
1

Fall 2004 6.831 UI Design and Implementation 1

���������	
���
�����������������

2

Fall 2004 6.831 UI Design and Implementation 2

�������������
��������
��

Source: UI Hall of Shame

Our Hall of Shame candidate for the day is this dialog box from Adaptec Easy CD Creator, which
appears at the end of burning a CD. The top image shows the dialog when the CD was burned
successfully; the bottom image shows what it looks like when there was an error.

The key problem is the lack of contrast between these two states. Success or failure of CD burning
is important enough to the user that it should be obvious at a glance. But these two dialogs look
identical at a glance. How can we tell? Use the squint test, which we talked about in the graphic
design lecture. When you’re squinting, you see some labels, a big filled progress bar, a roundish
icon with a blob of red, and three buttons. All the details, particularly the text of the messages and
the exact shapes of the red blob, are fuzzed out. This simulates what a user would see at a quick
glance, and it shows that the graphic design doesn’t convey the contrast.

One improvement would change the check mark to another color, say green or black. Using red for
OK seems inconsistent with the real world, anyway. But designs that differ only in red and green
wouldn’t pass the squint test for color-blind users.

Another improvement might remove the completed progress bar from the error dialog, perhaps
replacing it with a big white text box containing a more detailed description of the problem. That
would clearly pass the squint test, and make errors much more noticeable.

3

Fall 2004 6.831 UI Design and Implementation 3

����������
�

Here’s our hall of fame example. StatCounter is a web site that tracks usage statistics of your web
site, using a hit counter. This is a sample of its statistics page.

The first thing to note is the simplicity of the design. Only a few colors are used: gray, black, and a
few shades of blue, predominately. This simplicity allows the few different colors – like the red TIP
– to really stand out. The design also omits unnecessary labels – for example, the date entry boxes
on the bottom don’t need labels like “From:” and “To:”, because they’re self-describing.

It’s interesting to look at how visual variables were used to encode the information. Position is used
to represent date (horizontally) and number of hits (vertically). The kind of statistic is encoded in the
value of the graph line, ranging from dark blue (returning visitors) to light blue (page loads). The
statistics are actually related in a hierarchy: since every returning visitor is a unique visitor, and every
unique visitor causes at least one page load, it is always the case that page loads > unique visitors >
returning visitors. This hierarchy is emphasized both by position (the curves are always in the same
order vertically) and by value. Position and value were good choices for emphasizing the ordering,
because both variables are ordered. An unordered visual variable, like the shape of the data point,
would not have been as effective.

This page does have some problems. One is the use of two different terms, “range” and “period”,
which basically mean the same thing (internal consistency). The Set Period interface is in fact a list
of common shortcuts, like “the last 30 days”, which is a good thing; but the shortcuts should be
presented more prominently. There’s no reason why the year field (2004) should be a text box, rather
than a drop-down with choices appropriate to the actual range of data available (error prevention).
And the hyphen between the start date and the end date is too small to have good contrast with the
controls around it; it disappears.

4

Fall 2004 6.831 UI Design and Implementation 4

����� !������!

� Quiz preview
� Balance
� Alignment
� Color guidelines
� Computer prototyping

5

Fall 2004 6.831 UI Design and Implementation 5

"��#����$ ����!���

� Topics
� L1: usability
� L2: user-centered design, user & task analysis
� L3: MVC, observer, view hierarchy
� L4: perception, cognition, motor, memory, attention, vision
� L5: component, stroke & pixel models, redraw, double-

buffering
� L6: interface styles, direct manipulation, affordances

natural mapping, visibility, feedback
� L8: Nielsen�s heuristics
� L9: paper prototyping, fidelity, look/feel, depth/breadth,

Wizard of Oz
� Everything is fair game
� Class discussion, lecture notes, readings, assignments

� Closed book exam, 80 minutes

6

Fall 2004 6.831 UI Design and Implementation 6

%�������&���

����

� Choose an axis (usually vertical)
� Distribute elements equally around the

axis
�Equalize both mass and extent

Balance and symmetry are valuable tools in a designer’s toolkit. In graphic design, symmetry rarely
means exact, mirror-image equivalence. Instead, what we mean by symmetry is more like balance: is
there the same amount of stuff on each side of the axis of symmetry. We measure “stuff” by both
mass (quantity of nonwhite pixels) and extent (area covered by those pixels); both mass and extent
should be balanced.

7

Fall 2004 6.831 UI Design and Implementation 7

��

�����'(�
���

An easy way to achieve balance is to simply center the elements of your display. That automatically
achieves balance around a vertical axis. If you look at Google’s home page, you’ll see this kind of
approach in action. In fact, only one element of the Google home page breaks this symmetry: the
stack of links for Advanced Search, Preferences, and Language Tools on the right. This slight
irregularity actually helps emphasize these links slightly.

Symmetry is a kind of simplicity; asymmetry creates a contrast. Use that contrast wisely.

8

Fall 2004 6.831 UI Design and Implementation 8

)����
���

� Align labels on
left or right
� Align controls on

left and right
�Expand as needed

� Align text baselines

Finally, simplify your designs by aligning elements horizontally and vertically. Alignment contributes to the
simplicity of a design. Fewer alignment positions means a simpler design. The dialog box shown has totally
haphazard alignment, which makes it seem more complicated than it really is.

Labels (e.g. “Wait” and “Retry after”). There are two schools of thought about label alignment: one school
says that the left edges of labels should be aligned, and the other school says that their right edges (i.e., the
colon following each label) should be aligned. Both approaches work, and experimental studies haven’t found
any significant differences between them. Both approaches also fail when long labels and short labels are
used in the same display. You’ll get best results if you can make all your labels about the same size, or else
break long labels into multiple lines.

Controls (e.g., text fields, combo boxes, checkboxes). A column of controls should be aligned on both the left
and the right. Sometimes this seems unreasonable -- should a short date field be expanded to the same length
as a filename? It doesn’t hurt the date to be larger than necessary, except perhaps for reducing its perceived
affordance for receiving a date. You can also solve these kinds of problems by rearranging the display,
moving the date elsewhere, although be careful of disrupting your design’s functional grouping or the
expectations of your user.

So far we’ve only discussed left-to-right alignment. Vertically, you should ensure that labels and controls on
the same row share the same text baseline. Java Swing components are designed so that text baselines are
aligned if the components are centered vertically with respect to each other, but not if the components’ tops or
bottoms are aligned. Java AWT components are virtually impossible to align on their baselines. The dialog
shown here has baseline alignment problems, particularly among the controls in the last row: the checkbox
“Use custom editor”, the text field, and the Browse button.

9

Fall 2004 6.831 UI Design and Implementation 9

*���!�)���'������+�

Source: Mullet & Sano, p. 165

A grid is one effective way to achieve both alignment and balance, nearly automatically. Notice the
four-column grid used in this dialog box (excluding the labels on the left). The only deviation from
the grid is the row of three command buttons at the bottom which are nevertheless still balanced. In
fact, their deviation from the grid helps to set them off, despite the minimal white space separating
them from the rest of the display.

One criticism of this dialog is false grouping. The controls for Size, All Caps, and Superscript tend
to adhere because their proximity, and likewise for the next two rows of the display. This might be
fixed by pushing the toggle buttons further to the right, to occupy columns 3 and 4 instead of 2 and 3,
but at the cost of some balance.

10

Fall 2004 6.831 UI Design and Implementation 10

������*��������!

� Remember limitations of human vision
� Color blindness, red-on-blue, small blue details

� Use few colors
� Avoid saturated colors
� Be consistent and match expectations

We’ve already talked a lot about the limits of human color vision. In general, colors should be used
sparingly. An interface with many colors appears more complex, more cluttered, and more
distracting. Use only a handful of colors.

Background colors should establish a good contrast with the foreground. White is a good choice,
since it provides the most contrast; but it also produces bright displays, since our computer displays
emit light rather than reflecting it. Pale (desaturated) yellow and very light gray are also good
background colors.

In general, avoid strongly saturated colors – i.e., the colors around the top edge of the HSV cone.
Saturated colors can cause visual fatigue because the eye must keep refocusing on different
wavelengths. They also tend to saturate the viewer’s receptors (hence the name). One study found
that air traffic controllers who viewed strongly saturated green text on their ATC interfaces for many
hours had trouble seeing pink or red (the other end of the red/green color channel) for up to 15
minutes after their shift was over.

Use less saturated versions instead, pushing them towards gray.

To sharpen contrasts, you can use opponent colors: red/green, blue/yellow. But keep color blind
users in mind; hue should not be the only way you establish the contrast. Both color-blind and color-
normal users will see the contrast better if you vary both hue and value.

Finally, match expectations. One of the problems with the Adaptec dialogs at the beginning of this
lecture was the use of red for OK. Red generally means stop, warning, error, or hot. Green
conventionally means go, or OK. Yellow means caution, or slow.

11

Fall 2004 6.831 UI Design and Implementation 11

�������������������!�,���'�����

� Low fidelity in:
�Look
�Feel
�Dynamics
�Response time
�Context

� Users can�t try it without a human to
simulate computer

We now turn to prototyping. Paper prototyping is neat, but it’s not enough. We discussed some of these
drawbacks in the paper prototyping lecture.

First, paper prototypes are low-fi in look. It’s sometimes hard for users to recognize widgets that you’ve
hand-drawn, or labels that you’ve hastily scribbled. A paper prototype won’t tell you what will actually fit on
the screen, since your handwritten font and larger-than-life posterboard aren’t realistic simulations. A paper
prototype can’t easily simulate some important characteristics of your interface’s look – for example, does the
selection highlighting have enough contrast, using visual variables that are selective, does it float above the
rest of the design in its own layer? You have to make decisions about graphic design at some point, and you
want to iterate those decisions just like other aspects of usability. So we need another prototyping method.

Paper prototypes are also low-fi in feel. Finger & pen doesn’t behave like mouse & keyboard (e.g., the drag &
drop issue mentioned earlier). Even pen-based computers don’t really feel like pen & paper. You can’t test
Fitts’s Law issues, like whether a button is big enough to click on.

Paper is low-fi in dynamic feedback. You don’t get any animation, like spinning globes, moving progress
bars, etc. You can’t test mouse-over feedback, as we mentioned earlier.

It’s also low-fi in response time, because the human computer is far slower than the real computer. So you
can’t measure how long it takes users to do a task with your interface.

Finally, paper is low-fi with respect to context of use. A paper prototype can only really be used on a
tabletop, in office-like environment. Users can’t take it to grocery store, subway, aircraft carrier deck, or
wherever the target interface will actually be used. If it’s a handheld application, the ergonomics are all wrong;
you aren’t holding it in your hand, and it’s not the right weight.

12

Fall 2004 6.831 UI Design and Implementation 12

��
���������������

� Interactive software simulation
� High-fidelity in look & feel
� Low-fidelity in depth
�Paper prototype had a human simulating

the backend; computer prototype doesn�t
�Computer prototype is typically horizontal:

covers most features, but no backend

So at some point we have to depart from paper and move our prototypes into software. A typical
computer prototype is a horizontal prototype. It’s high-fi in look and feel, but low-fi in depth –
there’s no backend behind it. Where a human being simulating a paper prototype can generate new
content on the fly in response to unexpected user actions, a computer prototype cannot.

13

Fall 2004 6.831 UI Design and Implementation 13

$ ����-����������������
���
������

���������!

� Everything you learn from a paper prototype, plus:
� Screen layout
� Is it clear, overwhelming, distracting, complicated?
� Can users find important elements?

� Colors, fonts, icons, other elements
� Well-chosen?

� Interactive feedback
� Do users notice & respond to status bar messages, cursor

changes, other feedback

� Fitts�s Law issues
� Controls big enough? Too close together? Scrolling list is too

long?

Computer prototypes help us get a handle on the graphic design and dynamic feedback of the
interface.

14

Fall 2004 6.831 UI Design and Implementation 14

$ ����!������������������!�

� Faster than coding
� No debugging
� Easier to change or throw away
� Don�t let Java do your graphic design

One way to build a computer prototype is just to program it directly in an implementation language,
like Java or C++, using a user interface toolkit, like Swing or MFC. If you don’t hook in a backend,
or use stubs instead of your real backend, then you’ve got a horizontal prototype.

But it’s often better to use a prototyping tool instead. Building an interface with a tool is usually
faster than direct coding, and there’s no code to debug. It’s easier to change it, or even throw it away
if your design turns out to be wrong. Recall Cooper’s concerns about prototyping: your computer
prototype may become so elaborate and precious that it becomes your final implementation, even
though (from a software engineering point of view) it might be sloppily designed and
unmaintainable.

Also, when you go directly from paper prototype to code, there’s a tendency to let your UI toolkit
handle all the graphic design for you. That’s a mistake. For example, Java has layout managers that
automatically arrange the components of an interface. Layout managers are powerful tools, but they
produce horrible interfaces when casually or lazily used. A prototyping tool will help you envision
your interface and get its graphic design right first, so that later when you move to code, you know
what you’re trying to persuade the layout manager to produce.

Even with a prototyping tool, computer prototypes can still be a tremendous amount of work. When
drag & drop was being considered for Microsoft Excel, a couple of Microsoft summer interns were
assigned to develop a prototype of the feature using Visual Basic. They found that they had to
implement a substantial amount of basic spreadsheet functionality just to test drag & drop. It took
two interns their entire summer to build the prototype that proved that drag & drop was useful.
Actually adding the feature to Excel took a staff programmer only a week. This isn’t a fair
comparison, of course – maybe six intern-months was a cost worth paying to mitigate the risk of one
fulltimer-week, and the interns certainly learned a lot. But building a computer prototype can be a
slippery slope, so don’t let it suck you in too deeply. Focus on what you want to test, i.e., the design
risk you need to mitigate, and only prototype that.

15

Fall 2004 6.831 UI Design and Implementation 15

������������������.��!

� Storyboard
�Sequence of painted screenshots

connected by hyperlinks (�hotspots�)

� Form builder
�Real windows assembled from a palette of

widgets (buttons, text fields, labels, etc.)

There are two major techniques for building a computer prototype.

A storyboard is a sequence (a graph, really) of fixed screens. Each screen has one or more hotspots
that you can click on to jump to another screen. Sometimes the transitions between screens also
involve some animation in order to show a dynamic effect, like mouse-over feedback or drag-drop
feedback.

A form builder is a tool for drawing real, working interfaces by dragging widgets from a palette and
positioning them on a window.

16

Fall 2004 6.831 UI Design and Implementation 16

�����/������������!

� HTML
� image maps

� Flash/Director
� animation + actions

� PowerPoint
� images + links + animation

� All these tools have scripting languages, too
� Help orchestrate the transitions

� For high fidelity look, take screenshots of
widgets from a form builder

Here are some tools commonly used for storyboarding.

A PowerPoint presentation is just a slide show. Each slide shows a fixed screenshot, which you can
draw in a paint program and import, or which you can draw directly in PowerPoint. A PowerPoint
storyboard doesn’t have to be linear slide show. You can create hyperlinks that jump to any slide in
the presentation.

Macromedia Flash (formerly Director) is a tool for constructing multimedia interfaces. It’s
particularly useful for prototyping interfaces with rich animated feedback.

HTML is also useful for storyboarding. Each screen is an imagemap. Macromedia Dreamweaver
makes it easy to build HTML imagemaps.

All these tools have scripting languages – PowerPoint has Basic, Flash/Director has a language
called Lingo, and HTML has Javascript – so you can write some code to orchestrate transitions, if
need be.

If your storyboards need standard widgets like buttons or text boxes, you can create some widgets in
a form builder and take static screenshots of them for your storyboard.

You can find Flash, Director, and Dreamweaver installed in MIT’s New Media Center (search for it
in Google), a cluster of Macs on the first floor of building 26. The room is sometimes used for
classes during the day, but is open to the MIT community at other times.

17

Fall 2004 6.831 UI Design and Implementation 17

���!�&����!���������/�������

� Pros
�You can draw anything

� Cons
�No text entry
�Widgets aren�t active
� �Hunt for the hotspot�

The big advantage of storyboarding is similar to the advantage of paper: you can draw anything on a
storyboard. That frees your creativity in ways that a form builder can’t, with its fixed palette of
widgets.

The disadvantages come from the storyboard’s static nature. All you can do is click, not enter text.
You can still have text boxes, but clicking on a text box might make its content magically appear,
without the user needing to type anything. Similarly, scrollbars, list boxes, and buttons are just
pictures, not active widgets. Watching a real user in front of a storyboard often devolves into a game
of “hunt for the hotspot”, like children’s software where the only point is to find things on the
screen to click on and see what they do. The hunt-for-the-hotspot effect means that storyboards are
largely useless for user testing, unlike paper prototypes. In general, horizontal computer prototypes
are better evaluated with other techniques, like heuristic evaluation.

18

Fall 2004 6.831 UI Design and Implementation 18

���
�%������!

� HTML pages and forms
� Natural if you�re building a web application
� May have low-fidelity look otherwise

� Java GUI builders
� Sun NetBeans
� Eclipse Visual Editor
� Borland JBuilder

� Other GUI builders
� Visual Basic, .NET Windows Forms
� Mac Interface Builder
� Qt Designer

� Tips
� Use absolute positioning for now

Here are some form builder tools.

HTML is a natural tool to use if you’re building a web application. You can compose static HTML
pages simulating the dynamic responses of your web interface. Although the responses are canned,
your prototype is still better than a storyboard, because its screens are more active than mere
screenshots: the user can actually type into form fields, scroll through long displays, and see mouse-
over feedback. Even if you’re building a desktop or handheld application, HTML may still be
useful. For example, you can mix static screenshots of some parts of your UI with HTML form
widgets (buttons, list boxes, etc) representing the widget parts. It may be hard to persuade HTML to
render a desktop interface in a high-fidelity way, however.
Visual Basic is the classic form builder. Many custom commercial applications are built entirely
with Visual Basic.

There are several form builders for Java. Sun NetBeans and Borland JBuilder (Personal Edition) can
be downloaded free.

Be careful when you’re using a form builder for prototyping to avoid layout managers when you’re
doing your initial graphic designs. Instead, use absolute positioning, so you can put each
component where you want it to go. Java GUI builders may need to be told not to use a layout
manager.

19

Fall 2004 6.831 UI Design and Implementation 19

���!�&����!�������
�%������!

� Pros
�Actual controls, not just pictures of them
�Can hook in some backend if you need it
� But then you won�t want to throw it away

� Cons
�Limits thinking to standard widgets
�Useless for rich graphical interfaces

Unlike storyboards, form builders use actual working widgets, not just static pictures. So the widgets
look the same as they will in the final implementation (assuming you’re using a compatible form
builder – a prototype in Visual Basic may not look like a final implementation in Java).

Also, since form builders usually have an implementation language underneath them – which may
even be the same implementation language that you’ll eventually use for your final interface -- you
can also hook in as much or as little backend as you want.

On the down side, form builders give you a fixed palette of standard widgets, which limits your
creativity as a designer, and which makes form builders largely useless for prototyping rich graphical
interfaces, e.g., a circuit-drawing editor. Form builders are great for the menus and widgets that
surround a graphical interface, but can’t simulate the “insides” of the application window.

