

Schedule

- No class Tuesday November $11^{\text {th }}$, Veterans Day
- Review Session:

Tuesday November $18^{\text {th }}, 7: 30 \mathrm{pm}$, Room 2-136 bring lots of questions!

- Quiz 2: Thursday November $20^{\text {th }}$, in class (two weeks from today)

Today

- Why Radiosity
- The Cornell Box
- Radiosity vs. Ray Tracing
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity
- Advanced Radiosity

Image rendered with radiosity note color bleeding effects.

Radiosity vs. Ray Tracing

Original sculpture by John Ferren lit by daylight from behind.

Ray traced image. A standard ray tracer cannot simulate the interreflection of light between diffuse surfaces.

The Cornell Box

simulation

Goral, Torrance, Greenberg \& Battaile Modeling the Interaction of Light Between Diffuse Surfaces SIGGRAPH '84

The Cornell Box

direct illumination (0 bounces)

1 bounce

2 bounces
images by Micheal Callahan
http://www.cs.utah.edu/~shirley/classes/cs684_98/students/callahan/bounce/

The Cornell Box

- Careful calibration and measurement allows for comparison between physical scene \& simulation

photograph
Light Measurement Laboratory
Cornell University, Program for Computer Graphics

Radiosity vs. Ray Tracing

- Ray tracing is an image-space algorithm
- If the camera is moved, we have to start over
- Radiosity is computed in object-space
- View-independent (just don't move the light)
- Can pre-compute complex lighting to allow interactive walkthroughs

MIT EECS 6.837, Durand and Cutler

Today

- Why Radiosity
- The Cornell Box
- Radiosity vs. Ray Tracing
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity
- Advanced Radiosity

The Rendering Equation

$L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A}$
$\mathrm{L}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)$ is the radiance from a point on a surface in a given direction ω^{\prime}

Sum the contribution from all of the other surfaces in the scene

The Rendering Equation

$L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A$
\uparrow
$E\left(x^{\prime}, \omega^{\prime}\right)$ is the emitted radiance from a point: E is non-zero only if x^{\prime} is emissive (a light source) MIT EECS 6.837, Durand and Cutler

The Rendering Equation

$L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A$ \uparrow
For each x , compute $\mathrm{L}(\mathrm{x}, \omega)$, the radiance at point x in the direction ω (from x to x^{\prime})

The Rendering Equation

$\mathrm{L}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)=\mathrm{E}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x}(}\left(\omega, \omega^{\prime}\right) \mathrm{L}(\mathrm{x}, \omega) \mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{V}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{dA}$
scale the contribution by $\rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right)$, the reflectivity (BRDF) of the surface at x^{\prime}

The Rendering Equation

$$
\mathrm{L}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)=\mathrm{E}\left(\mathrm{x}^{\prime}, \omega^{\prime}\right)+\int_{\rho_{\mathrm{x}}}\left(\omega, \omega^{\prime}\right) \mathrm{L}(\mathrm{x}, \omega) \mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{V}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{dA}
$$

For each x , compute $\mathrm{V}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$, the visibility between x and x^{\prime} : 1 when the surfaces are unobstructed along the direction $\omega, 0$ otherwise

The Rendering Equation

$L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int_{\rho_{x}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A}$
\uparrow
For each x, compute $G\left(x, x^{\prime}\right)$, which describes the on the geometric relationship
between the two surfaces at x and x '
MIT EECS 6.837, Durand and Cutler

Questions?

Museum simulation. Program of Computer Graphics, Cornell University. 50,000 patches. Note indirect lighting from ceiling.

Intuition about $\mathrm{G}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$?

- Which arrangement of two surfaces will yield the greatest transfer of light energy? Why?

Today

- Why Radiosity
- The Cornell Box
- Radiosity vs. Ray Tracing
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity
- Advanced Radiosity

MIT EECS 6.837, Durand and Cutler

Radiosity Overview

- Surfaces are assumed to be perfectly Lambertian (diffuse)
- reflect incident light in all directions with equal intensity
- The scene is divided into a set of small areas, or patches.
- The radiosity, B_{i}, of patch i is the total rate of energy leaving a surface. The radiosity over a patch is constant.
- Units for radiosity: Watts / steradian * meter ${ }^{2}$

Radiosity Equation

$L\left(x^{\prime}, \omega^{\prime}\right)=E\left(x^{\prime}, \omega^{\prime}\right)+\int \rho_{x^{\prime}}\left(\omega, \omega^{\prime}\right) L(x, \omega) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A$
Radiosity assumption: perfectly diffuse surfaces (not directional)
$\mathrm{B}_{\mathrm{x}^{\prime}}=\mathrm{E}_{\mathrm{x}^{\prime}}+\rho_{\mathrm{x}^{\prime}} \int$
$B_{x} \quad G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right)$

Continuous Radiosity Equation

G: geometry term
V : visibility term
No analytical solution, even for simple configurations

Discrete Radiosity Equation

Discretize the scene into n patches, over which the radiosity is constant

form factor

- discrete representation
- iterative solution
- costly geometric/visibility calculations

The Radiosity Matrix

$$
B_{i}=E_{i}+\rho_{i} \sum_{j=1}^{n} F_{i j} B_{j}
$$

n simultaneous equations with n unknown B_{i} values can be written in matrix form:

$$
\left[\begin{array}{cccc}
1-\rho_{1} F_{11} & -\rho_{1} F_{12} & \cdots & -\rho_{1} F_{1 n} \\
-\rho_{2} F_{21} & 1-\rho_{2} F_{22} & & \\
\vdots & & \ddots & \\
-\rho_{n} F_{n 1} & \cdots & \cdots & 1-\rho_{n} F_{n n}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{n}
\end{array}\right]
$$

A solution yields a single radiosity value B_{i} for each patch in the environment, a view-independent solution.

MIT EECS 6.837, Durand and Cutler

Computing Vertex Radiosities

- B_{i} radiosity values are constant over the extent of a patch.
- How are they mapped to the vertex radiosities (intensities) needed by the renderer?
- Average the radiosities of patches that contribute to the vertex
- Vertices on the edge of a surface are assigned values extrapolation

Questions?

[^0] 30,000 patches.

Today

- Why Radiosity
- The Cornell Box
- Radiosity vs. Ray Tracing
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity
- Advanced Radiosity

Radiosity Patches are Finite Elements

- We are trying to solve an the rendering equation over the infinite-dimensional space of radiosity functions over the scene.
- We project the problem onto a finite basis of functions: piecewise constant over patches

Calculating the Form Factor F_{ij}

- $\mathrm{F}_{\mathrm{ij}}=$ fraction of light energy leaving patch j that arrives at patch i
- Takes account of both:
- geometry (size, orientation \& position)
- visibility (are there any occluders?)

Remember Diffuse Lighting?

$$
L\left(\omega_{r}\right)=k_{d}(\mathbf{n} \cdot \mathbf{I}) \frac{\Phi_{s}}{4 \pi d^{2}}
$$

$$
d B=d A \cos \theta_{i}
$$

Calculating the Form Factor F_{ij}

- $\mathrm{F}_{\mathrm{ij}}=$ fraction of light energy leaving patch j that arrives at patch i

Form Factor Determination

The Nusselt analog: the form factor of a patch is equivalent to the fraction of the the unit circle that is formed by taking the projection of the patch onto the hemisphere surface and projecting it down onto the circle.

$$
\mathrm{F}_{\mathrm{ij}}=\frac{1}{\mathrm{~A}_{\mathrm{i}}} \int_{\mathrm{A}_{\mathrm{i}}} \int_{\mathrm{A}_{\mathrm{j}}} \frac{\cos \theta_{\mathrm{i}} \cos \theta_{\mathrm{j}}}{\pi \mathrm{r}^{2}} \mathrm{~V}_{\mathrm{ij}} \mathrm{dA}_{\mathrm{j}} \mathrm{dA}_{\mathrm{i}}
$$

Hemicube Algorithm

- A hemicube is constructed around the center of each patch
- Faces of the hemicube are divided into "pixels"
- Each patch is projected (rasterized) onto the faces of the hemicube
- Each pixel stores its pre-computed form factor The form factor for a particular patch is just the sum of the pixels it overlaps
- Patch occlusions are handled similar to z-buffer rasterization

Questions?

Lightscape http://www.lightscape.com

Form Factor from Ray Casting

- Cast n rays between the two patches
$-n$ is typically between 4 and 32
- Compute visibility
- Integrate the point-to-point form factor
- Permits the computation of the patch-to-patch form factor, as opposed to point-to-patch

Today

- Why Radiosity
- The Cornell Box
- Radiosity vs. Ray Tracing
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity
- Advanced Radiosity

MIT EECS 6.837, Durand and Cutler

Progressive Refinement

- Goal: Provide frequent and timely updates to the user during computation
- Key Idea: Update the entire image at every iteration, rather than a single patch
- How? Instead of summing the light received by one patch, distribute the radiance of the patch with the most undistributed radiance.

MIT EECS 6.837, Durand and Cutler

Reordering the Solution for PR

Shooting: the radiosity of all patches is updated for each iteration:

This method is fundamentally a Southwell relaxation
MIT EECS 6.837, Durand and Cutler

Today

- Why Radiosity
- Global Illumination: The Rendering Equation
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Progressive Radiosity
- Advanced Radiosity
- Adaptive Subdivision
- Discontinuity Meshing
- Hierarchical Radiosity
- Other Basis Functions

Progressive Refinement w/out Ambient Term

Increasing the Accuracy of the Solution

- The quality of the image is a function of the size of the patches.
- The patches should be adaptively subdivided near shadow boundaries, and other areas with a high radiosity gradient.
- Compute a solution on a uniform initial mesh, then refine the mesh in areas that exceed some error tolerance.

Adaptive Subdivision of Patches

 (145 patches)

Improved solution (1021 subpatches)
© 8 ,

Adaptive subdivision (1306 subpatches)

Discontinuity Meshing

- Limits of umbra and penumbra
- Captures nice shadow boundaries
- Complex geometric computation
- The mesh is getting complex
penumbra ambra
source
shadow

Discontinuity Meshing

MIT EECS 6.837, Durand and Cutler

Hierarchical Approach

- Group elements when the light exchange is not important
- Breaks the quadratic complexity
- Control non trivial, memory cost

Other Basis Functions

- Higher order (non constant basis)
- Better representation of smooth variations
- Problem: radiosity is discontinuous (shadow boundary)
- Directional basis
- For non-diffuse finite elements
- E.g. spherical harmonics

Discontinuity Meshing Comparison

Next Time:

Global Illumination:
 Monte Carlo Ray Tracing

Henrik Wann Jensen
MIT EECS 6.837, Durand and Cutler

[^0]: Factory simulation. Program of Computer Graphics, Cornell University.

