The Graphics Pipeline: Clipping & Line Rasterization

Today: Clipping & Line Rasterization

- Portions of the object outside the view frustum are removed
- Rasterize objects into pixels

Framebuffer Model

- Raster Display: 2D array of picture elements (pixels)
- Pixels individually set/cleared (greyscale, color)
- Window coordinates: pixels centered at integers

2D Scan Conversion

- Geometric primitives
 (point, line, polygon, circle, polyhedron, sphere...)
- Primitives are continuous; screen is discrete
- Scan Conversion: algorithms for efficient generation of the samples comprising this approximation

Last Time?

- Ray Tracing vs. Scan Conversion
- Overview of the Graphics Pipeline
- Projective Transformations

Today

- Why Clip?
- Line Clipping
- Polygon clipping
- Line Rasterization

Framebuffer Model

```c
glBegin(GL_LINES)
glVertex3f(...) glVertex3f(...) glEnd();
```
Clipping problem

• How do we clip parts outside window?

Create two triangles or more. Quite annoying.

Also, what if the \(p_z \) is < \(eyez \)?

The Graphics Pipeline

• Former hardware relied on full clipping
 • Modern hardware mostly avoids clipping
 – Only with respect to plane \(z=0 \)
 • In general, it is useful to learn clipping because it is similar to many geometric algorithms

Full Clipping

"clip" geometry to view frustum

One-plane clipping

"clip" geometry to near plane
When to clip?

• Perspective Projection: 2 conceptual steps:
 – 4x4 matrix
 – Homogenize
 • In fact not always needed
 • Modern graphics hardware performs most operations in 2D homogeneous coordinates

\[
\begin{pmatrix}
 x * d / z \\
y * d / z \\
d / z \\
1
\end{pmatrix} =
\begin{pmatrix}
x \\
y \\
l \\
z / d
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1/d & 0
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
1
\end{pmatrix}
\]

• Before perspective transform in 3D space
 – Use the equation of 6 planes
 – Natural, not too degenerate
• In homogeneous coordinates after perspective transform (Clip space)
 – Before perspective divide (4D space, weird w values)
 – Canonical, independent of camera
 – The simplest to implement in fact
• In the transformed 3D screen space after perspective division
 – Problem: objects in the plane of the camera

Working in homogeneous coordinates

• In general, many algorithms are simpler in homogeneous coordinates before division
 – Clipping
 – Rasterization

Today

• Why Clip?
• Line Clipping
• Polygon clipping
• Line Rasterization

Implicit 3D Plane Equation

• Plane defined by:
 point p & normal n OR
 normal n & offset d OR
 3 points
• Implicit plane equation
 $Ax + By + Cz + D = 0$

Homogeneous Coordinates

• Homogenous point: (x, y, z, w)
 infinite number of equivalent homogenous coordinates:
 (sx, sy, sz, sw)
 \begin{align*}
 H &= (A, B, C, D) \\
 \text{Homogenous Plane Equation:} \\
 Ax + By + Cz + D = 0 & \rightarrow H = (A, B, C, D) \\
 \text{Infinite number of equivalent plane expressions:} \\
 sAx + sBy + sCz + sD = 0 & \rightarrow H = (sA, sB, sC, sD)
 \end{align*}
Point-to-Plane Distance

- If \((A,B,C)\) is normalized:
 \[d = H \cdot p = H^T p\]
 (the dot product in homogeneous coordinates)
- \(d\) is a **signed distance**
 - positive = "inside"
 - negative = "outside"

Clipping a Point with respect to a Plane

- If \(d = H \cdot p \geq 0\): Pass through
- If \(d = H \cdot p < 0\): Clip (or cull or reject)

Clipping with respect to View Frustum

- Test against each of the 6 planes
 - Normals oriented towards the interior
- Clip (or cull or reject) point \(p\) if any \(H \cdot p < 0\)

What are the View Frustum Planes?

\[
\begin{align*}
H_{\text{near}} &= (0, 0, -1, \text{near}) \\
H_{\text{far}} &= (0, 0, 1, \text{far}) \\
H_{\text{bottom}} &= (0, \text{near}, \text{bottom}, 0) \\
H_{\text{top}} &= (0, -\text{near}, -\text{top}, 0) \\
H_{\text{left}} &= (-\text{left}, \text{near}, 0, 0) \\
H_{\text{right}} &= (-\text{right}, -\text{near}, 0, 0)
\end{align*}
\]

Recall: When to clip?

- Before perspective transform in 3D space
 - Use the equation of 6 planes
 - Natural, not too degenerate
- In homogeneous coordinates after perspective transform (Clip space)
 - Before perspective divide (4D space, weird \(w\) values)
 - Canonical, independent of camera
 - The simplest to implement in fact
- In the transformed 3D screen space after perspective division
 - Problem: objects in the plane of the camera

Questions?

- You are now supposed to be able to clip points wrt view frustum
- Using homogeneous coordinates
Line – Plane Intersection

- Explicit (Parametric) Line Equation
 \[L(t) = P_0 + t \cdot (P_1 - P_0) \]
 \[L(t) = (1 - t) \cdot P_0 + t \cdot P_1 \]
- How do we intersect?
 - Insert explicit equation of line into implicit equation of plane
 - Parameter \(t \) is used to interpolate associated attributes (color, normal, texture, etc.)

Segment Clipping

- If \(H \cdot p > 0 \) and \(H \cdot q < 0 \)
 - clip \(q \) to plane
- If \(H \cdot p < 0 \) and \(H \cdot q > 0 \)
- If \(H \cdot p > 0 \) and \(H \cdot q > 0 \)
- If \(H \cdot p < 0 \) and \(H \cdot q < 0 \)
Clipping against the frustum

- For each frustum plane H
 - If $H \cdot p > 0$ and $H \cdot q < 0$, clip q to H
 - If $H \cdot p < 0$ and $H \cdot q > 0$, clip p to H
 - If $H \cdot p > 0$ and $H \cdot q > 0$, pass through
 - If $H \cdot p < 0$ and $H \cdot q < 0$, clipped out

Result is a single segment. Why?

Questions?

- You are now supposed to be able to clip segments wrt view frustum

Is this Clipping Efficient?

- For each frustum plane H
 - If $H \cdot p > 0$ and $H \cdot q < 0$, clip q to H
 - If $H \cdot p < 0$ and $H \cdot q > 0$, clip p to H
 - If $H \cdot p > 0$ and $H \cdot q > 0$, pass through
 - If $H \cdot p < 0$ and $H \cdot q < 0$, clipped out

Is this Clipping Efficient?

- For each frustum plane H
 - If $H \cdot p > 0$ and $H \cdot q < 0$, clip q to H
 - If $H \cdot p < 0$ and $H \cdot q > 0$, clip p to H
 - If $H \cdot p > 0$ and $H \cdot q > 0$, pass through
 - If $H \cdot p < 0$ and $H \cdot q < 0$, clipped out

What is the problem?

The computation of the intersections, and any corresponding interpolated values is unnecessary.

Can we detect this earlier?

Improving Efficiency: Outcodes

- Compute the sidedness of each vertex with respect to each bounding plane ($0 = \text{valid}$)
- Combine into binary outcode using logical AND

<table>
<thead>
<tr>
<th>Outcode of p</th>
<th>Outcode of q</th>
<th>Outcode of $[pq]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010</td>
<td>0010</td>
<td>0110</td>
</tr>
<tr>
<td>1000</td>
<td>0000</td>
<td>0100</td>
</tr>
<tr>
<td>1001</td>
<td>0001</td>
<td>0101</td>
</tr>
</tbody>
</table>

Clipped because there is a 1
Improving Efficiency: Outcodes

• When do we fail to save computation?

<table>
<thead>
<tr>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010</td>
<td>0010</td>
<td>0110</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0000</td>
<td>0100</td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>0001</td>
<td>0101</td>
<td></td>
</tr>
</tbody>
</table>

Outcode of p : 1000
Outcode of q : 0010
Outcode of [pq] : 0000

Not clipped

Questions?

• You are now supposed to be able to make clipping efficient using outcodes

Today

• Why Clip?
• Line Clipping
• Polygon clipping
• Line Rasterization

Improving Efficiency: Outcodes

• It works for arbitrary primitives
• And for arbitrary dimensions

Outcode of p : 1010
Outcode of q : 1010
Outcode of r : 0110
Outcode of s : 0010
Outcode of t : 0110
Outcode of u : 0010
Outcode : 0010

Clipped

Polygon clipping
Polygon clipping
• Clipping is symmetric

Polygon clipping is complex
• Even when the polygons are convex

Polygon clipping is nasty
• When the polygons are concave

Naïve polygon clipping?
• N*m intersections
• Then must link all segment
• Not efficient and not even easy

Weiler-Atherton Clipping
• Strategy: “Walk” polygon/window boundary
• Polygons are oriented (CCW)
Weiler-Atherton Clipping

- Compute intersection points
- Mark points where polygons enters clipping window (green here)

Walking rules

- Out-to-in pair:
 - Record clipped point
 - Follow polygon boundary (ccw)
- In-to-out pair:
 - Record clipped point
 - Follow window boundary (ccw)

Clipping

While there is still an unprocessed entering intersection
Walk polygon/window boundary

Walking rules

- Out-to-in pair:
 - Record clipped point
 - Follow polygon boundary (ccw)
- In-to-out pair:
 - Record clipped point
 - Follow window boundary (ccw)
Walking rules

While there is still an unprocessed entering intersection
Walk” polygon/window boundary

Weiler-Atherton Clipping

• Importance of good adjacency data structure (here simply list of oriented edges)

Robustness, precision, degeneracies

• What if a vertex is on the boundary?
• What happens if it is “almost” on the boundary?
 – Problem with floating point precision
• Welcome to the real world of geometry!
Clipping

- Many other clipping algorithms:
 - Parametric, general windows, region-region, One-Plane-at-a-Time Clipping, etc.

Questions?

Today

- Why Clip?
- Line Clipping
- Polygon clipping
- Line Rasterization

Scan Converting 2D Line Segments

- Given:
 - Segment endpoints (integers x1, y1; x2, y2)
- Identify:
 - Set of pixels (x, y) to display for segment

Line Rasterization Requirements

- Transform **continuous** primitive into **discrete** samples
- Uniform thickness & brightness
- Continuous appearance
- No gaps
- Accuracy
- Speed

Algorithm Design Choices

- Assume:
 - \(m = \frac{dy}{dx}, \ 0 < m < 1 \)
- Exactly one pixel per column
 - fewer → disconnected, more → too thick
Algorithm Design Choices

- Note: brightness can vary with slope
 - What is the maximum variation? \(\sqrt{2} \)
- How could we compensate for this?
 - Answer: antialiasing

Naive Line Rasterization Algorithm

- Simply compute \(y \) as a function of \(x \)
 - Conceptually: move vertical scan line from \(x_1 \) to \(x_2 \)
 - What is the expression of \(y \) as function of \(x \)?
 - Set pixel \((x, \text{round}(y(x))) \)

\[
y = y_1 + \frac{x - x_1}{x_2 - x_1}(y_2 - y_1)
\]

\[
m = \frac{dy}{dx}
\]

Efficiency

- Computing \(y \) value is expensive

\[
y = y_1 + m(x - x_1)
\]

- Observe: \(y' = m \) at each \(x \) step \((m = \frac{dy}{dx})\)

Bresenham's Algorithm (DDA)

- Select pixel vertically closest to line segment
 - intuitive, efficient,
 - pixel center always within 0.5 vertically
- Same answer as naive approach

Bresenham's Algorithm (DDA)

- Observation:
 - If we're at pixel \(P(x_p, y_p) \), the next pixel must be either \(E(x_p+1, y_p) \) or \(NE(x_p, y_p+1) \)
 - Why?

Bresenham Step

- Which pixel to choose: \(E \) or \(NE \)?
 - Choose \(E \) if segment passes below or through middle point \(M \)
 - Choose \(NE \) if segment passes above \(M \)
Bresenham Step

- Use decision function D to identify points underlying line L:

 $$D(x, y) = y - mx - b$$

 - positive above L
 - zero on L
 - negative below L

 $D(p_x, p_y) = \text{vertical distance from point to line}$

Bresenham’s Algorithm (DDA)

- Decision Function:

 $$D(x, y) = y - mx - b$$

- Initialize:

 error term $e = -D(x, y)$

- On each iteration:

 update x: $x' = x + 1$
 update e: $e' = e + m$
 if $(e \leq 0.5)$: $y' = y$ (choose pixel E)
 if $(e > 0.5)$: $y' = y + 1$ (choose pixel NE) $e' = e - 1$

Summary of Bresenham

- initialize x, y, e
- for $(x = x_1; x \leq x_2; x++)$

 - plot (x, y)

 - update x, y, e

 • Generalize to handle all eight octants using symmetry
 • Can be modified to use only integer arithmetic

Line Rasterization

- We will use it for ray-casting acceleration
- March a ray through a grid

Grid Marching vs. Line Rasterization

Ray Acceleration:
Must examine every cell the line touches

Line Rasterization:
Best discrete approximation of the line

Questions?
Circle Rasterization

- Generate pixels for 2nd octant only
- Slope progresses from 0 → −1
- Analog of Bresenham Segment Algorithm

Circle Rasterization

- Decision Function:
 \[D(x, y) = x^2 + y^2 - R^2 \]
- Initialize:
 \[\text{error term } e = -D(x, y) \]
- On each iteration:
 \[\begin{align*}
 \text{update } x: & \quad x' = x + 1 \\
 \text{update } e: & \quad e' = e + 2x + 1 \\
 \text{if } (e \geq 0.5): & \quad y' = y \text{ (choose pixel E)} \\
 \text{if } (e < 0.5): & \quad y' = y - 1 \text{ (choose pixel SE), } \quad e' = e + 1
 \end{align*} \]

Philosophically

Discrete differential analyzer (DDA):
- Perform incremental computation
- Work on derivative rather than function
- Gain one order for polynomial
 - Line becomes constant derivative
 - Circle becomes linear derivative

Questions?

Antialiased Line Rasterization

- Use gray scales to avoid jaggies
- Will be studied later in the course

High-level concepts for 6.837

- Linearity
- Homogeneous coordinates
- Convexity
- Discrete vs. continuous
Thursday

Polygon Rasterization
& Visibility