Ray Casting II

Review of Ray Casting

Ray Casting

For every pixel
 Construct a ray from the eye
For every object in the scene
 Find intersection with the ray
 Keep if closest

Ray Tracing

• Secondary rays (shadows, reflection, refraction)
• In a couple of weeks

Ray representation

• Two vectors:
 – Origin
 – Direction (normalized is better)
• Parametric line
 – \(P(t) = R + t \cdot D \)

Explicit vs. implicit

• Implicit
 – Solution of an equation
 – Does not tell us how to generate a point on the plane
 – Tells us how to check that a point is on the plane
• Explicit
 – Parametric
 – How to generate points
 – Harder to verify that a point is on the ray
Durer’s Ray casting machine

• Albrecht Durer, 16th century

A note on shading

• Normal direction, direction to light
• Diffuse component: dot product
• Specular component for shiny materials
 – Depends on viewpoint
• More in two weeks

Textbook

• Recommended, not required
• Peter Shirley
 Fundamentals of Computer Graphics
 AK Peters

References for ray casting/tracing

• Shirley Chapter 9
• Specialized books:
 • Online resources
 http://www.irtc.org/
 http://www.acm.org/log/resources/RTNews/html/
 http://www.povray.org/
 http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtrace0.htm
 http://www.siggraph.org/education/materials/HyperGraph/raytrace/rt_java/raytrace.html

Assignment 1

• Write a basic ray caster
 – Orthographic camera
 – Spheres
 – Display: constant color and distance
• We provide
 – Ray
 – Hit
 – Parsing
 – And linear algebra, image
Object-oriented design

- We want to be able to add primitives easily
 - Inheritance and virtual methods
- Even the scene is derived from Object3D!

Object3D

bool intersect(Ray, Hit, tmin)

Plane

bool intersect(Ray, Hit, tmin)

Sphere

bool intersect(Ray, Hit, tmin)

Triangle

bool intersect(Ray, Hit, tmin)

Group

bool intersect(Ray, Hit, tmin)

Hit

- Store intersection point & various information

```cpp
class Hit {
public:
    // CONSTRUCTOR & DESTRUCTOR
    Hit(float _t, Vec3f c) { t = _t; color = c; }
    ~Hit() {} 
    // ACCESSORS
    float getT() const { return t; }
    Vec3f getColor() const { return color; }
    // MODIFIER
    void set(float _t, Vec3f c) { t = _t; color = c; }
    private:
        // REPRESENTATION
        float t;
        Vec3f color;
        //Material *material;
        //Vec3f normal;
};
```

Ray

```cpp
class Ray {
public:
    // CONSTRUCTOR & DESTRUCTOR
    Ray () {};
    Ray (const Vec3f &dir, const Vec3f &orig) { 
        origin = orig; 
        direction = dir; 
    }
    Ray (const Ray& r) {*this=r;}
    // ACCESSORS
    const Vec3f& getOrig() const { return origin; }
    const Vec3f& getDirection() const { return direction; }
    Vec3f pointAtParameter(float t) const { 
        return origin+direction*t; 
    }
    private:
        // REPRESENTATION
        Vec3f origin;
};
```

Tasks

- Abstract Object3D
- Sphere and intersection
- Group class
- Abstract camera and derive Orthographic
- Main function

Questions?

Overview of today

- Ray-box intersection
- Ray-polygon intersection
- Ray-triangle intersection
Ray-Parallelepiped Intersection

- Axis-aligned
- From \((X_1, Y_1, Z_1)\) to \((X_2, Y_2, Z_2)\)
- Ray \(P(t) = R + Dt\)

Naïve ray-box Intersection

- Use 6 plane equations
- Compute all 6 intersection
- Check that points are inside box
 \(Ax + by + Cz + D < 0\) with proper normal orientation

Factoring out computation

- Pairs of planes have the same normal
- Normals have only one non-0 component
- Do computations one dimension at a time
- Maintain \(t_{near}\) and \(t_{far}\) (closest and farthest so far)

Test if parallel

- If \(Dx = 0\), then ray is parallel
 - If \(Rx < X_1\) or \(Rx > x_2\) return false

If not parallel

- Calculate intersection distance \(t_1\) and \(t_2\)
 - \(t_1 = (X_1 - Rx) / Dx\)
 - \(t_2 = (X_2 - Rx) / Dx\)

Test 1

- Maintain \(t_{near}\) and \(t_{far}\)
 - If \(t_1 > t_2\), swap
 - if \(t_1 > t_{near}\), \(t_{near} = t_1\) if \(t_2 < t_{far}\), \(t_{far} = t_2\)
- If \(t_{near} > t_{far}\), box is missed
Test 2

- If $t_{far} < 0$, box is behind

Algorithm recap

- Do for all 3 axis
 - Calculate intersection distance t_1 and t_2
 - Maintain t_{near} and t_{far}
 - If $t_{near} > t_{far}$, box is missed
 - If $t_{far} < 0$, box is behind
- If box survived tests, report intersection at t_{near}

Efficiency issues

- Do for all 3 axes
 - Calculate intersection distance t_1 and t_2
 - Maintain t_{near} and t_{far}
 - If $t_{near} > t_{far}$, box is missed
 - If $t_{far} < 0$, box is behind
- If box survived tests, report intersection at t_{near}
- $1/D_x$, $1/D_y$ and $1/D_z$ can be precomputed and shared for many boxes
- Unroll the loop
 - Loops are costly (because of termination if)
 - Avoids the t_{near} t_{far} for X dimension

Questions?

Overview of today

- Ray-box intersection
- Ray-polygon intersection
- Ray-triangle intersection

Ray-polygon intersection

- Ray-plane intersection
- Test if intersection is in the polygon
 - Solve in the 2D plane
Point inside/outside polygon

- Ray intersection definition:
 - Cast a ray in any direction
 - (axis-aligned is smarter)
 - Count intersection
 - If odd number, point is inside
- Works for concave and star-shaped

Precision issue

- What if we intersect a vertex?
 - We might wrongly count an intersection for each adjacent edge
- Decide that the vertex is always above the ray

Winding number

- To solve problem with star pentagon
- Oriented edges
- Signed number of intersection
- Outside if 0 intersection

Alternative definitions

- Sum of the signed angles from point to vertices
 - 360 if inside, 0 if outside
- Sum of the signed areas of point-edge triangles
 - Area of polygon if inside, 0 if outside

How do we project into 2D?

- Along normal
 - Costly
- Along axis
 - Smarter (just drop 1 coordinate)
 - Beware of parallel plane

Questions?
Overview of today

- Ray-box intersection
- Ray-polygon intersection
- Ray-triangle intersection

Ray triangle intersection

- Use ray-polygon
- Or try to be smarter
 - Use barycentric coordinates

Barycentric definition of a plane

\[P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c \]
with \(\alpha + \beta + \gamma = 1 \)

- Is it explicit or implicit?

Given P, how can we compute \(\alpha, \beta, \gamma \)?

- Compute the areas of the opposite subtriangle
 - Ratio with complete area
 \[\alpha = A_a/A, \quad \beta = A_b/A, \quad \gamma = A_c/A \]
 Use signed areas for points outside the triangle

Barycentric definition of a triangle

\[P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c \]
with \(\alpha + \beta + \gamma = 1 \)

\(0 < \alpha < 1 \)
\(0 < \beta < 1 \)
\(0 < \gamma < 1 \)

Intuition behind area formula

- P is barycenter of a and Q
- A is the interpolation coefficient on aQ
- All points on line parallel to bc have the same \(\alpha \)
- All such Ta triangles have same height/area
Simplify

- Since \(\alpha + \beta + \gamma = 1 \) we can write \(\alpha = 1 - \beta - \gamma \)
- \(P(\beta, \gamma) = (1-\beta-\gamma) a + \beta b + \gamma c \)

How do we use it for intersection?

- Insert ray equation into barycentric expression of triangle
- \(P(t) = a + \beta (b-a) + \gamma (c-a) \)
- Intersection if \(\beta + \gamma < 1; \quad 0 < \beta \) and \(0 < \gamma \)

Matrix form

- \(R_x + tD_x = a_x + \beta_x (b_x-a_x) + \gamma_x (c_x-a_x) \)
- \(R_y + tD_y = a_y + \beta_y (b_y-a_y) + \gamma_y (c_y-a_y) \)
- \(R_z + tD_z = a_z + \beta_z (b_z-a_z) + \gamma_z (c_z-a_z) \)

Cramer’s rule

- \[| | \] denotes the determinant
- Can be copied mechanically in the code
Advantage

- Efficient
- Store no plane equation
- Get the barycentric coordinates for free
 - Useful for interpolation, texture mapping

Questions?

- Image computed using the RADIANCE system by Greg Ward

Plucker computation

- Plucker space: 6 or 5 dimensional space describing 3D lines
- A line is a point in Plucker space

Plucker computation

- The rays intersecting a line are a hyperplane
- A triangle defines 3 hyperplanes
- The polytope defined by the hyperplanes is the set of rays that intersect the triangle

Plucker computation

- The rays intersecting a line are a hyperplane
- A triangle defines 3 hyperplanes
- The polytope defined by the hyperplanes is the set of rays that intersect the triangle
 - Ray-triangle intersection becomes a polytope inclusion
 - Couple of additional issues

Next week: Transformations

- Permits 3D IFS ;-)