algorithm is expensive
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Segment Clipping: Cases

Output must be a single segment, or vacuous (why?)

—

/ //
L e
N
Both endpoints in clip region? Trivial accept.
One endpoint in clip region, one endpoint outside?
Must exist intersection point p with edge of
clip region; replace outside endpoint with p
Otherwise, both endpoints outside (two cases):
No intersection with clip region
Absorb segment (report “external”)
Intersections with two edges of clip region

Output segment between intersection points
Handle degeneracies (e.g., corner crossing)
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Cohen-Sutherland Algorithm

Reduces number of intersection computations
Works for any convex polygonal clip region
Observation: can often trivially reject segment (how?)

Strategy: classify each endpoint with respect
to T,B,R,L half-planes (1 bit per plane):
[v > Ymaa] (outside Top)
[y < Ymin] (outside Bottom)
[ > Zmaz] (outside Right)
[ < Zyinl (outside left)
Easy: each bit is sign bit of difference
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Cohen-Sutherland Algorithm Cohen-Sutherland Algorithm

If neither trivial reject nor accept, then:
There is at least one 1 bit
Each 1 has corresponding 0 at other endpoint
Thus each 1 implies crossed boundary!
Thus, if half-plane H’s bit = 1 at endpoint A
A outside H, other endpoint inside H
Clip endpoint A to halfplane H, replace A

Concatenate TBRL bits into 4-bit “outcodes”
Trivial accept iff both outcodes are zero
Trivial reject iff some bit 1 for both endpoints
Otherwise, what do we know about segment?

Idea: Clip segment in order Left, Right, Bottom, Top
After each clip, recompute appropriate outcode
Continue clipping until trivial accept/reject

(Must get one or the other, eventually)
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Cohen-Sutherland Implementation

We’ve sketched OutCode and ClipSegment
This is Assignment 2, part B (demo, Damian).
Required:

Implement using floating point

Report cliptype as internal, clipped, external
Optional:

Minimize the total number of Java statements

Generalize to convex/concave polygons

Generalize to convex/concave clip regions !

MIT 6.837 Computer Graphics Tuesday 14 September 1999 Page 23



