
6.837 Lecture 2
1. Rasters, Pixels and Sprites 2. Review of Raster Displays

3. High-End Graphics Display System 4. A Memory Raster

5. A Java Model of a Memory Raster 6. Example Usage: Rastest.java

7. Lets Talk About Pixels 8. True-Color Frame Buffers

9. Indexed-Color Frame Buffers 10. High-Color Frame Buffers

11. Sprites 12. A Sprite is a Raster

13. An Animated Sprite is a Sprite 14. A Playfield is a Raster and has Animated Sprites

15. PixBlts 16. Seems Easy

17. The Tricky Blits 18. Alpha Blending

19. Alpha Compositing Details 20. Compositing Example

21. Elements of Color 22. Visible Spectrum

23. The Eye 24. The Fovea

25. The Fovea 26. Color Perception

27. Dominant Wavelength 28. Color Algebra

27. Saturated Color Curve in RGB 28. Color Matching

29. CIE Color Space 30. CIE Chromaticity Diagram

31. Definitions: 32. Color Gamuts

33. The RGB Color Cube 34. Color Printing

35. Color Conversion 36. Other Color Systems

35. Next Time : Flooding and Other Imaging Topics

 Lecture 2 Outline 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/index.html [10/2/2001 5:36:00 PM]

Rasters, Pixels and Sprites

Experiencing
 JAVAphobia?

Rasters●

Pixels●

Alpha●

RGB●

Sprites●

BitBlts●

 Lecture 2 Slide 1 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide01.html [9/12/2001 11:51:55 AM]

Review of Raster Displays

Display synchronized with CRT sweep●

Special memory for screen update●

Pixels are the discrete elements displayed●

Generally, updates are visible●

Lecture 2 Slide 2 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide02.html [9/12/2001 11:51:58 AM]

High-End Graphics Display System

Adds a second frame buffer●

Swaps during vertical blanking●

Updates are invisible●

Costly●

Lecture 2 Slide 3 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide03.html [9/12/2001 11:52:00 AM]

A Memory Raster

Maintains a copy of the screen (or some part of it) in memory●

Relies on a fast copy●

Updates are nearly invisible●

Conceptual model of a physical object●

Lecture 2 Slide 4 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide04.html [9/12/2001 11:52:02 AM]

A Java Model of a Memory Raster

class Raster implements ImageObserver {
 ////////////////////////// Constructors /////////////////////
 public Raster(); // allows class to be extended
 public Raster(int w, int h); // specify size
 public Raster(Image img); // set to size and contents of image

 ////////////////////////// Interface Method /////////////////
 public boolean imageUpdate(Image img, int flags, int x, int y, int w, int h);

 ////////////////////////// Accessors //////////////////////////
 public int getSize(); // pixels in raster
 public int getWidth(); // width of raster
 public int getHeight(); // height of raster
 public int[] getPixelBuffer(); // get array of pixels

 ////////////////////////// Methods ////////////////////////////
 public void fill(int argb); // fill with packed argb
 public void fill(Color c); // fill with Java color
 public Image toImage(Component root);
 public int getPixel(int x, int y);
 public Color getColor(int x, int y);
 public boolean setPixel(int pix, int x, int y);
 public boolean setColor(Color c, int x, int y);
}

Download Raster.java here.

Lecture 2 Slide 5 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide05.html [9/12/2001 11:52:57 AM]

file:////Graphics/classes/6.837/F01/Lecture02/Raster.java

Example Usage: Rastest.java
The code on the
right
demonstrates
the use of a
Raster object.
The running
Applet is shown
below. Clicking
on the image
will cause it to
be negated.

The source code
for this applet
can be
downloaded
here:
Rastest.java.

 import java.applet.*;
 import java.awt.*;
 import Raster;

 public class Rastest extends Applet {
 Raster raster;
 Image output;
 int count = 0;

 public void init() {
 String filename = getParameter("image");
 output = getImage(getDocumentBase(), filename);
 raster = new Raster(output);
 showStatus("Image size: " + raster.getWidth() + " x " + raster.getHeight());
 }

 public void paint(Graphics g) {
 g.drawImage(output, 0, 0, this);
 count += 1;
 showStatus("paint() called " + count + " time" + ((count > 1) ? "s":""));
 }

 public void update(Graphics g) {
 paint(g);
 }

 public boolean mouseUp(Event e, int x, int y) {
 int s = raster.getSize();
 int [] pixel = raster.getPixelBuffer();
 for (int i = 0; i < s; i++) {
 raster.pixel[i] ^= 0x00ffffff;
 }
 output = raster.toImage(this);
 repaint();
 return true;
 }
 }

Lecture 2 Slide 6 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide06.html [9/12/2001 11:53:00 AM]

file:////Graphics/classes/6.837/F01/Lecture02/Rastest.java

Lets Talk About Pixels

Pixels are stored as a 1-dimensional array of ints●

Each int is formatted according to Java's standard pixel model●

Alpha Red Green Blue

The 4 bytes of a 32-bit Pixel int.
if Alpha is 0 the pixel is transparent.
if Alpha is 255 the pixel is opaque.

Layout of the pixel array on the display:●

This is the image format used internally by Java●

Lecture 2 Slide 7 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide07.html [9/12/2001 11:53:01 AM]

True-Color Frame Buffers

Each pixel requires at least 3 bytes. One byte for each primary color.●

Sometimes combined with a look-up table per primary●

Each pixel can be one of 2^24 colors●

Worry about your Endians●

Lecture 2 Slide 8 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide08.html [9/12/2001 11:53:03 AM]

Indexed-Color Frame Buffers

Each pixel uses one byte●

Each byte is an index into a color map●

If the color map is not updated synchronously then Color-map flashing may occcur.●

Color-map Animations●

Each pixel may be one of 2^24 colors, but only 256 color be displayed at a time●

Lecture 2 Slide 9 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide09.html [9/12/2001 11:53:05 AM]

High-Color Frame Buffers

Popular PC/(SVGA) standard (popular with Gamers)●

Each pixel can be one of 2^15 colors●

Can exhibit worse quantization (banding) effects than Indexed-color●

Lecture 2 Slide 10 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide10.html [9/12/2001 11:53:07 AM]

Sprites

Sprites are rasters that can be overlaid onto a background raster called a playfield.

A sprite can be animated, and it generally can be
repositioned freely any where within the playfield.

Lecture 2 Slide 11 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide11.html [9/12/2001 11:53:08 AM]

A Sprite is a Raster

 class Sprite extends Raster {
 int x, y; // position of
sprite on playfield
 public void Draw(Raster bgnd); // draws sprite on a
Raster
 }

Things to consider:

The Draw() method must handle transparent pixels, and it must
also handle all cases where the sprite overhangs the playfield.

Lecture 2 Slide 12 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide12.html [9/12/2001 11:53:14 AM]

An Animated Sprite is a Sprite

 class AnimatedSprite extends Sprite {
 int frames; // frames in sprite
 // there are other private variables
 public AnimatedSprite(Image images, int frames);
 public AnimatedSprite(AnimatedSprite s); // copy a sprite
 public void addState(int track, int frame, int ticks, int dx, int dy);
 public void addTrack(int anim, StringTokenizer parse);
 public void Draw(Raster bgnd);
 public void nextState();
 public void setTrack(int t);
 public boolean notInView(Raster bgnd);
 public boolean overlaps(AnimatedSprite s);
 }

A track is a series of frames. The frame is displayed for ticks periods. The sprite's position is then moved (dx, dy) pixels.

Lecture 2 Slide 13 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide13.html [9/12/2001 11:53:56 AM]

A Playfield is a Raster and has Animated Sprites
 class Playfield extends Raster {
 Raster background; // background image
 Vector sprites; // sprites on this playfield

 public Playfield(Image bgnd);
 public void addSprite(AnimatedSprite s);
 public void removeSprite(AnimatedSprite s);
 public void Draw();
 // Other methods...
 }

Lecture 2 Slide 14 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide14.html [9/12/2001 11:54:26 AM]

PixBlts

PixBlts are raster methods for moving and clearing sub-blocks of
pixels from one region of a raster to another

Very heavily used by window systems:

moving windows around●

scrolling text●

copying and clearing●

Lecture 2 Slide 15 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide15.html [9/12/2001 11:54:30 AM]

Seems Easy
Here's a PixBlt method:

 public void PixBlt(int xs, int ys, int w, int h, int xd, int yd)
 {
 for (int j = 0; j < h; j++) {
 for (int i = 0; i < w; i++) {
 this.setPixel(raster.getPixel(xs+i, ys+j), xd+i, yd+j);
 }
 }
 }

But does this work?
What are the issues?
How do you fix it?

Lecture 2 Slide 16 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide16.html [9/12/2001 11:55:03 AM]

The Tricky Blits

Our PixBlt Method works fine when the source and destination regions do not
overlap. But, when these two regions do overlap we need to take special care
to avoid copying the wrong pixels. The best way to handle this situation is by
changing the iteration direction of the copy loops to avoid problems.

The iteration direction must always be opposite of the direction of the block's movement for
each axis. You could write a fancy loop which handles all four cases. However, this code is
usually so critical to system performace that, generally, code is written for all 4 cases and called
based on a test of the source and destination origins. In fact the code is usually unrolled.

Lecture 2 Slide 17 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide17.html [9/12/2001 11:55:06 AM]

Alpha Blending

See Microsoft's Image Composer for more info on these images

Alpha blending simulates the opacity
of celluloid layers

General rules:

Adds one channel to each pixel [α, r, g, b]●

Usually process layers back-to-front (using the over
operator)

●

255 or 1.0 indicates an opaque pixel●

0 indicates a transparent pixel●

Result is a function of foregrond and background pixel
colors

●

Can simulate partial-pixel coverage for anti-aliasing●

Lecture 2 Slide 18 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide18.html [9/12/2001 11:55:08 AM]

http://www.microsoft.com/imagecomposer

Alpha Compositing Details

Definition of the Over compositing operation:

αresultcresult = αfg cfg + (1 - αfg) αbgcbg

αresult = αfg + (1 - αfg) αbg

Issues with alpha:

Premultiplied (integral) alphas:

pixel contains (α, αr,
αg, αb)

●

saves computation
αresultcresult = αfg cfg +
αbgcbg - αfgαbgcbg

●

alpha value constrains color magnitude●

alpha modulates image shape●

conceptually clean - multiple composites
are well defined

●

Non-premultiplied (independent) alphas:

pixel contains (α, r, g, b)●

what Photoshop does●

color values are independent of alpha●

transparent pixels have a color●

divison required to get color component
back

●

(An excellent reference on the subject)
Lecture 2 Slide 19 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide19.html [9/12/2001 11:56:40 AM]

ftp://ftp.alvyray.com/Acrobat/7_Alpha.pdf

Compositing Example

Alpha-blending features:

Allows image to encode
the shape of an object
(Sprite)

●

Can be used to represent
partial pixel coverage for
anti-aliasing
(independent of the final
background color)

●

Can be used for
transparency effects

●

Should be adopted by
everyone!
(what were you planning
to do with that extra byte
anyway)

●

Sprite 1

Sprite 2 and 3

Finished Composition

Lecture 2 Slide 20 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide20.html [9/12/2001 11:56:42 AM]

Elements of Color
Hearn & Baker - Chapter 15

Lecture 2 Slide 21 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide21.html [9/12/2001 11:56:44 AM]

Visible Spectrum

We percieve electromagnetic energy having wavelengths
in the range 400-700 nm as visible light.

Lecture 2 Slide 22 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide22.html [9/12/2001 11:56:48 AM]

The Eye
The photosensitive part of
the eye is called the retina.

The retina is largely
composed of two types of
cells, called rods and
cones. Only the cones are
responsible for color
perception.

Lecture 2 Slide 23 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide23.html [9/12/2001 11:56:50 AM]

The Fovea
Cones are most densely packed within a region of the eye called the fovea.

There are three types of cones, referred to as
S, M, and L. They are roughly equivalent to
blue, green, and red sensors, respectively.
Their peak sensitivities are located at
approximately 430nm, 560nm, and 610nm
for the "average" observer.

Lecture 2 Slide 24 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide24.html [9/12/2001 11:56:52 AM]

The Fovea

Colorblindness results from a deficiency of
one cone type.

Lecture 2 Slide 25 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide25.html [9/12/2001 11:56:53 AM]

Color Perception

Different spectra can result in a perceptually identical sensations called metamers●

Color perception results from the simultaneous stimulation of 3 cone types (trichromat)●

Our perception of color is also affected by surround effects and adaptation●

Lecture 2 Slide 26 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide26.html [9/12/2001 11:56:55 AM]

Dominant Wavelength

Location of dominant wavelength specifies the hue of the color●

The luminance is the total power of the light (area under curve) and is related to brightness●

The saturation (purity) is percentage of luminance in the dominant wavelength●

Lecture 2 Slide 26a 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide26a.html [9/12/2001 11:56:57 AM]

Color Algebra

S = P, means spectrum S and spectrum P are perceived as the same color●

if (S = P) then (N + S = N + P)●

if (S = P) then aS = aP, for scalar a●

It is meaningful to write linear combinations of colors T = aA + bB●

Color percepion is three-dimensional, any color C can be constructed as the
superposition of three primaries:

C = rR + gG + bB

●

Focus on "unit brightness" colors, for which r+g+b=1, these lie on a plane in
3D color space

●

Lecture 2 Slide 26b 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide26b.html [9/12/2001 11:57:01 AM]

Saturated Color Curve in RGB

Plot the saturated colors (pure spectral colors) in the r+g+b=1 plane●

Lecture 2 Slide 26c 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide26c.html [9/12/2001 11:57:05 AM]

Color Matching
In order to define the perceptual 3D space in a "standard" way, a set of
experiments can (and have been) carried by having observers try and match color
of a given wavelength, lambda, by mixing three other pure wavelengths, such as
R=700nm, G=546nm, and B=436nm in the following example. Note that the
phosphours of color TVs and other CRTs do not emit pure red, green, or blue light
of a single wavelength, as is the case for this experiment.

Lecture 2 Slide 27 6.837 Fall '01

The scheme above can tell us what mix of R,G,Bis needed to reproduce the perceptual equivalent of any wavelength. A problem exists, however, because sometimes the red
light needs to be added to the target before a match can be achieved. This is shown on the graph by having its intensity, R, take on a negative value.

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide27.html [9/12/2001 11:57:07 AM]

CIE Color Space
In order to achieve a representation which uses only positive mixing coefficients, the CIE
("Commission Internationale d'Eclairage") defined three new hypothetical light sources, x, y,
and z, which yield positive matching curves:

If we are given a spectrum and wish to find the corresponding X, Y, and Z quantities, we can
do so by integrating the product of the spectral power and each of the three matching curves
over all wavelengths. The weights X,Y,Z form the three-dimensional CIE XYZ space, as
shown below.

Lecture 2 Slide 28 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide28.html [9/12/2001 12:00:52 PM]

CIE Chromaticity
Diagram

Often it is convenient to work in a 2D
color space. This is commonly done by
projecting the 3D color space onto the
plane X+Y+Z=1, yielding a CIE
chromaticity diagram. The projection is
defined as:

Giving the chromaticity diagram shown on
the right.

Lecture 2 Slide 29 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide29.html [9/12/2001 12:02:08 PM]

Definitions:
Spectrophotometer❍

Illuminant C❍

Complementary colors❍

Dominant wavelength❍

Non-spectral colors❍

Perceptually uniform color space❍

Lecture 2 Slide 30 6.837 Fall '01

A few definitions:

spectrophotometer

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide30.html (1 of 2) [9/12/2001 12:04:37 PM]

A device to measure the spectral energy distribution. It can therefore also provide the CIE xyz tristimulus values.

illuminant C

A standard for white light that approximates sunlight. It is defined by a color temperature of 6774 K.

complementary colors

colors which can be mixed together to yield white light. For example, colors on segment CD are complementary to the colors on segment CB.

dominant wavelength

The spectral color which can be mixed with white light in order to reproduce the desired color. color B in the above figure is the dominant wavelength for color A.

non-spectral colors

colors not having a dominant wavelength. For example, color E in the above figure.

perceptually uniform color space

A color space in which the distance between two colors is always proportional to the perceived distance. The CIE XYZ color space and the CIE chromaticity diagram are
not perceptually uniform, as the following figure illustrates. The CIE LUV color space is designed with perceptual uniformity in mind.

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide30.html (2 of 2) [9/12/2001 12:04:37 PM]

Color Gamuts

The chromaticity diagram can be used to compare the "gamuts" of various possible output devices
(i.e., monitors and printers). Note that a color printer cannot reproduce all the colors visible on a
color monitor.

Lecture 2 Slide 31 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide31.html [9/12/2001 12:04:42 PM]

The RGB Color Cube

The additive color model used for computer graphics is represented by the RGB color cube, where R,
G, and B represent the colors produced by red, green and blue phosphours, respectively.

The color cube sits within the CIE XYZ color space as follows.

Lecture 2 Slide 32 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide32.html [9/12/2001 12:04:44 PM]

Color Printing

Green paper is green because it reflects green and absorbs other wavelengths. The following table
summarizes the properties of the four primary types of printing ink.

dye color absorbs reflects
cyan red blue and green
magenta green blue and red
yellow blue red and green
black all none

To produce blue, one would mix cyan and magenta inks, as they both reflect blue while each
absorbing one of green and red. Unfortunately, inks also interact in non-linear ways. This makes the
process of converting a given monitor color to an equivalent printer color a challenging problem.

Black ink is used to ensure that a high quality black can always be printed, and is often referred to as
to K. Printers thus use a CMYK color model.

Lecture 2 Slide 33 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide33.html [9/12/2001 12:04:47 PM]

Color Conversion
To convert from one color gamut to another is a simple procedure. Each phosphour color can be
represented by a combination of the CIE XYZ primaries, yielding the following transformation from
RGB to CIE XYZ:

The transformation yields the color on monitor 2 which is equivalent to a given

color on monitor 1. Conversion to-and-from printer gamuts is difficult. A first approximation is as
follows:

C = 1 - R
M = 1 - G
Y = 1 - B

The fourth color, K, can be used to replace equal amounts of CMY:

K = min(C,M,Y) C' = C - K
M' = M - K
Y' = Y - K

Lecture 2 Slide 34 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide34.html [9/12/2001 12:04:50 PM]

Other Color Systems
Several other color models also exist. Models such as HSV (hue, saturation, value) and HLS (hue,
luminosity, saturation) are designed for intuitive understanding. Using these color models, the user of
a paint program would quickly be able to select a desired color.

Example: NTSC YIQ color space

Lecture 2 Slide 35 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide35.html [9/12/2001 12:04:53 PM]

Next Time

Flooding and Other Imaging Topics
Lecture 2 Slide 36 6.837 Fall '01

Lecture 2 --- 6.837 Fall '01

file:////Graphics/classes/6.837/F01/Lecture02/Slide36.html [9/12/2001 12:05:53 PM]

	Local Disk
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01
	Lecture 2 --- 6.837 Fall '01

