б.837 Ljeen Algebre fevjew

Patrick Nichols

Thursday, September 18, 2003

Overview

- Basic matrix operations (+, -, *)
- Cross and dot products
- Determinants and inverses
- Homogeneous coordinates
- Orthonormal basis

Adolutional resources

- 18.06 Text Book
- 6.837 Text Book
- 6.837-staff@graphics.Ics.mit.edu

- Check the course website for a copy of these notes

Mhad js a Madt Mx?

- A matrix is a set of elements, organized into rows and columns

Besjc Opercilons

- Addition, Subtraction, Multiplication
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a+e & b+f \\ c+g & d+h\end{array}\right]$
Just add elements
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]-\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a-e & b-f \\ c-g & d-h\end{array}\right]$
Just subtract elements
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right]$
Multiply each row by each column

M Mubliplication

- Is $\mathrm{AB}=\mathrm{BA}$? Maybe, but maybe not!

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{cc}
a e+b g & . . . \\
\ldots & \ldots . .
\end{array}\right]\left[\begin{array}{cc}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
e a+f c & . . \\
\ldots & \ldots .
\end{array}\right]
$$

- Heads up: multiplication is NOT commutative!

Vector Operajons

- Vector: $1 \times N$ matrix
- Interpretation: a line in N dimensional space
- Dot Product, Cross Product, and

Magnitude defined on vectors only

Vector anterpretiton

- Think of a vector as a line in 2D or 3D
- Think of a matrix as a transformation on a line or set of lines

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right][\overbrace{}^{\mathrm{v}}
$$

Vectorsj Dot product

- Interpretation: the dot product measures to what degree two vectors are aligned

$$
A+B=C
$$

(use the head-to-tail method to combine vectors)

Vectorsj Dot product

$a \cdot b=a b^{T}=\left[\begin{array}{lll}a & b & c\end{array}\right]\left[\begin{array}{l}d \\ e \\ f\end{array}\right]=a d+b e+c f$

$$
\|a\|^{2}=a a^{T}=\sqrt{a a+b b+c c}
$$

$$
a \cdot b=\|a\|\|b\| \cos (\theta)
$$

Think of the dot product as a matrix multiplication

The magnitude is the dot product of a vector with itself

The dot product is also related to the angle between the two vectors - but it doesn't tell us the angle

Vectorsj cross product

- The cross product of vectors A and B is a vector C which is perpendicular to A and B
- The magnitude of C is proportional to the cosine of the angle between A and B
- The direction of C follows the right hand rule this why we call it a "right-handed coordinate system"

$$
\|a \times b\|=\|a\|\|b\| \sin (\theta)
$$

」 AVerse of a ylaudx

- Identity matrix:

$\mathbf{A l}=\mathbf{A}$

- Some matrices have an inverse, such that:
$\mathbf{A A}^{-1}=$ I
- Inversion is tricky: $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$
Derived from non-

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$ commutativity property

Deternananit of a yauc

- Used for inversion
- If $\operatorname{det}(A)=0$, then A has no inverse
- Can be found using

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$ factorials, pivots, and cofactors!

- Lots of interpretations

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

- for more info, take 18.06

Determinant of a Matix

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a e i+b f g+c d h-a f h-b d i-c e g
$$

Sum from left to right Subtract from right to left Note: N! terms

」nverse ofa Majulx

1. Append the identity matrix to A

$\left[\begin{array}{llllll}a & b & c & 1 & 0 & 0 \\ d & e & f+0 & 1 & 0 \\ g & h & i & 0 & 0 & 1\end{array}\right]$

2. Subtract multiples of the other rows from the first row to reduce the diagonal element to 1
3. Transform the identity matrix as you go
4. When the original matrix is the identity, the identity has become the inverse!

Honoogeneous yandices

- Problem: how to include translations in transformations (and do perspective transforms)
- Solution: add an extra dimension

$$
\left[\begin{array}{llll}
x & y & z & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right]=\left[\begin{array}{llll}
x & & & \\
& y & & \\
& & z & \\
& & & 1
\end{array}\right]
$$

Orthonornel Bens

- Basis: a space is totally defined by a set of vectors - any point is a linear combination of the basis
- Ortho-Normal: orthogonal + normal
- Orthogonal: dot product is zero
- Normal: magnitude is one
- Example: X, Y, Z (but don't have to be!)

Orinonornal Besis

$$
\begin{array}{lll}
x=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T} & x \cdot y=0 \\
y=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]^{T} & x \cdot \mathrm{Z}=0 \\
\mathrm{Z}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T} & y \cdot \mathrm{Z}=0
\end{array}
$$

$\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ is an orthonormal basis. We can describe any 3D point as a linear combination of these vectors.

How do we express any point as a combination of a new basis U, V, N, given X, Y, Z?

Orinonornal Besis

$$
\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]\left[\begin{array}{lll}
u_{1} & v_{1} & n_{1} \\
u_{2} & v_{2} & n_{2} \\
u_{3} & v_{3} & n_{3}
\end{array}\right]=\left[\begin{array}{l}
a \cdot u+b \cdot u+c \cdot u \\
a \cdot v+b \cdot v+c \cdot v \\
a \cdot n+b \cdot n+c \cdot n
\end{array}\right]
$$

(not an actual formula - just a way of thinking about it)
To change a point from one coordinate system to another, compute the dot product of each coordinate row with each of the basis vectors.
?

