
6.837 Introduction to Computer Graphics

Assignment 2:

Transformations and additional primitives

Due Wednesday September 24, 2003 at 11:59pm

In this assignment, you will add new primitives, planes and triangles, as well
as affine transformations. You will also implement a perspective camera, and
add two simple shading modes: diffuse shading and normal shading.

At this point, we will leave the shading computation in the main loop. In
the next assignment, we will develop a special class for this computation. For
normal shading, you will simply display the coordinates of the normal vector
as an (r, g, b) color. For example a normal pointing in the z direction will
be displayed as pure blue (0, 0, 1). You should use black as the color for the
background (undefined normal).

Diffuse shading is our first step to model the interaction of light and materi-
als. The scene parser now provides you with alight source. Given the direction
to the light �L and the normal �N , we can compute the diffuse shading as a
clamped dot product

d =
{

I �L. �N if �L. �N > 0,
0 otherwise

If the visible object has color (r, g, b), and the light source has color (Lr, Lg, Lb),
then the color of the pixel is (rLrd, gLgd, bLbd).

The scene parser reads an array of light sources (see scene_parser.h. For
this assignment, you can consider that there is only one light (index 0). But
you can also decide to do it the clean way and write a loop on all light sources
and add their contributions (i.e. add all the (rLrd, gLgd, bLbd)). See below how
to access the light source.

1 Tasks

• Update the Hit data structure to store normals. Update your sphere
intersection routine to pass the normal to the hit.

• Add simple normal and diffuse shading. At this point, they can be imple-
mented in the main loop. Diffuse shading should include an ambient term

1

(see below in the light section.)

• Add a perspective camera class, and implement the ray-generation method.

• Implement an infinite plane primitive. It should be a subclass of Object3D
and implement the intersect method, including normal computation.

• Implement a triangle primitive and the corresponding ray-triangle inter-
section.

• Derive a subclass Transformation from Object3D. This class stores a 4x4
matrix and a pointer to an Object3D that undergoes the transformation.
Implement the ray and normal transformation for proper intersection.

• Do provide a README.txt file that discusses any problems you encoun-
tered, how long it took to complete the assignment, any extra credit work
that you did and how we can test the new features.

• Extra credits: Implement two ray-triangle intersection methods and com-
pare; cones; cylinders; Constructive Solid Geometry (CSG); instantiation;
IFS; non-linear cameras.

2 Classes you need to write

2.1 PerspectiveCamera

The PerspectiveCamera class derives from Camera. Choose your favorite in-
ternal camera representation. The file format provides you with the viewpoint
(center), the main direction (looking towards the scene), and the field of view
(see Fig. 1). See scene_parser.C line for the specification of the constructor.

�
�

�
�

�

����	
�	�
	�

�
�	�

��

��

Figure 1: Perspective camera.

The Constructor is:

PerspectiveCamera(Vec3f ¢er, Vec3f &direction, Vec3f &up, float
angle);

2

2.2 Plane

Plane derives from Object3D. Use the representation of your choice, but the
constructor is assumed to be:

Plane(Vec3f &normal, float d, Vec3f &color);

d is the offset from the origin, meaning that the plane equation is �P . �normal = d.
You can also implement other constructors (e.g. using 3 points.).

Implement intersect, and remember that you now also need to update the
normal stored by hit, in addition to the intersection distance t and color.

2.3 Triangle

Triangles also derive from Object3D. The constructor takes 3 vertices (Vec3f):

Triangle(Vec3f &a, Vec3f &b, Vec3f &c, Vec3f &color);

Use the method of your choice to compute the ray-triangle intersection (gen-
eral polygon with in-polygon test,; barycentric coordinates; or Plücker space.)

2.4 Transformation

We propose that you implement Transformations as a simple Object3D sub-
class. Similar to a Group, a Transformationwill store a pointer to an Object3D
(but only one, not an array). The intersection routine will first transform the
ray, then delegate to the intersect routine of the child object, and finally
transform the normal according to the rule seen in class: the origin undergoes
the inverse transformation and the direction undergoes only the linear part of
the inverse transform (i.e. the direction does not undergo translation).

You must decide whether you want to keep the direction of the ray normal-
ized or not, as discussed in class. If you decide to use non-normalized rays, you
might need to update some of your intersection code.

The constructor of a Transformation takes a 4x4 matrix as input and a
pointer to an Object3d:

Transform(Matrix &m, Object_3D *o);

3 Utilities Provided

Ray.h

Unchanged.

3

Hit.h

Hit must be modified to store the normal of the intersection point. We
provide you with the updated file.

Images and Linear Algebra (image.h, vectors.h, matrix.h, and
matrix.C)

The matrix classes have been updated to better handle transformations.
Be sure to download the file again.

Light (light.h) Light source description. The abstract class Light provides
a virtual function getIllumination that computes the normalized illumi-
nation direction and the intensity and color at a given location in space:

void getIllumination (const Vec3f &p, Vec3f &dir, Vec3f &col);

where p is the intersection point that you want to shade, and the function
passes the direction towards the light source in dir and the light color
and intensity in col (i.e. the components of col can be greater than 1
because they also encode the light intensity.)

The scene parser now reads light sources. You can access the number of
light sources through getNumLights () and pointers to the light sources
using Light* getLight(int i);. Although for this assignment you can
assume that there will be only one light source, it is easy to treat the case
of multiple light sources by looping through them.

You must add an ambient term to your shading, because otherwise parts
facing away from the light source appear completely black. The parser
provides an ambient color. Simply multiply the ambient color by the
color of the object.

Note that if the ambient color is (1, 1, 1) and the light source color is
(0, 0, 0), then you have the constant shading used in assignment 1.

Given the material color color(P) at the intersection point P ; the normal
�n; the direction �diri(P) and color Li(P) of the light source returned by
getIllumination for light index i, then the color of the pixel is:

pixel(P) = ambient ∗ color(P)+
∑

i

clamped(�diri(P).�n) color(P) ∗ Li(P)

where color vectors are multiplied term by term. Remember that the dot
product is clamped to positive values.

Parsing command line arguments & input files
(parse.C, scene_parser.h, and scene_parser.C)

These files have been updated to parse the new primitives that you must
implement.

4

Your program should take a number of command line arguments to specify
the input file, output image size and output file. Make sure the following
example works, as this is how we will test your program:

raycast -input scene.txt -size 100 100 -output image.tga

The new rendering mode by default should perform diffuse shading instant
of the constant color per object. You must add a new option -normal to
perform shading according to the normal (see above).

raycast -input scene.txt -size 100 100 -normal normal.tga

A simple scene file parser that is adequate for this assignment is pro-
vided. The OrthographicCamera, Group and Sphere constructors and
the Group::addObject method you will write are called from the parser.
Look in the scene_parser.C file for details.

Other

A simple Makefile for use with g++ and Linux is provided.

4 Hints

• Parse the arguments of the program in a separate function outside the
main function. It will make your code easier to read.

• Implement the normal and diffuse shading before the transformations. It
will help you assess whether your normals are correct. Implement normal
shading first (this is a general advice, always test sub-expressions when
you can.)

• Use the various rendering modes (normal, diffuse, distance) to debug your
code.

• For CSG (extra credits), you need to implement a new intersectAll
method for your Object3D classes. This function needs to return all the
intersection of the ray with the object, and not only the first one. This
is because the first intersection of a simple object might be outside the
intersection of the two objects, for example. We advise you to use the
interval solution to perform the CSG along the ray. Fun CSG operations
are intersection and difference.

• For additional primitives such as cones and cylinder, implement the simple
case of axis-aligned primitives and use transformations.

5

