
Reading Suggestions: Distances and Laplacians

REMINDER: The goal of this assignment is to explore how shape analysis can be used in a disci-
pline you find interesting. We’ll provide a few suggestions for further reading, but do not let these
stop you from exploring! The papers we link are not necessarily the best in their respective fields,
just places to get you started.

Geodesics: Smooth Theory
• Chapter 3 of Riemannian Geometry, do Carmo, Birkhauser Boston, 2013.
• Chapter 4 of Differential Geometry of Curves and Surfaces, do Carmo, Courier Dover Publi-

cations, 2016.

Geodesics: Discretization and Implementation

There are many ways to compute geodesics on discrete surfaces, with some generally better (or
more broadly useful) than others. Here are just a few examples:

• The Discrete Geodesic Problem, Mitchell, Mount and Papadimitriou, SIAM J. Computing
1987.

• Computing Geodesic Paths on Manifolds, Kimmel and Seithan, PNAS 1998.
• Computing Geodesic Distances on Triangular Meshes, Novotni and Klein, WSCG 2002.
• Fast Exact and Approximate Geodesics on Meshes, Surazhsky et al., SIGGRAPH 2005.
• Geodesics in Heat: A New Approach to Computing Distance Based on Heat flow, Crane,

Weischedel and Wardetzky, ToG 2013.

Geodesics: Variations and Applications

The following two papers tell you how to compute shortest paths when (1) your mesh is broken,
or (2) when you want fast all-pairs queries.

• Walking on Broken Mesh: Defect-Tolerant Geodesic Distances and Parameterizations, Campen
and Kobbelt, Eurographics 2011.

• Constant-time All-pairs Geodesic Distance Query on Triangle Meshes, Xin, Ying and He, I3D
2012.

In class we’ve talked about surfaces, which are 2-dimensional manifolds. We’re going to take a
leap of faith and go from 2 dimensions to higher-dimensional (and infinite-dimensional) spaces,
with applications including transfer learning and animation:

• Time-discrete Geodesics in the Space of Shells, Heeren et al., SGP 2012.
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• Geodesic Flow Kernel for Unsupervised Domain Adaptation, Gong et al., CVPR 2012.

Geodesics: Learning

In learning applications, we typically do not have access to the manifold representation of our
data. One can ask if there is a way to build a representation of the manifold from a point cloud
that preserves the metric of the manifold. The following papers show that this is not true of
commonly used methods:

• Shortest Path Distance in Random k-Nearest Neighbor Graphs, Alamgir and von Luxburg,
ICML 2012.

• Geodesic Exponential Kernels: When Curvature and Linearity Conflict, Feragen, Lauze and
Hauberg, CVPR 2015.

Geodesics are also incorporated into machine learning algorithms that process meshes:

• Geodesic Convolutional Neural Networks on Riemannian Manifolds, Masci et al., ICCV
2015.

Sometimes the variables in a machine learning optimization problem live on a manifold rather
than in Rn, e.g. the space of rotations SO(3) or the set of positive (semi-)definite matrices. In
this case, for example, the exponential map might be used in place of a gradient step in gradient
descent. Some example papers discussing algorithms in this direction include the following:

• Geometric Optimization in Machine Learning, Sra and Hosseini, in Algorithmic Advances in
Riemannian Geometry and Applications (2016).

• Getting started with Manopt: https://www.manopt.org/tutorial.html (Boumal et al., 2014)
• Riemann Manifold Langevin and Hamiltonian Monte Carlo, Girolami and Calderhead, Jour-

nal of the Royal Statistical Society 73.2, 123–214 (2011).

Laplace Operator

The Laplacian is a fundamental operator in differential geometry. For an overview of what the
Laplacian is and how its computed, see the following papers:

• Chapter 6 of Discrete Differential Geometry: An Applied Introduction, Crane
• Laplace-Beltrami: The Swiss Army Knife of Geometry Processing, Solomon, Crane and Vouga
• Analysis on Manifolds via the Laplacian, Canzani, 2013

Laplace-Beltrami: Discretizations

The Laplacian is a smooth operator, and as we’ve seen several times in class, choosing a discretiza-
tion can be difficult. Two commonly-used discretizations are presented in the following papers:

• Uniform Laplacian: A Signal Processing Approach to Fair Surface Design, Taubin, SIGGRAPH
1995
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• Cotangent Laplacian: Discrete Differential-Geometry Operators for Triangulated 2-Manifolds,
Meyer et al., Visualization and Mathematics III 2003

We would hope that discrete Laplacians preserve all of the properties of the smooth Laplacian,
but this is not the case. In fact, there is a no free lunch theorem here that effectively says that it’s
impossible to come up with a discretization of the Laplacian operator without losing something:

• Discrete Laplace operators: No free lunch, Wardetzky et al., SGP 2007.

So far, we’ve discussed Laplacians on triangle meshes, but the Laplace operator can also be defined
for discrete objects that are not triangle meshes.

• A Discrete Laplace-Beltrami Operator for Simplicial Surfaces, Bobenko and Springborn, 2005
• Constructing the Laplace Operator from Point Clouds in Rd, Belkin, Sun and Wang, SODA

2009
• Discrete Laplacians on General Polygonal Meshes, Alexa and Wardetzky, ACM TOG 2011
• A Laplacian for Nonmanifold Triangle Meshes, Sharp and Crane, SGP 2020.

Applications frequently involve solving a Poisson equation ∆ϕ = f . On a triangle mesh, this
is a (very large) linear system of equations. A strategy for solving such problems efficiently is
presented in the following paper:

• Efficient Preconditioning of Laplacian Matrices for Computer Graphics, Krishnan, Fattal, and
Szeliski, ACM TOG 2013.

Laplace-Beltrami: Applications

Laplacians have myriad applications including parameterization, pose transfer, segmentation, re-
construction, simulation, semi-supervised learning, and interpolation. See these papers for a few
examples:

• Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow, Desbrun et al.,
SIGGRAPH 1999.

• Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions, Zhu et al., ICML
2002.

• Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Belkin and
Niyogi, Neural Computation 2003.

• Diffusion Maps, Coifman and Lafon, ACHA 2006.
• Laplace-Beltrami Spectra as Shape-DNA on Surfaces and Solids, Reuter, Wolter and Peinecke,

CAD 2006.
• Manifold Regularization: A Geometric Framework for Learning from Labeled and Unla-

beled Examples, Belkin et al., JMLR 2006.
• Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation, Rusta-

mov, SGP 2007.
• Multiresolution Analysis of Arbitrary Meshes, Eck et al., SIGGRAPH 1995.
• Biharmonic Distance, Lipman, Rustamov and Funkhouser, ACM TOG 2009.
• Functional Maps: A Flexible Representation of Maps Between Shapes, Ovsjanikov et al.,

SIGGRAPH 2012.
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• Geodesics in heat: A new approach to computing distance based on heat flow, Crane, Weischedel,
and Wardetzky, ACM TOG 2013.

• Common Manifold Learning Using Alternating-Diffusion, Lederman and Talmon 2015.
• Accelerated Quadratic Proxy for Geometric Optimization, Kovalsky, Galun, and Lipman, SIG-

GRAPH 2016.
• The Vector Heat Method, Sharp, Soliman, and Crane, TOG 2019.
• The Laplacian in RL: Learning Representations with Efficient Approximations, Wu et al.,

ICLR 2019.
• Laplacian Regularized Few-Shot Learning, Ziko et al., ICML 2020.
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