
6.837 Introduction to Computer Graphics

Assignment 1: Ray Casting

Due Wednesday September 17, 2003 at 11:59pm

In this assignment, you will implement a basic ray caster. This will be the
basis of all the following assignments, so proper code design is quite important.
As seen in class, a ray caster sends a ray for each pixel and intersects it with all
the objects in the scene. You will implement a ray caster for an orthographic
camera (parallel rays) for sphere primitives. You will use a very basic shading
model: the objects have a constant color. As an alternative, you will also display
the distance t of each pixel to the camera.

You will use object-oriented design to make your ray-caster flexible and
extendable. A generic Object3D class will serve as the parent class for all 3D
primitives. You will derive subclasses, such as Sphere, to implement specialized
primitives. In later assignments, you will extend the set of primitives with
planes and polygons. Similarly, this assignment requires the implementation
of a general Camera class and an OrthographicCamera subclass. In the next
assignment, you will also derive a general perspective camera.

We provide you with a Ray class and a Hit class to manipulate camera rays
and their intersection points.

1 Tasks

• Write a pure virtual Object3D class (see specifications below).

• Derive Sphere, a subclass of Object3D, and implement the intersection of
a sphere with a ray.

• Derive Group, also a subclass of Object3D, that stores an array of pointers
to Object3D instances. Write the intersection routine.

• Write a pure virtual Camera class and subclass OrthographicCamera.
Write the corresponding ray generation method for the subclass.

• Use the input file parsing code provided to load the camera, background
color and objects of the scene.

1



• Write a main function that reads the scene (using the parsing code pro-
vided), loops over the pixels in the image plane, generates a ray using
your OrthographicCamera class, intersects it with the high-level Group
that stores the objects of the scene, and writes the color of the closest
intersected object.

• Implement a second rendering style to visualize the depth of objects in
the scene.

• Extra credit: Write both the geometric and algebraic sphere intersection
methods, add cylinders and cones, fog based on distance to the image
plane, etc.

• Provide a README.txt file that discusses any problems you encountered,
how long it took to complete the assignment, and any extra credit work
that you did.

2 Classes you need to write

2.1 Object3D

This class is pure virtual. It only provides the specification for 3D primitives,
and in particular the ability to be intersected with a ray via the virtual method:

virtual bool intersect(const Ray &r, Hit &h, float tmin) = 0;

Since this method is pure virtual for the Object3D class, the prototype in the
header file includes ’= 0;’. Subclasses derived from Object3D must implement
this routine (see description below). For this assignment, an Object3D will store
its color as a Vec3f. Later in the semester, we will instead store a pointer to
more complex materials. For now, your Object3D class must have:

• a default constructor and destructor,

• a color field, and

• a pure virtual intersection method.

2.2 Sphere

Sphere is a subclass of Object3D that additionally stores a center point and a
radius. For this assignment, the Sphere constructor will be given the center,
radius, and color. The Sphere class implements the virtual intersect method
mentioned above (but without the ’= 0;’):

virtual bool intersect(const Ray &r, Hit &h, float tmin);

With the intersect routine, we are looking for the closest intersection along
a Ray, parameterized by t. tmin is used to restrict the range of intersection.

2



If an intersection is found such that t ≥ tmin and t is less than the value of
the intersection currently stored in the Hit data structure, Hit is updated as
necessary. Note that if the new intersection is closer than the previous one, both
t and color must be modified.

For an orthographic camera, rays always start at infinity, so tmin will just
be set to a large negative value. However, in the next assignment you will
implement a perspective camera and it will be important that your intersection
routine verifies that t ≥ tmin. tmin is not modified by the intersection routine.

2.3 Group

A Group is a special subclass of Object3D that gathers multiple 3D primitives.
For example, it will be used to store the entire 3D scene. It stores an array of
pointers to Object3D instances. The intersect method of Group loops through
all these instances, calling their intersection methods. The Group constructor
should take as input the number of objects under the group. The group should
include a method to add the objects:

void addObject(int index, Object3D *obj);

2.4 Camera and OrthographicCamera

Write both a pure virtual generic Camera class and an OrthographicCamera

subclass. A camera must be able to generate a ray for each screen-space coor-
dinate, described as a Vec2f:

Ray generateRay(Vec2f point);

The direction of the rays generated by an orthographic camera is always the
same, but the origin varies.

up

size

size

center

horizontal(0,0)

(1,1)

Figure 1: Orthographic camera.

An orthographic camera is described by an orthonormal basis (one point and

3



three vectors) and an image size (one floating point), as illustrated in Figure 1.
The constructor takes as input the center of the image, the projection direction,
an up vector, and the image size. The input projection direction might not be
a unit vector and must be normalized. The input up vector might not be a unit
vector or perpendicular to the direction. It must be modified to be orthonormal
to the direction. The third basis vector, the horizontal vector of the image
plane, is deduced from the direction and the up vector (hint: remember vector
algebra and cross products). The origin of the rays generated by the camera for
the screen coordinates, which vary from (0, 0) → (1, 1), should vary from:

center − size
2

· up − size
2

· horizontal → center + size
2

· up + size
2

· horizontal

The camera does not know about screen resolution. Image resolution should
be handled in your main loop. For non-square image ratios, just crop the screen
coordinates accordingly.

3 Utilities Provided

Ray.h

A simple Ray class. A ray is represented by its origin and direction vector.

Hit.h

The Hit class stores information about the closest intersection point. It
stores the value of the ray parameter t and the visible color of the object
at the intersection. The Hit data structure must be initialized with the
background color and a very large t value. It is modified by the intersec-
tion computation to store the new closest t and the new visible color of
intersected object.

Images and Linear Algebra (image.h, vectors.h, matrix.h, and

matrix.C)

Updated classes from assignment 0.

Parsing command line arguments & input files (parse.C,
scene_parser.h, and scene_parser.C)

Your program should take a number of command line arguments to specify
the input file, output image size and output file. Make sure the following
example works, as this is how we will test your program:

raycast -input scene.txt -size 100 100 -output image.tga

A second rendering mode is to visualize the t value of the closest intersec-
tion for each ray. For example, the following command line renders the
same image as above, except the depth values 8.5 → 10.5 are mapped to

4



grayscale values from white → black. Depth values outside this range are
simply clamped.

raycast -input scene.txt -size 100 100 -depth 8.5 10.5 depth.tga

A simple scene file parser that is adequate for this assignment is pro-
vided. The OrthographicCamera, Group and Sphere constructors and
the Group::addObject method you will write are called from the parser.
Look in the scene_parser.C file for details.

Other

A simple Makefile for use with g++ and linux is provided.

4 Hints

• Use a small image size for faster debugging. 64x64 pixels is usually enough
to realize that something might be wrong.

• As usual, don’t hesitate to print as much information as needed for de-
bugging, such as the direction vector of the rays, the hit values, etc.

• Use assert() to check function pre-conditions, array indices, etc. See
<assert.h>.

• The “very large” negative and positive values for t used in the Hit class
and the intersect routine can simply be initialized with large values
relative to the camera position and scene dimensions. However, to be
more correct, you can use the positive and negative values for infinity
from the IEEE floating point standard (for extra credit).

5


