The Graphics Pipeline: Line Clipping & Line Rasterization

Last Time?
- Ray Tracing vs. Scan Conversion
- Overview of the Graphics Pipeline
- Projective Transformations

Today: Line Clipping & Rasterization
- Portions of the object outside the view frustum are removed
- Rasterize objects into pixels

Today
- Why Clip?
- Line Clipping
- Overview of Rasterization
- Line Rasterization
- Circle Rasterization
- Antialiased Lines

Clipping
- Eliminate portions of objects outside the viewing frustum
- View Frustum
 - boundaries of the image plane projected in 3D
 - a near & far clipping plane
- User may define additional clipping planes

Questions?

MIT EECS 6.837, Durand and Cutler
Why clip?
- Avoid degeneracies
 - Don’t draw stuff behind the eye
 - Avoid division by 0 and overflow
- Efficiency
 - Don’t waste time on objects outside the image boundary
- Other graphics applications (often non-convex)
 - Hidden surface removal, Shadows, Picking, Binning, CSG (Boolean) operations (2D & 3D)

Clipping strategies
- Don’t clip (and hope for the best)
- Clip on-the-fly during rasterization
- Analytical clipping: alter input geometry

Questions?

Today
- Why Clip?
- Point & Line Clipping
 - Plane – Line intersection
 - Segment Clipping
 - Acceleration using outcodes
- Overview of Rasterization
- Line Rasterization
- Circle Rasterization
- Antialiased Lines

Implicit 3D Plane Equation
- Plane defined by:
 - point \(p \) & normal \(n \) OR
 - normal \(n \) & offset \(d \) OR
 - 3 points
- Implicit plane equation
 \[Ax + By + Cz + D = 0 \]

Homogeneous Coordinates
- Homogenous point: \((x,y,z,w)\)
 - infinite number of equivalent homogenous coordinates:
 \((sx, sy, sz, sw)\)
- Homogenous Plane Equation:
 \[Ax + By + Cz + D = 0 \] \(\rightarrow\) \(H = (A,B,C,D)\)
 - Infinite number of equivalent plane expressions:
 \[sAx + sBy + sCz + sD = 0 \] \(\rightarrow\) \(H = (sA,sB,sC,sD)\)
Point-to-Plane Distance

- If \((A, B, C)\) is normalized:
 \[d = H \cdot p = H^T p \]
 (the dot product in homogeneous coordinates)

- \(d\) is a signed distance
 - positive = "inside"
 - negative = "outside"

Clipping a Point with respect to a Plane

- If \(d = H \cdot p \geq 0\):
 Pass through
- If \(d = H \cdot p < 0\):
 Clip (or cull or reject)

Clipping with respect to View Frustum

- Test against each of the 6 planes
 - Normals oriented towards the interior
- Clip (or cull or reject) point \(p\) if any \(H \cdot p < 0\)

What are the View Frustum Planes?

- \(H_{\text{near}} = (0, 0, -1, -\text{near})\)
- \(H_{\text{far}} = (0, 0, 1, \text{far})\)
- \(H_{\text{bottom}} = (0, \text{near bottom}, 0, 0)\)
- \(H_{\text{top}} = (0, -\text{near}, -\text{top}, 0)\)
- \(H_{\text{left}} = (-1, \text{near}, 0, 0)\)
- \(H_{\text{right}} = (-1, -\text{near}, 0, 0)\)

Clipping & Transformation

- Transform \(M\) (e.g. from world space to NDC)
 \[(1, 1, 1) \]
- \((-1, -1, -1)\)
- The plane equation is transformed with \((M^{-1})^T\)

Segment Clipping

- If \(H \cdot p > 0\) and \(H \cdot q < 0\)
- If \(H \cdot p < 0\) and \(H \cdot q > 0\)
- If \(H \cdot p > 0\) and \(H \cdot q > 0\)
- If \(H \cdot p < 0\) and \(H \cdot q < 0\)
Segment Clipping

- If $\mathbf{H} \cdot \mathbf{p} > 0$ and $\mathbf{H} \cdot \mathbf{q} < 0$
 - clip q to plane
- If $\mathbf{H} \cdot \mathbf{p} < 0$ and $\mathbf{H} \cdot \mathbf{q} > 0$
 - clip p to plane
- If $\mathbf{H} \cdot \mathbf{p} > 0$ and $\mathbf{H} \cdot \mathbf{q} > 0$
 - pass through
- If $\mathbf{H} \cdot \mathbf{p} < 0$ and $\mathbf{H} \cdot \mathbf{q} < 0$
 - clipped out

Clipping against the frustum

- For each frustum plane \mathbf{H}
 - If $\mathbf{H} \cdot \mathbf{p} > 0$ and $\mathbf{H} \cdot \mathbf{q} < 0$, clip q to H
 - If $\mathbf{H} \cdot \mathbf{p} < 0$ and $\mathbf{H} \cdot \mathbf{q} > 0$, clip p to H
 - If $\mathbf{H} \cdot \mathbf{p} > 0$ and $\mathbf{H} \cdot \mathbf{q} > 0$, pass through
 - If $\mathbf{H} \cdot \mathbf{p} < 0$ and $\mathbf{H} \cdot \mathbf{q} < 0$, clipped out

Line – Plane Intersection

- Explicit (Parametric) Line Equation
 \[\mathbf{L}(t) = \mathbf{P}_0 + t \ast (\mathbf{P}_1 - \mathbf{P}_0) \]
 \[\mathbf{L}(t) = (1 - t) \ast \mathbf{P}_0 + t \ast \mathbf{P}_1 \]
- How do we intersect?
 - Insert explicit equation of line into implicit equation of plane
- Parameter t is used to interpolate associated attributes (color, normal, texture, etc.)
Is this Clipping Efficient?
• For each frustum plane H
 – If $H \cdot p > 0$ and $H \cdot q < 0$, clip q to H
 – If $H \cdot p < 0$ and $H \cdot q > 0$, clip p to H
 – If $H \cdot p > 0$ and $H \cdot q > 0$, pass through
 – If $H \cdot p < 0$ and $H \cdot q < 0$, clipped out

What is the problem?
The computation of the intersections, and any corresponding interpolated values is unnecessary
Can we detect this earlier?

Improving Efficiency: Outcodes
• Compute the sidedness of each vertex with respect to each bounding plane (0 = valid)
• Combine into binary outcode using logical AND

Outcode of p : 1010
Outcode of q : 0110
Outcode of pq : 0010
Clipped because there is a 1

Improving Efficiency: Outcodes
• When do we fail to save computation?

Outcode of p : 1000
Outcode of q : 0010
Outcode of pq : 0000
Not clipped
Questions?

Today

• Why Clip?
• Line Clipping
• Overview of Rasterization
• Line Rasterization
• Circle Rasterization
• Antialiased Lines

Framebuffer Model

• Raster Display: 2D array of picture elements (pixels)
• Pixels individually set/cleared (greyscale, color)
• Window coordinates: pixels centered at integers

2D Scan Conversion

• Geometric primitives (point, line, polygon, circle, polyhedron, sphere...)
• Primitives are continuous; screen is discrete
• Scan Conversion: algorithms for efficient generation of the samples comprising this approximation

Brute force solution for triangles

• For each pixel
 – Compute line equations at pixel center
 – “clip” against the triangle

Problem?
If the triangle is small, a lot of useless computation
Brute force solution for triangles

• Improvement:
 – Compute only for the screen bounding box of the triangle
 – Xmin, Xmax, Ymin, Ymax of the triangle vertices

Can we do better? Yes!

• More on polygons next week.
• Today: line rasterization

Questions?

Today

• Why Clip?
• Line Clipping
• Overview of Rasterization
• Line Rasterization
 – naive method
 – Bresenham's (DDA)
• Circle Rasterization
• Antialiased Lines

Scan Converting 2D Line Segments

• Given:
 – Segment endpoints (integers x1, y1; x2, y2)
• Identify:
 – Set of pixels (x, y) to display for segment

Line Rasterization Requirements

• Transform continuous primitive into discrete samples
• Uniform thickness & brightness
• Continuous appearance
• No gaps
• Accuracy
• Speed
Algorithm Design Choices

- Assume:
 - \(m = \frac{dy}{dx} \), \(0 < m < 1 \)
- Exactly one pixel per column
 - fewer \(\rightarrow \) disconnected, more \(\rightarrow \) too thick

Naive Line Rasterization Algorithm

- Simply compute \(y \) as a function of \(x \)
 - Conceptually: move vertical scan line from \(x_1 \) to \(x_2 \)
 - What is the expression of \(y \) as function of \(x \)?
 - Set pixel \((x, \text{round}(y(x)))\)

Efficiency

- Computing \(y \) value is expensive
 - Observe: \(y' = m + m(x-x_1) \) at each \(x \)

Line Rasterization

- It's like marching a ray through the grid
- Also uses DDA (Digital Difference Analyzer)

Grid Marching vs. Line Rasterization

- Ray Acceleration:
 - Must examine every cell the line touches
- Line Rasterization:
 - Best discrete approximation of the line

Algorithm Design Choices

- Note: brightness can vary with slope
 - What is the maximum variation? \(\sqrt{2} \)
- How could we compensate for this?
 - Answer: antialiasing
Bresenham's Algorithm (DDA)

- Select pixel vertically closest to line segment
 - intuitive, efficient,
 pixel center always within 0.5 vertically
- Same answer as naive approach

Bresenham Step

- Which pixel to choose: E or NE?
 - Choose E if segment passes below or through middle point M
 - Choose NE if segment passes above M

Bresenham's Algorithm (DDA)

- Decision Function:
 \[D(x, y) = y - mx - b \]
- Initialize:
 error term \(e = -D(x, y) \)
- On each iteration:
 update \(x \):
 \[x' = x + 1 \]
 update \(e \):
 \[e' = e + m \]
 if \((e \leq 0.5) \):
 \[y' = y \] (choose pixel E)
 if \((e > 0.5) \):
 \[y' = y + 1 \] (choose pixel NE) \(e' = e - 1 \)

Bresenham Step

- Use decision function \(D \) to identify points underlying line \(L \):
 \[D(x, y) = y - mx - b \]
 - positive above \(L \)
 - zero on \(L \)
 - negative below \(L \)
 \[D(p_x, p_y) = \text{vertical distance from point to line} \]

Summary of Bresenham

- initialize \(x, y, e \)
- for \((x = x1; x \leq x2; x++) \)
 - plot \((x, y) \)
 - update \(x, y, e \)
- Generalize to handle all eight octants using symmetry
- Can be modified to use only integer arithmetic
Today

- Why Clip?
- Line Clipping
- Overview of Rasterization
- Line Rasterization
 - naive method
 - Bresenham's (DDA)
- Circle Rasterization
- Antialiased Lines

Circle Rasterization

- Decision Function:
 \[D(x, y) = x^2 + y^2 - R^2 \]
- Initialize:
 \[e = -D(x, y) \]
- On each iteration:
 \[
 \begin{align*}
 &x' = x + 1 \\
 &e' = e + 2x + 1 \\
 &\text{if } (e \geq 0.5): \ y' = y \quad \text{(choose pixel E)} \\
 &\text{if } (e < 0.5): \ y' = y - 1 \quad \text{(choose pixel SE)}, \quad e' = e + 1
 \end{align*}
 \]
Antialiased Line Rasterization

Next Week:

Polygon Rasterization & Polygon Clipping