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After many chapters of preliminaries, we finally reach a topic that is a staple of pure and applied
geometry: measuring the curvature of a surface. Here, we explore famous models characterizing
local surface geometry, quantifying how a two-dimensional surface embedded in R3 cuts through
space. Once again we turn to our discussion of curves in Chapter 3 for preliminaries and inspira-
tion; we will show that the curvature of a surface at a point is closely linked to the curvature of
curves along the surface cutting through that point.

While the basic measures of surface curvature date back to eighteenth century mathematics, we
add a modern twist by considering algorithms for estimating curvature. After exploring the local
theory of smooth surfaces, we show how curvature can be measured on a triangulated surface. We
will see that there is no broad consensus for this task: While mathematicians agree that Gaussian
and mean curvature are the most relevant measures of smooth bending and stretching and broadly
use identical definitions of these quantities (up to a constant factor, at least), many models of
curvature on triangulated surfaces are used in practice.

5.1 thinking about curvature

Imagine modeling a surface in 3D out of a thin sheet of plastic. Our sheet of plastic is thin enough
to be malleable, allowing us to form it into any shape we wish by deforming it in different ways.
As illustrated in Figure REF , there are roughly two ways we could mold the plastic into our
desired shape:

1. First, we could bend the surface. As an extreme example, maybe replace the plastic with a strong
(“inextensible”) piece of paper, which does not tear but can fold. This bending motion does not
affect the length of a curve drawn along the surface: If we draw a curve on a sheet of paper and
then fold the paper up, the folded curve has the same arc length as the original. On the other
hand, the normal vector to the surface changes considerably under bending motion; adjacent
panels on what used to be the flat surface now have varying normal directions. Bending of
course does not have to create a sharp crease, as evidenced by a flag smoothly flapping in the
wind.

2. Second, we could stretch the surface. For example, if we wanted to form a (hyperbolic) potato
chip or an (elliptic) egg out of our sheet of plastic, we would have to stretch or compress the
material. This deformation—unlike bending—affects distances along the surface. Molding a flat
sheet into a saddle-shaped potato chip requires stretching out the material wider and wider as
we move farther from the saddle point, while molding the same sheet into an egg requires
compressing points together.

These two modes of deformation, bending and stretching, are captured by the two most popular
means of measuring the curvature of a surface at a given point, the mean and Gaussian curvature.
Mean curvature measures how the normal of a surface changes as we move along from one point
to another, while the Gaussian curvature measures whether a surface is stretched or compressed
relative to a flat sheet.

As we will see, much like curvature and torsion for curves (see §3.6), the geometry of a surface
is completely determined by its mean and Gaussian curvature functions. Our intuitive descrip-
tions above also align with theorems in differential geometry. For instance, Gauss’s Theorema
Egregium1 states that an ant crawling along a surface can measure Gaussian curvature, that is, it

1 Roughly translated from Latin, “Totally Awesome Theorem.”
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56 curvature of smooth and discrete surfaces

is an intrinsic function of distances along the surface without knowledge of bending or the normal
vector.

These intuitions also play out in how we discretize curvature on a triangulated surface. As a
preview, the simplest versions of mean and Gaussian curvatures on a triangle mesh are shown in
Figure REF . Mean curvature along an edge adjacent to triangles is captured by the dihedral angle
between the two triangles, treating the two triangles together as an origami sheet that folds along
their shared edge; this flapped bending motion can be accomplished locally without modifying
the lengths of the triangle edges. Gaussian curvature at a vertex, on the other hand, becomes angle
deficit, that is, the difference between the sum of angles adjacent to the vertex and 2π. Negative
Gaussian curvature indicates a hyperbolic surface with “too much” interior angle relative to a
planar patch, while positive Gaussian curvature indicates a cone-shaped local neighborhood that
points inward.

The theory of curvature is extremely involved and easily could fill a course worth of mate-
rial. Here we focus only on two-dimensional surfaces in R3 and skip many of the technical and
qualitative proofs that comprise most of the discussion in a more theoretically-oriented treatment.

5.2 differential of a map

Our broad goal is to define ways to measure the shape of an orientable surfaceM⊆ R3 locally. As
a stepping stone to that point, we first consider the problem of computing derivatives of functions
alongM; then in §5.3 we will apply these derivatives to the normal vector of the surface.

The notion of a derivative can be extended to submanifolds using curves:

Definition 5.1 (Differential). Suppose ϕ : M → N is a map from a submanifold M ⊆ Rk into a
submanifold N ⊆ R`. Then, the differential dϕp : TpM→ Tϕ(p)N of ϕ at a point p ∈ M is given by

dϕp(v) := (ϕ ◦ γ)′(0), (5.1)

where γ : (−ε, ε)→M is any curve with γ(0) = p and γ′(0) = v ∈ TpM.

This construction is illustrated in Figure REF . At p ∈ M, we take a tangent vector v ∈ TpM and
trace out a curve γ alongM that passes through p at t = 0, with velocity v. The image ϕ ◦ γ traces
out a curve on N , whose tangent at t = 0 provides dϕp(v).

Before we proceed, we should check that our definition makes sense and agrees with our notion
of a derivative in Rn:

Proposition 5.1. Definition 5.1 is consistent, in that (5.1) does not depend on the particular choice of γ so
long as it passes through p at t = 0 with velocity v. Moreover, dϕp is a linear map.

Proof. JS: Give expression in terms of Jacobian after choosing a local parameterization.

The second half of this proposition, that dϕp is linear, connects differentials to the usual notion
of a derivative in Rn; exercise 5.1. shows that the differential of a map between Euclidean spaces
simply encodes its Jacobian matrix as a linear operator.

We pause here to highlight our first instance of a pattern that will repeat in our brief treatment
of differential geometry. In particular, the differential dϕ is a curious object: It attaches an operator
dϕp to every point p ∈ M. Making matters seemingly more complicated, the target of dϕp is
Tϕ(p)N , while the target of dϕq for some q 6= p is Tϕ(q)N—a potentially different space! This
apparent inconsistency is needed to account for the fact that tangent spaces change as we move
along manifolds and is one of the key sources of confusing notation in differential geometry. In
exchange for this confusion, however, we successfully characterize how frames and coordinates
change from point to point as we move along a surface or manifold. In more advanced treatments,
the notion of a bundle accounts for the fact that the target of dϕ changes from point to point.
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5.3 the second fundamental form

Now, assumeM is an orientable surface (2-submanifold) in R3. In particular, we can assume that
M admits a field of unit normal vectors n : M → S2 as defined in Definition 4.5. Since we can
think of the unit sphere S2 as a two-dimensional submanifold of R3, we can reasonably think of
n as a map between submanifolds and hence compute its differential.

By definition, we know ‖n(p)‖2 = 1 for all p ∈ M. Hence, applying Proposition 3.3 to Defini-
tion 5.1 immediately justifies the following property:

Proposition 5.2. If n : M → S2 is a field of unit normal vectors, then for all p ∈ M we have dnp :
TpM→ TpM.

The operator dnp—or its counterpart with reversed sign, depending on the textbook—is known
as the shape operator ofM at p.

The shape operator dnp takes in a vector v ∈ TpM and outputs another vector dnp(v) ∈ TpM;
in local coordinates using Einstein notation, it would have one upper index and one lower index
similar to (2.2). A convenient convention in differential geometry lowers the index—leading to a
“dot product type” matrix as in (2.3)—by defining the second fundamental form:

Definition 5.2 (Second fundamental form). The second fundamental form at p ∈ M is the bilinear
operator IIp : TpM× TpM given by

IIp(v, w) := −v · dnp(w). (5.2)

Notice that dnp and IIp encode the same information; given the operator IIp we could recover dnp
by evaluating IIp(ei, ej) on a basis {e1, e2} ⊂ TpM.

The diagonal of IIp has an elegant interpretation. Suppose you are a passenger in a car is driving
along a surface M. As the car traces out its path, you experience forces whenever the driver hits
the accelerator pedal or turns the steering wheel. But passengers in a car driving with constant
(high) speed over a hill while wearing a seat belt have experienced another force, the acceleration
of the car simply needed to keep it glued toM rather than flying along a straight line. This force
has to do with the geometry ofM, while the forces due to steering and forward acceleration have
more to do with the driver.

This “acceleration due to geometry” is formalized by the idea of normal curvature. Take γ :
(−ε, ε) → M to be a curve along the surface M, parameterized by arc length. By definition, the
tangent to γ is also tangent toM, showing it is orthogonal to the normal n:

γ′(s) · n(γ(s)) ≡ 0 ∀s ∈ (−ε, ε).

Differentiating both sides shows

κ(s)N(s) · n(γ(s)) + γ′(s) · dnγ(s)(γ
′(s)) ≡ 0.

Here κ(s) is the curvature of γ and N(s) is its unit normal vector—not to be confused with the
unit normal n of the surfaceM! Hence, we have verified the relationship

k(s) · n(γ(s)) ≡ IIγ(s)(T(s), T(s)), (5.3)

where k(s) := κ(s)N(s) = γ′′(s) is the curvature vector of γ and T(s) = γ′(s) is the unit tangent
to γ. Hence, we have verified Meusnier’s Theorem, which states that the component of k in the n
direction is determined by the second fundamental form, without any reference to the geometry
of γ beyond its tangent vector. Figure REF illustrates this property using normal sections to the
surface.

Warning. The discussion above highlights a potentially confusing linguistic point: The curvature and
normals of a curve along a surface along a surface are related to but not the same as the curvature
and normals of the surface itself. For example, as illustrated in Figure REF , if we draw a circle on a
plane embedded in R3, the plane has a constant normal vector and zero curvature, while the circle has
nonzero curvature and normal vectors that are tangent to the surface.
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5.4 principal curvatures

As we have written it, the relationship between IIp(v, w) and IIp(w, v) is unclear: The vectors
v, w ∈ TpM seem to play different roles in the definition of II. In reality, these two quantities
actually agree:

Proposition 5.3. For all v, w ∈ TpM, IIp(v, w) = IIp(w, v).

Proof. JS: Is there some coordinate-free way to do this?

JS: Draw a picture and give some intuition.

Thanks to Proposition 5.3, we can think of IIp like a symmetric matrix, an intuition that can
be made concrete by evaluating IIp in a basis {e1, e2} ⊂ TpM. Thanks to the Spectral Theorem
(Theorem 2.1), it thus makes sense to compute eigenvectors and eigenvalues of IIp.

One of many ways to define the eigenvectors of a symmetric matrix A ∈ Rn×n is to find the
critical points of the map v 7→ v>Av subject to the constraint ‖v‖2 = 1. This formulation gives a
geometrically intuitive definition of the principal curvatures at p ∈ M:

Definition 5.3 (Principal curvatures and directions). The principal curvatures of a surface M at a
point p ∈ M are given by

κmin :=

{
minv∈TpM II(v, v)

subject to ‖v‖2 = 1
(5.4)

κmax :=

{
maxv∈TpM II(v, v)

subject to ‖v‖2 = 1.
(5.5)

That is, by (5.3), κmin and κmax are the minimum and maximum normal curvatures achievable at p ∈ M.
We call unit vectors achieving these extrema principal directions vmin, vmax ∈ TpM.

The principal directions are nonunique, since changing the sign of v does not affect the objective
function.

Definition 5.3 is somewhat nonstandard. Instead, the more typical definition is to resort to a
local basis. Take e1, e2 ∈ TpM to be an orthonormal basis to TpM. Then, we can construct a sym-
metric matrix with entries `ij := II(ei, ej). The principal directions are given by the eigenvectors
of `ij, and the principal curvatures are the corresponding eigenvalues. This construction provides
one additional geometric observation as a corollary to the Spectral Theorem: The directions vmin
and vmax are orthogonal to one another. This observation is trivial mathematically but somewhat
surprising geometrically: The directions of minimum and maximum normal curvatures at p ∈ M
must be perpendicular to one another.

Figure REF shows example fields of principal directions on different surfaces. From an applica-
tions perspective, these directions can be extremely desirable: They align to local features of the
surface, making them natural choices for a variety of tasks from hatching during nonphotorealistic
rendering CITE to feature alignment for quadrilateral meshing CITE .

5.5 gaussian and mean curvatures

We finally are in a position to define the two most famous measurements of surface geometry:

Definition 5.4 (Gaussian and mean curvature). The Gaussian curvature K and mean curvature H at a
point p ∈ M are given by:

K := κmin · κmax (5.6)

H :=
1
2
(κmin + κmax). (5.7)
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Based on the eigenvalue interpretation of principal curvatures provided in the last section, an
alternative description is that the Gaussian curvature is the determinant of IIp, and the mean
curvature is half the trace of IIp.

These two measures of curvature are scalar fields along the surface, that is, they each assign a
real number to each point on M measuring its curvature. These two values are the best known
geometric quantities in the local theory of surfaces and provide intuitive information about the
geometry ofM explained informally below.

mean curvature . The mean curvature H inherits its name not just from the definition (5.7)
but also a second relationship. If {e1, e2} forms an orthogonal basis for TpM, we can compute the
normal curvature ofM at every direction from p ∈ M by evaluating

κ(θ) := II(e1 cos θ + e2 sin θ, e1 cos θ + e2 sin θ).

Then, a straightforward argument from linear algebra shows

H =
1

2π

∫ 2π

0
κ(θ) dθ. (5.8)

That is, the mean curvature H is truly the mean of the normal curvatures in all the possible
outgoing directions.

A second interpretation of H formalized in exercise 5.3. is illustrated in Figure REF . Given an
oriented surface M, we can generate a set of surfaces Mt parameterized by scalar t ∈ (−ε, ε)
by displacing each surface point a distance t along the unit normal n, via p 7→ p + tnp. When
t = 0, we have M0 = M. In a local neighborhood of each p ∈ M, we could compute the rate
of change of surface area. As shown in Figure REF , if the surface is planar, surface area does not
change, while if the surface is a sphere, displacing along the normal increases surface area. The
local expansion or contraction rate of surface area at t = 0 is given by H(p), and the rate of change
of the total area of the surface is given by

∫
M H(p) dp.

The H ≡ 0 case is particularly interesting. Surfaces with zero mean curvature are known as min-
imal surfaces and—as we will show in § REF —are local minimizers of the surface area functional.
Physically, minimal surfaces are given by soap films stretched over wire-shaped fixed boundaries.
Some minimal surfaces are shown in Figure REF ; even though the surfaces change significantly as
they are displaced along their normal vectors, the surface area remains constant to first order. Min-
imal surfaces are necessarily flat or hyperbolic, since H = 0 implies that κ1 and κ2 have opposite
signs.

gaussian curvature . While mean curvature H measures the bending of the normal vector,
Gaussian curvature K measures stretching of the surface relative to the plane. Most importantly,
recalling that K is the product of extremal normal curvatures κmin and κmax, we can use the sign
of Gaussian curvature to classify local surface geometry as follows:

• Elliptic (K > 0): Elliptic points are egg-shaped; since the two principal curvatures agree in sign,
this case corresponds to points on a surface that bend the same way in all directions.

• Hyperbolic (K < 0): Hyperbolic points are saddle-shaped, reflecting the fact that κmin and κmax
have opposite sign.

• Parabolic (K = 0): Parabolic points are flat in at least one direction. Surfaces where K ≡ 0
are developable, roughly corresponding to surfaces achievable by bending a flat sheet of paper
without stretching.

Figure REF shows a surface M divided into regions based on the sign of K, providing a straight-
forward if noisy way to divide surface the surface into meaningful segments.
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Figure REF provides an alternative intuition for K that lifts to definitions of scalar curvature on
higher-dimensional manifolds and even metric spaces like graphs CITE . At a point p ∈ M, take a
short piece of string of length r > 0 and draw a geodesic circle surrounding p consisting of all points
distance r from p alongM; such distances alongM are geodesic, defined more carefully in § REF .
The resulting geodesic circle has arc length, or circumference, C(r). Then, Gaussian curvature can
be obtained as the limit

K = lim
r→0+

3
2πr− C(r)

πr3 . (5.9)

Recall that 2πr is the circumference of a circle of radius r on the plane. Hence, Gaussian curvature
can be understood as a comparison between the circumference of a small circle on M relative to
that of a small planar circle. Although a proof of (5.9) is out of the scope of our discussion, it is a
consequence of the Bertrand–Diquet–Puiseaux Theorem and was originally introduced in JS: year.

Figure REF illustrates this formula at points with a range of K values. As the surface becomes
more pointy—corresponding to large K—the circumference of the circle around p shrinks. In the
opposite direction, making the surface more hyperbolic effectively adds more circumference at
a fixed radius from p; the surface buckles into a wavey hyperbolic shape to fit in the additional
perimeter. As a hint for how we will go about discretizing Gaussian curvature, Figure REF shows
that the same behavior can be observed in the origami-like scenario of gluing together equilateral
triangles. As we add more triangles around a fixed shared vertex, the length of the one-ring grows
and the piecewise-flat surface eventually becomes hyperbolic.

A related formula shows that we can also describe K in terms of areas:

K = lim
r→0+

12
πr2 − A(r)

πr4 . (5.10)

Here, A(r) is the area on the surface enclosed by the geodesic circle, and πr2 is the area of a
circle in the plane. Comparing this formula to our descriptions of mean curvature H yields some
insight into the differences between these two quantities: We compute K by measuring how areas
change as we expand radially in the tangential direction along a surface, while we compute H by
measuring changes in area as we move orthogonally to the surface along its normal vectors.

Two theoretical descriptions of Gaussian curvature are pillars of the classical differential geom-
etry literature:

• Gauss’s Theorema Egregium is a key theoretical result about K as a function on a surface M
stating that K is invariant under isometric deformation. That is, if we bend a surface without
stretching—hence preserving distances along the surface—its Gaussian curvature remains the
same at every point. This result is somewhat surprising since our definition of K is in terms of
normal vectors, which certainly change asM undergoes nearly any deformation.

• The Gauss–Bonnet Theorem, similar to the winding number theorem in § REF , shows that the
total Gaussian curvature over a surface without boundary is topologically invariant:∫

M
K(p) dA(p) = 2πχ, (5.11)

where χ is the Euler characteristic ofM defined in (4.2). This result links the local geometry of a
surface to a global topological structure, even if a surface undergoes non-isometric deformation.
Note that this formula needs to be adjusted with a boundary integral term ifM has a boundary.

putting the two together . Similarly to Proposition 3.2 for curves, we might ask whether
curvature is sufficient to characterize a surface up to rigid motion. The analogous result for sur-
faces is somewhat harder to state but known as the Bonnet Theorem in classical differential geom-
etry. The basic take-away of this result is that we can reconstruct a surface patch given both its
first and second fundamental forms; although we have not defined it here, the first fundamental



5.5 gaussian and mean curvatures 61

form is simply the matrix of inner products of tangent vectors. For technical reasons, given only
the Gaussian and mean curvatures it is not possible to reconstruct a surface, and furthermore the
prescribed first and second fundamental forms must satisfy a certain set of compatibility condi-
tions known as the Gauss and Mainardi–Codazzi equations. Perhaps the simplest corollary of the
Bonnet Theorem is that if a map from one surface into another preserves dot products and the
second fundamental form, it is necessarily an orthogonal transformation (composition rotation,
translation, and reflection).

5.5.1 Advanced Topic: Mean Curvature Normal

Recall from §3.5.1 that another way we were able to define the curvature of a curve was by taking
the first variation of the arc length functional. The two-dimensional analog of this calculation
leads to the idea of the mean curvature normal to a surface, which is exactly what it sounds like: the
normal to a surface weighted at each point by the mean curvature.

Suppose ft(u, v) : R2 → R3 parameterizes a time-varying set of surface patches; that is, at any
fixed t ∈ (−ε, ε) if we take a small open patch U ⊆ R2 then f (U) gives a small piece of a surface in
R3. Being extremely sloppy about the bounds on (u, v) for integration, by the determinant formula
for surface area JS: add me the area of our patch is

At :=
∫∫ ∥∥∥∥∂ ft

∂u
× ∂ ft

∂v

∥∥∥∥
2

du dv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dA

.

For convenience, define tangent vectors tu := ∂ ft
∂u and tv := ∂ ft

∂v ; notice that the cross product of
these two vectors is parallel to the normal to the surface.

We can differentiate in the time variable t to understand how surface area changes as the geom-
etry is perturbed:

dAt

dt
=
∫∫ d

dt
‖tu × tv‖2 du dv by differentiating under the integral

=
∫∫
‖tu × tv‖−1

2 (tu × tv) ·
d
dt

(tu × tv) du dv by exercise 3.4.

=
∫∫
‖tu × tv‖−1

2 (tu × tv) ·
(

∂tu

∂t
× tv + tu ×

∂tv

∂t

)
du dv by the product rule

=
∫∫

n ·
(

∂tu

∂t
× tv + tu ×

∂tv

∂t

)
du dv by definition of the unit normal

=
∫∫

n ·
(

∂wt

∂u
× tv + tu ×

∂wt

∂v

)
du dv if we define velocity wt :=

∂ ft

∂t

=
∫∫ (

∂wt

∂u
· (tv × n) +

∂wt

∂v
· (n× tu)

)
du dv by the triple product identity a · (b× c) = b · (c× a).

Now assume that our setup is similar to that shown in Figure REF , namely that wt vanishes
outside of a small neighorhood in (u, v) space; this will allow us to ignore boundary terms when
integrating by parts. Then, we have

dAt

dt
= −

∫∫
wt ·

(
∂

∂u
(tv × n) +

∂

∂v
(n× tu)

)
du dv by exercise 5.4. (integration by parts)

= −
∫∫

wt ·
(

tv ×
∂n
∂u
− tu ×

∂n
∂v

)
du dv by the product rule and since

∂tv

∂u
=

∂tu

∂v

=
∫∫

wt · (dn(tu)× tv + tu × dn(tv)) du dv by definition of dn

= 2
∫∫

wt · Hn dA, by exercise 5.5. (identity for mean curvature).
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In direct analogy to the computations we did for curves in §3.5.1, we have shown that the first
variation of surface area is the mean curvature normal Hn. That is, if we wish to extremize surface
area most efficiently, we should flow points on the surface along their normal vectors.

This idea leads to the idea of mean curvature flow, or gradient descent on surface area. Mean
curvature flow, illustrated in Figure REF , is related to the physical processes under which soap
films evolve. Beyond being the topic of considerable mathematical literature attempting to describe
qualitative properties of mean curvature flow, it can be used in practice to smooth out noisy
surfaces, as originally proposed in CITE . Figure REF shows an example of this application: Noise
in a surface leads to spurious surface area that is reduced in the flow. On the other hand, if we
run the flow too long, it can develop singularities, as illustrated in Figure REF . Development of
algorithms “adjacent to” mean curvature flow that do not develop these spurious artifacts is a
topic of research; one recent proposal is illustrated in Figure REF .

5.6 applications of curvature

Having established the definition and basic properties of surface curvature, we now turn our
attention to the applied world, examining how and why it is useful to compute curvature algorith-
mically. Curvature was one of the earliest quantities from differential geometry to be adapted to
computer vision, computer-aided design (CAD), and other numerical settings. Stable algorithms
for computing curvature—which can be difficult to design, since curvature is a second-derivative
quantity—find application in a diverse set of pipelines including the ones listed below:

surface descriptor . Probably the most natural application of computing principal curva-
tures, principal directions, and Gauss/mean curvatures is to generate a descriptor (or feature) for
describing points on a surface. Computer vision pipelines often seek “salient” features of surface
geometry to anchor the computations, and extrema of curvature or derived quantities are often
suitable for this task. For instance, if we wish to align two scans of the same object automatically,
we could find the rotation/translation that best aligns points with similar curvature values. Inte-
gral curves of the principal direction field also provide feature curves that align to the interesting
geometric features of a surface. Unlike coordinates or vectors along edges, curvature values are
invariant to rigid motions of a surface in space. Indeed, by the Theorema Egregium, Gaussian cur-
vature is even invariant to bending motions, making it a suitable feature to compute for matching
points on surfaces even if they undergo certain types of deformation; one key application is to
matching scans of human bodies, whose deformations are largely bending rather than stretching
thanks to our rigid underlying skeletons.

One abstract way to understand the role of curvature as a descriptor is shown in Figure REF .
We can think of the function assigning a mean and Gaussian curvature value to every point on a
smooth surfaceM as an embedding of sorts φ : (x, y, z) ∈ M→ (H, K) ∈ R2. As we move a surface
around in 3D space or deform lengths and angles along the surface, the (x, y, z) coordinates of its
features change considerably. But, the (H, K) “coordinates” of the points are less strongly affected.
Tasks like matching points and features often are more straightforward in (H, K) space thanks to
this property: There is not some unknown rotation or deformation acting on the coordinates that
we must account for.

fairness measure . A key consideration when designing surfaces for manufacturing appli-
cations is their fairness, or (roughly) smoothness. In this domain, surfaces are often built out of
building blocks like quadric patches, joined along seams that transition from one patch to another.
Meeting these pieces as smoothly as possible is desirable in industrial and mechanical design, for
both physical (e.g. aerodynamics) and aesthetic reasons.

Examples of spline surfaces joined together are shown in Figure REF . In general, in computer-
aided geometric design (CAGD) a number of curvature-related properties are considered when



5.6 applications of curvature 63

understanding geometry along a seam, in terms of the parameterizations f1(u, v), f2(u, v) : R2 →
R3 of the joined patches:

• C1 continuity: The gradients of the two functions f1, f2 agree along the seam.

• G1 continuity: The two patches have the same tangent planes along the same.

• C2 continuity: The second derivatives of f1, f2 agree along the seam.

• G2 continuity: The second fundamental form varies continuously along the seam.

The Gk properties arguably are more valuable for manufacturing, since at the end of the day the
physical object should not reveal the patches from which it is built. But, these can be challenging
constraints to enforce in practice, so often the Ck constraints are used as proxies.

Figure REF shows an interesting visualization of curvature often used in user interfaces for
design. Here, we show the reflection of a striped pattern off the side of a modeled surface. The
traces of the stripes reveal curvature discontinuities as sharp bends and G1 discontinuities as
kinks in the reflected curves.

smoothing and reconstruction. As described in §5.5.1, mean curvature flow—or equiv-
alently, gradient descent on surface area—is a fundamental technique for surface smoothing, used
e.g. for removing artifacts from meshes reconstructed from 3D scanning equipment. Curvature is
also involved in other surface editing tasks. For instance, CITE proposes an algorithm for deform-
ing surfaces by modifying discrete analogs of their fundamental forms and then reconstructing,
and CITE proposes allowing a user to paint a “mean curvature half-density” function onto a sur-
face to add bumps and bends to the geometry.

rendering . Curvature has a strong bearing on the appearance of physical objects when they
are rendered or photographed. After all, at a local scale curvature gives a complete picture of sur-
face geometry. Early techniques for surface reconstruction attempted to recover curvature values
from two-dimensional visual content CITE , and some theoretical results show that such a pro-
cedure can succeed when surfaces are shaded using flat, Lambertian materials. While this early
theoretical work showed intrinsic interest, however, practical application was challenging since
real-world surfaces exhibit irregular, spatially-varying textures and reflectance models.

Turning this computer vision work on its head, however, we can use the observation that cur-
vature is encoded in visual content to inspire expressive ways to render three-dimensional shapes.
This idea is widely used in pipelines for nonphotorealistic rendering, where the goal is to render
in a visually attractive or communicative fashion rather than accurately simulating the physics of
light and materials. As an example, principal directions are used to guide the hatching algorithm
described in CITE , which simulates pen-and-ink sketching of 3D surfaces; Figure REF shows an
example.

(re)meshing . While our discussion has focused on triangle meshes, the reality is that a sur-
face can be tiled with a variety of regular polygons other than triangles. One common choice is
quadrilaterals (quads), which present a variety of advantages in graphics and scientific computing
applications: Quad meshes locally resemble grids, facilitating adaptation of classical grid-based
simulation techniques to these structures, and they can be used to define control points of spline
patches and subdivision surfaces in case we wish to smooth out a surface from its meshed facets.
An example of a quad mesh is shown in Figure REF .

A key task is conversion from one type of mesh to another. For instance, we may wish to take
a triangle mesh produced using a 3D scanner and convert it to a quad mesh for use by an artist.
Design of automatic algorithms for this remeshing task are a topic of research in the geometry
processing community.
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A common approach to quad remeshing is to align quads to the geometric features of a sur-
face. This alignment tends to improve approximation quality when replacing a dense triangulated
surface with a sparse set of quads, and it facilitates subsequent editing procedures that displace
salient features of a mesh. To this end, algorithms like the one in REF compute principal curva-
tures as an initial step, and in a second discrete step tile the surface with quads that are aligned to
these directions. Principal curvature directions can fit the bill for algorithms in this domain: Not
only are they aligned to key surface features, but also they provide two orthogonal directions per
point on a surface, differentially resembling the sides of a quad. An example of this procedure is
shown in Figure REF . Foreshadowing our discussion of vector field topology in § REF , note the
presence of certain singular points, or vertices on the quad mesh with fewer or more than four
neighbors.

5.7 approximating curvature

Having established the basic mathematics of surface curvature, we now consider a discrete analog
of the problem: estimation of curvature on a triangulated surface. This task can be interpreted in
two (not necessarily incompatible) ways:

• Treating a triangle mesh like a discretization of a smooth surface, and approximating the deriva-
tives involved in computing curvature using sampled points available on the mesh.

• Redefining curvature what curvature is, directly for a triangulated rather than surface.

The latter task seems almost political: What gives us the right to redefine curvature simply because
we do not have access to a smooth surface approximated by a mesh? But a few observations make
this approach seem less outrageous. First of all, we often are not in the situation where we can
somehow refine our approximation of a surface by somehow “hallucinating” a denser sampling;
rather, a mesh is given as input from a scan of a 3D object or an artist model, from which we have
no opportunity to draw additional samples. Furthermore, treating a triangle mesh as a surface
leads to a particularly boring treatment of curvature, with κ ≡ 0 in the interior of each triangle
and κ = ∞ on non-flat edges and vertices. In any event, it is not unreasonable to expect some
discrete measures of curvature to converge to the true analog on a smooth surface in the limit of
refinement.

Less satisfyingly, we will see that there exist many models for approximating Gaussian curvature,
mean curvature, principal directions, and other quantities on discrete surfaces, and that they do
not necessarily agree with one another. Just as we found for the curvature of curves in § REF ,
there is “no free lunch” here—using different formulas for or properties of curvature to motivate
a discrete computation can lead to different numerical values for curvature in the end.

What we provide below is a small sampling of the broad literature on curvature computation
from discrete surfaces; a full survey of the many methods available and their shades of difference
would take far more space.

5.7.1 Local Tensor Methods

We begin with some of the earliest methods for curvature computation to make it into the com-
puter graphics and vision literatures. These methods typically aimed not just to compute Gaussian
or mean curvature but rather to compute matrices resembling the full second fundamental form,
which encode principal directions and curvature in a single tensor.



5.7 approximating curvature 65

taylor series method. One early technique introduced by G. Taubin in 1995 builds up a
matrix related to—but not the same as—the second fundamental form CITE . On a smooth surface
M, a matrix Mp at a point p ∈ M is defined via

Mp :=
1

2π

∫ π

−π
κθtθt>θ dθ. (5.12)

Here, κ(θ) is the normal curvature in direction θ and tθ = e1 cos θ + e2 sin θ, as in (5.8). It is easy to
see that Mp has the normal vector np as an eigenvector with eigenvalue 0. More surprisingly, the
remaining eigenvectors of Mp are the two principal directions vmin and vmax at p, with eigenvalues
λ1 = 3

8 κmin + 1
8 κmax and λ2 = 1

8 κmin + 3
8 κmax; after computing the λi’s using 3× 3 eigenvector

computation, these relationships can be inverted to find the principal curvatures at p. Exercise 5.6.
fills in details of these computations.

To complete our description of Taubin’s curvature computation technique, we need one more
formula for normal curvature. Take γ(s) : (−ε, ε) →M to be a curve along a smooth surface M
with γ(0) = p, parameterized by arc length. If κγ(s), nγ, and tγ are the curvature, normal, and
tangent of γ(s) as a curve, then expanding a Taylor series about s = 0 shows

γ(s)− p = tγ(0)s +
1
2

κγ(0)nγ(0)s2 + O(s3).

Two corollaries immediately follow from this formula:

‖γ(s)− p‖2
2 = s2 + O(s3)

2n>p (γ(s)− p) = κθ(t)s
2 + O(s3),

where we take t = tγ(0), np is the normal toM (not γ!) at p, and κθ(t) is the normal curvature of
M at p in direction t. Combining these two expressions shows

κθ(t) =
2n>p (γ(s)− p)

‖γ(s)− p‖2
2

+ O(s) (5.13)

Taubin’s algorithm for per-vertex curvature on a triangle mesh first approximates Mp at each
vertex using (5.13) and then uses its eigenvalues to obtain curvature. First, the algorithm approxi-
mates a per-vertex unit normal nv for each v ∈ V; while this calculation is not crucial, the specific
approximation proposed is to average the normals of triangles adjacent to each vertex, weighted
by triangle area. Then, M from (5.12) is approximated using a sum

Mv ≈ ∑
u∼v

wvuκvutvut>vu.

This sum is over vertices u adjacent to v. The individual terms in this expression are as follows:

• tvu is an approximation of the tangent direction orthogonal to nv in the u direction:

tvu :=
(I3×3 − nvn>v )(u− v)
‖(I3×3 − nvn>v )(u− v)‖2

.

• κvu is an estimation of the directional curvature using (5.13)

κvu :=
2n>v (u− v)
‖u− v‖2

2
.

• wvu is an averaging weight proportional to the sum of the two triangle areas adjacent to edge
uv, normalized to sum to 1.
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Once Mv is approximated, the curvature and principal directions are obtained using standard
eigenvalue computations on the resulting 3× 3 matrix.

This algorithm is extremely simplistic and gives reasonable approximations of surface curvature,
so long as the surface is fairly densely and smoothly sampled. This computation obtains curvature
from the one-ring of each vertex, so local noise can obstruct obtaining a reasonable value—this
property will be true for many of the techniques we consider, and it is somewhat reasonable in the
sense that curvature is built out of derivatives. Since this curvature estimate is built from Taylor
series, it is also somewhat difficult to characterize its behavior before the mesh is densely sampled.

direct approximation of II. A somewhat more recent method by S. Rusinkiewicz in 2004

directly attempts to build up approximations of the second fundamental form II CITE . While it is
hard to compare the quality of this technique to the previous one from a theoretical perspective,
it is interesting to see the alternative engineering decisions go into this alternative method, e.g.
estimating curvature per-triangle rather than per-vertex.

Once again, we start with a smooth formula on a surfaceM and then discretize it term-by-term
on a triangle mesh. For a point p ∈ M, take u, v ∈ TpM to be two orthonormal tangent vectors at
p. In this case, we can express the second fundamental form as a matrix in the (u, v) coordinates
as follows:

IIp =

(
dnp(u) · u dnp(v) · u
dnp(u) · v dnp(v) · v

)
. (5.14)

The orthonormality condition here simplifies working with IIp directly, without having to account
for change in coordinates. In this case, for a general vector w = c1u + c2v we can show

IIp ·
(

c1

c2

)
= dnp(w). (5.15)

This relationship is our starting point for discrete estimation of II. In this technique, rather than
estimating the second fundamental form per-vertex, it is estimated per-triangle. For every triangle,
we first compute an arbitrary orthogonal basis (u, v) for the plane of the triangle; the final choice
of principal directions and curvatures will not depend on this basis, so it can be chosen arbitrarily.
A triangle with edges (e0, e1, e2) is shown in Figure REF ; we assume the mesh has per-vertex
unit normal vectors (e.g. using the strategy suggested in the previous section), restricted to this
triangle as (n0, n1, n2). Then, starting from (5.15) we make the following approximation for the
behavior of II on the triangle:

II ·
(

e0 · u
e0 · v

)
=

(
(n2 − n1) · u
(n2 · n1) · v

)

II ·
(

e1 · u
e1 · v

)
=

(
(n0 − n2) · u
(n0 · n2) · v

)

II ·
(

e2 · u
e2 · v

)
=

(
(n1 − n0) · u
(n1 · n0) · v

)
This gives a noisy estimate of II per triangle; CITE then proposes averaging this per-triangle matrix
to adjacent vertices after rotating from the triangle normal to the vertex normal.

other discretized approaches . The two techniques above are representative of a large
class of curvature computation algorithms that each identify a particular formula for curvature or
related tensors and then attempt to approximate it on a mesh via divided differences. There are
many formulas for curvature in the theory of differential geometry, any of which could be used as
a starting point for this strategy. For example, CITE uses height functions as a starting point, and
JS: mention someone else.
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5.7.2 Structure-Preserving Methods

The tensor-based approaches in the previous section would be considered discretized, i.e. they are
approximations we might expect to converge as a mesh is sampled more and more densely but
we have little understanding of behavior in the finite-sample regime. We now show two curvature
approximations—one for Gaussian curvature and one for mean curvature—that are designed to
preserve structure from the smooth case in a discrete model.

structure-preserving gaussian curvature . For a surface with boundary, we need a
slight extension of the Gauss–Bonnet Theorem (5.11):∫

M
K(p) dA(p) +

∫
∂M

κg(p) ds(p) = 2πχ(M). (5.16)

Here, κg denotes the geodesic curvature of the boundary, i.e. the curvature of the boundary curve
∂M projected onto the tangent plane. The “boundary-aware” Euler characteristic χ(M) is given
by 2− 2g− b, where g is the genus and b is the number of boundary curves JS: check me.

Now, consider a cell V around a vertex on a triangle mesh, shown in Figure REF . We define V
as the Voronoi cell around the vertex, whose boundary edges are defined to be the perpendicular
bisectors of triangle edges; this structure will become critical for our discussion of JS: topic in § REF .
Notice that V has disk topology, and hence we can use (5.16) to write∫

V
K(p) dA(p) = 2π −∑

j
ε j.

Here, the sum over exterior angles comes from our discussion of curves in § REF : The sum of
the exterior angles gives the total geodesic curvature, since the only other facets in the curve are
where triangles meet—at which point the change is in the normal rather than tangent direction.
As shown in exercise 5.7., by a basic trigonometric argument we can write the same sum using
interior angles at the center vertex:∫

V
K(p) dA(p) = 2π −∑

j
θj. (5.17)

As originally proposed in CITE , we can define the integrated curvature K over cell V using the
right-hand side of the expression above; pointwise curvature can be approximated by dividing by
the area of V.

Why choose this definition of curvature per-vertex? Take M to be a triangle mesh without
boundary (for simplicty), and define {Vi}

|
i=1V| to be the set of per-vertex Voronoi cells. We can

compute an integral over the mesh to reveal a conserved structure from smooth theory:∫
M

K dA = ∑
i

∫
Vi

K dA since M = ∪|V|i=1Vi

= ∑
i

(
2π −∑

j∼i
θij

)
by our definition (5.17)

= 2π|V| −∑
j∼i

θij by expanding the sum

= 2π|V| − π|F| = 2πχ(M)

where |V| is the number of vertices and |F| is the number of triangles. Here, the final line is a
byproduct of observing that the sum of all θij’s is the same as the sum of all the interior angles of
all the triangles. The observation that 2|V| − |F| equals the Euler characteristic is a byproduct of
the counting arguments in § REF .
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Just as we were able to preserve the turning angle theorem for curves when defining planar
curvature in § REF , here we were able to preserve a topological invariant, the Euler characteristic
χ, encoded in our integrated measure of curvature.

structure-preserving mean curvature . While a simple topological invariant like the
Euler characteristic is not easily encoded in mean curvature, we can choose a different structure
to preserve when considering mesh-based measures of this curvature value. In particular, we will
use the discussion in §5.5.1 to motivate a definition of mean curvature using derivatives of surface
area.

Suppose we have a triangle mesh with vertices V and faces F. Assuming the connectivity of
the mesh is fixed, we can think of surface area as a function taking the positions of all the vertices
X ∈ R|V|×3 and outputting a scalar value:

A(X) := ∑
f∈F

Area( f ; X) = ∑
( f1, f2, f3)∈F

1
2
‖(X f2 − X f1)× (X f3 − X f1)‖2. (5.18)

That is, A(·) takes in a list of vertex positions and outputs the sum of the areas of all the triangles
on the mesh.

Recall from §5.5.1 that we obtained the mean curvature normal by differentiating surface area in
the positions of points along the surface. Here we will do the same, but rather than differentiating
in a parameterization of a smooth surface we differentiate in X.

We build up our calculation using a few propositions. Refer to Figure REF for notation:

Proposition 5.4. The gradient of area for the triangle in Figure REF in vertex p is given by

∇p A =
1
2

e⊥, (5.19)

where e is a vector along the edge opposite p and ⊥ indicates rotation by 90◦ in the plane of the triangle.

Proof. JS: see slides for now

While this formula is a useful intuitive description of the gradient of triangle area, we need
to massage it more before recognizing a famous formula in discrete differential geometry. For
convenience, our next step is to prove a trigonometric identity:

Proposition 5.5. The ratio of the base b to the height h of a triangle is

b
h
= cot α + cot β (5.20)

as notated in Figure REF .

Proof. JS: see slides for now

Using this new formula, we can rewrite the formula in Proposition ??:

Proposition 5.6. The gradient of area for the triangle in Figure REF in vertex p is given by

∇p A =
1
2
((p− r) cot α + (p− q) cot β). (5.21)

Proof. JS: see slides for now

Proposition 5.6 gives the gradient of a single triangle’s area in terms of quantities easily gathered
from a triangle mesh. Recall, however, that the area functional in (5.18) is summed over the entire
mesh. Hence, differentiating with respect to a vertex p on a mesh requires a sum around its one-
ring, leading to the first appearance of a cotangent Laplacian formula in our treatment of mesh
geometry:
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Proposition 5.7. The gradient of mesh area with respect to vertex p (using notation shown in Figure REF )
is given by

∇p A =
1
2 ∑

j
(cot αj + cot β j)(p− qj), (5.22)

where j indexes the set of vertices adjacent to p, each with position qj and opposite angles αj, β j.

This formula provides the gradient of surface area with respect to the positions of the mesh
vertices, the discrete analog of the first variation formula derived in §5.5.1. We can regard this
vector ∇p A in Proposition 5.7 as an integrated mean curvature vector. Similar to our discussion of
integrated Gaussian curvature above, this is an integrated quantity because it corresponds to the
full Voronoi region V around the center vertex p. One way to see this is by taking a finer and
finer mesh, the neighbors qj will approach p and hence the expression will vanish, while mean
curvature should approach a nonzero value: Dividing by the area of V addresses this issue.

alternative structures . Stepping back, we should contrast the strategies we have used to
compute curvature here with those in §5.7.2. In §5.7.2, we discretized assorted derivatives involved
in curvature formulas using divided differences, leading to notions of curvature which likely
converge in the limit of refinement but are hard to describe for a coarsely-sampled mesh. In this
section, we instead chose a global property of a curvature measure—e.g. that it encodes the Euler
characteristic or can be obtained as the gradient of surface area—and chose to preserve it exactly
in discretizing curvature; in doing so, however, we made our link to a specific explicit expression
for curvature somewhat less clear.

There are trade-offs between these and other notions of curvature that make it murky to choose
one technique universally. For instance, both of our structure-preserving methods above involve
only a vertex and its one-ring of neighbors and hence can be sensitive to noise. Also, there is “no
free lunch,” in the sense that if we chose to preserve a different structure in our discretization
that it would agree with the formulas above; for instance, CITE uses turning angles of the normal
vector to characterize mean curvature and ends up with an angle-weighted formula rather than
cotangents.

5.7.3 Alternative Strategies and General Advice

The curvature computation methods here are just a few of the many algorithms for curvature
computation available. Many other considerations can inform the choice of a curvature formula,
from stability to local surface noise—in which case larger patches might be used to estimate II) to
resilience to incomplete data—in which case we may need to employ machine learning techniques
to impute missing surface patches.

From a practical perspective, a reasonable piece of advice is to try multiple curvature computa-
tion techniques until identifying one that is best for a given application. The reality is that there is
no single choice that is best in all scenarios, as each algorithm has its own tradeoff between stabil-
ity, fidelity to smooth analogs, and structure preservation. Most methods for computing curvature
are relatively straightforward, and often implementations are available online.

5.8 generalizations of curvature

We conclude by noting that scalar curvature—the generalized term for measures resembling Gaus-
sian curvature—can be measured on much weaker, non-differentiable structures. Definitions of
curvature in the weak case are often motivated by comparison formulas like (5.9) and (5.10), which
measure curvature as the difference between the area of a flat shape like a circle and the area of
the analogous shape on a curved domain.

JS: For later: Informal paragraph on Alexandrov space
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JS: For later: Curvature of a vertex on a graph

5.9 exercises

5.1. JS: Computing differential of map from Rn into Rm and showing it agrees with definitions from calculus

5.2. JS: Developable surfaces, rulings

5.3. JS: Mean curvature from area of displaced surface

5.4. JS: Integration by parts for mean curvature formula

5.5. Suppose tu, tv ∈ TpM for some point p ∈ M of a surfaceM. Derive the following identity:

dn(tu)× tv + tu × dn(tv) = 2H(p)tu × tv.

5.6. JS: Derive Taubin formulas

5.7. JS: Exterior angle to internal angle


