Discrete Laplacian Operators

 Justin Solomon6.8410: Shape Analysis

Spring 2023

MIT EECS

Our Focus

$f \in C^{\infty}(\mathcal{M}) \longrightarrow \longrightarrow \Delta f \in C^{\infty}(\mathcal{M})$
 The Laplacian

Planar Region

Wave equation:

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =-\Delta u \\
\Delta & :=-\sum_{i} \frac{\partial^{2}}{\partial\left(x^{i}\right)^{2}}
\end{aligned}
$$

Discretizing the Laplacian

$$
\Delta f=\frac{1}{\sqrt{|g|}} \partial_{i}\left(\sqrt{|g|} g^{i j} \partial_{j} f\right)
$$

?!

Problem

Laplacian is a differential operator!

0

Today's Approach

First-order Galerkin

Finite element method (FEM)

Integration by Parts to the Rescue

$$
\int_{\Omega} f \Delta g d A=\text { boundary terms }+\int_{\Omega} \nabla f \cdot \nabla g d A
$$

A GUIDE To
INTEGRATION BY PARTS:
GIVEN A PROBLEM OF THE FORM:
$\int f(x) g(x) d x=$?
CHOOSE VARIABLES U AND V SUCH THAT: $u=f(x)$ $d v=g(x) d x$
NOW THE ORIGINAL EXPRESSION BECOMES:

$$
\int u d v=?
$$

WHICH DEFINITELY LOOKS EASIER. ANYWAY, I GOTTA RUN.

BUT GOOD LUCK!

Slightly Easier?

$\int_{\Omega} f \Delta g d A=$ boundary terms $+\int_{\Omega} \nabla f \cdot \nabla g d A$ $\begin{aligned} & \text { Laplacian } \\ & \text { (second derivative) }\end{aligned}$ $\begin{array}{r}\text { Gradient }\end{array}$ (first derivative)

Slightly Easier?

$$
\begin{aligned}
& \int_{\Omega} f \Delta g d A=\text { boundary terms }+\int_{\Omega} \nabla f \cdot \nabla g d A \\
& \begin{array}{l}
\text { One derivative, } \\
\text { one integral }
\end{array} \\
& \text { (first derivative) }
\end{aligned}
$$

Intuition: Cancels?

Galerkin FEM Approach

$$
\begin{gathered}
\quad g=\Delta f \\
\Longrightarrow \int \psi g d A=\int \psi \Delta f d A=[\text { boundary terms }]+\int(\nabla \psi \cdot \nabla f) d A \\
\quad \text { Approximate } f \approx \sum_{k} v^{k} \psi_{k} \text { and } g \approx \sum_{k} w^{k} \psi_{k} \\
\Longrightarrow \text { Linear system } \sum_{k} w^{k}\left\langle\psi_{i}, \psi_{\ell}\right\rangle=\sum_{k} v^{k}\left\langle\nabla \psi_{k}, \nabla \psi_{\ell}\right\rangle
\end{gathered}
$$

Mass matrix: $M_{i j}:=\left\langle\psi_{i}, \psi_{j}\right\rangle$
Stiffness matrix: $L_{i j}:=\left\langle\nabla \psi_{i}, \nabla \psi_{j}\right\rangle$

Which

$\Longrightarrow M \mathbf{w}=L \mathbf{v}$

Important to Note

Not the only way

to approximate the Laplacian operator.

- Divided differences
- Higher-order elements
- Boundary element methods
- Discrete exterior calculus

But this method is worth knowing, so we'll do it in detail!

L^{2} Dual of a Function

Function $f: \mathcal{M} \rightarrow \mathbb{R}$
\downarrow
${ }^{\text {Operator }} \mathcal{L}_{f}: L^{2}(\mathcal{M}) \rightarrow \mathbb{R}$

$$
\mathcal{L}_{f}[g]:=\int_{\mathcal{M}} f(\mathbf{x}) g(\mathbf{x}) d A(\mathbf{x})
$$

"Test function"

Observation

Can recover function from dual

Dual of Laplacian

$$
\begin{aligned}
& \begin{aligned}
\{g & \left.\begin{array}{c}
\text { Space of test functions (no boundary): } \\
\in
\end{array} C^{\infty}(M):\left.g\right|_{\partial M} ^{\equiv} 0\right\}
\end{aligned} \\
& \mathcal{L}_{\Delta v}[u]= \int_{\mathcal{M}} u(\mathbf{x}) \Delta v(\mathbf{x}) d A(\mathbf{x}) \\
&= \int_{\mathcal{M}} \nabla u(\mathbf{x}) \cdot \nabla v(\mathbf{x}) d A(\mathbf{x}) \\
& \quad-\oint_{\partial \mathcal{M}} u(\mathbf{x}) \nabla v(\mathbf{x}) \cdot \hat{\mathbf{n}}(\mathbf{x}) d \ell
\end{aligned}
$$

Use Laplacian without evaluating it!

Galerkin's Approach

Choose one of each:
-Function space -Test functions Often the same!

One Derivative is Enough

$$
\begin{aligned}
\mathcal{L}_{\Delta v}[u]= & \int_{\mathcal{M}} \nabla u(\mathbf{x}) \cdot \nabla v(\mathbf{x}) d A(\mathbf{x}) \\
& -\oint_{\partial \mathcal{M}} u(\mathbf{x}) \nabla v(\mathbf{x}) \cdot \hat{\mathbf{n}}(\mathbf{x}) d \ell
\end{aligned}
$$

First Order Finite Elements

Image courtesy K. Crane, CMU
One "hat function" per vertex

Representing Functions

What Do We Need

What Do We Need

What Do We Need

$$
\mathcal{L}_{\Delta f}[g]=\int_{\mathcal{M}} \nabla g_{\dot{\uparrow}} \nabla f d A
$$

One scalar per face

What Do We Need

Sum scalars per face multiplied by face areas

Gradient of a Hat Function

Linear along edges

$$
\begin{aligned}
\nabla f \cdot\left(v_{1}-v_{3}\right) & =1 \\
\nabla f \cdot\left(v_{1}-v_{2}\right) & =1 \\
\nabla f \cdot n & =0
\end{aligned}
$$

$$
f\left(v_{3}\right)=0
$$

Gradient of a Hat Function

Linear along edges

$$
\begin{aligned}
& \nabla f \cdot\left(v_{1}-v_{3}\right)=1 \\
& \nabla f \cdot\left(v_{1}-v_{2}\right)=1 \\
& \nabla f \cdot n=0 \\
& \downarrow \\
& \nabla f \cdot\left(v_{2}-v_{3}\right)=0
\end{aligned}
$$

$$
f\left(v_{3}\right)=0
$$

Gradient of a Hat Function

$$
\begin{aligned}
& 1=\nabla f \cdot\left(v_{1}-v_{3}\right) \\
&=\|\nabla f\| \ell_{3} \cos \left(\frac{\pi}{2}-\theta_{3}\right) \\
&=\|\nabla f\| \ell_{3} \sin \theta_{3} \\
&\left.v_{1}\right)=1
\end{aligned}
$$

Gradient of a Hat Function

$$
\begin{aligned}
& \qquad\|\nabla f\|=\frac{1}{\ell_{3} \sin \theta_{3}}=\frac{1}{h} \\
& \nabla f=\frac{e_{23}^{\perp}}{2 A} \\
& \text { Length of } e_{23} \text { cancels } \\
& \text { "base" in } \mathrm{A}
\end{aligned}
$$

Gradient of a Hat Function

$$
\nabla f=\frac{e_{23}^{\perp}}{2 A}
$$

Single Triangle: Complete

$$
\begin{aligned}
& \mathbf{p}=p_{n} \mathbf{n}+p_{e} \mathbf{e}+p_{\perp} \mathbf{e}_{\perp} \\
& A=\frac{1}{2} b \sqrt{p_{n}^{2}+p_{\perp}^{2}} \\
& \nabla_{\mathbf{p}} A= \frac{1}{2} b \mathbf{e}_{\perp} \\
& \nabla f=\frac{e_{23}^{\perp}}{2 A}=\frac{\vec{e}_{\perp}}{h}=\frac{\nabla_{\vec{p}} A}{A}
\end{aligned}
$$

What We Actually Need

$$
\mathcal{L}_{\Delta f}[g]=\int_{\mathcal{M}} \nabla g \cdot \nabla f d A
$$

What We Actually Need

$$
\mathcal{L}_{\Delta f}[g]=\int_{\mathcal{M}} \nabla g \cdot \nabla f d A
$$

Case 1: Same vertex

$$
\begin{aligned}
\int_{T}\langle\nabla f, \nabla f\rangle d A & =A\|\nabla f\|_{2}^{2} \\
& =\frac{A}{h^{2}}=\frac{b}{2 h} \\
& =\frac{1}{2}(\cot \alpha+\cot \beta)
\end{aligned}
$$

What We Actually Need

$$
\mathcal{L}_{\Delta f}[g]=\int_{\mathcal{M}} \nabla g \cdot \nabla f d A
$$

Case 2: Different vertices

$$
\begin{aligned}
\int_{T}\left\langle\nabla f_{\alpha}, \nabla f_{\beta}\right\rangle d A & =A\left\langle\nabla f_{\alpha}, \nabla f_{\beta}\right\rangle \\
& =\frac{1}{4 A}\left\langle e_{31}^{\perp}, e_{32}^{\perp}\right\rangle=-\frac{\ell_{1} \ell_{2} \cos \theta}{4 A} \\
& =-\frac{1}{2 h_{1}} \ell_{2} \cos \theta=-\frac{\cos \theta}{2 \sin \theta} \\
& =-\frac{1}{2} \cot \theta
\end{aligned}
$$

Summing Around a Vertex

$$
\left\langle\nabla h_{p}, \nabla h_{q}\right\rangle=-\frac{1}{2}\left(\cot \theta_{1}+\cot \theta_{2}\right)
$$

Summing Around a Vertex

$$
\nabla_{\mathbf{p}} A=\frac{1}{2} \sum_{j}\left(\cot \alpha_{j}+\cot \beta_{j}\right)\left(\mathbf{p}-\mathbf{q}_{j}\right)
$$

The Cotangent Laplacian

$$
L_{i j}= \begin{cases}\frac{1}{2} \sum_{i \sim k}\left(\cot \alpha_{i k}+\cot \beta_{i k}\right) & \text { if } i=j \\ -\frac{1}{2}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right) & \text { if } i \sim j \\ 0 & \text { otherwise }\end{cases}
$$

Poisson Equation

$$
\Delta f=g
$$

Weak Solutions

$$
\int_{M} \phi \Delta f d A=\int_{M} \phi g d A \forall \text { test functions } \phi
$$

FEM Hat Weak Solutions

$$
\int_{\mathcal{M}} h_{i} \Delta f d A=\int_{\mathcal{M}} h_{i} g d A \forall \text { hat functions } h_{i}
$$

$$
\int_{\mathcal{M}} h_{\ell} \Delta f d A=\int_{\mathcal{M}} \nabla h_{\ell} \cdot \nabla f d A
$$

$$
=\int_{\mathcal{M}} \nabla h_{\ell} \cdot \nabla \sum_{k} v^{k} h_{k} d A
$$

Approximate $f \approx \sum_{k} v^{k} \psi_{k}$ and $g \approx \sum_{k} w^{k} \psi_{k}$
\Longrightarrow Linear system $\sum_{k} w^{k}\left\langle\psi_{i}, \psi_{\ell}\right\rangle=\sum_{k} v^{k}\left\langle\nabla \psi_{k}, \nabla \psi_{\ell}\right\rangle$
$=\sum_{k} v^{k} \int_{\mathcal{M}} \nabla h_{\ell} \cdot \nabla h_{k} d A$
$=\sum_{k} L_{\ell k} v^{k}$

Stacking Integrated Products

$$
\left(\begin{array}{c}
\int_{\mathcal{M}} h_{1} \Delta f d A \\
\int_{\mathcal{M}} h_{2} \Delta f d A \\
\vdots \\
\int_{\mathcal{M}} h_{|V|} \Delta f d A
\end{array}\right)=\left(\begin{array}{c}
\sum_{k} L_{1 k} v^{k} \\
\sum_{k} L_{2 k} v^{k} \\
\vdots \\
\sum_{k} L_{|V| k} v^{k}
\end{array}\right)=L \mathbf{v}
$$

Multiply by Laplacian matrix!

Problematic Right Hand Side

$$
\int_{\mathcal{M}} h_{\ell} \Delta f d A=\int_{\mathcal{M}} h_{\ell} g d A \forall \text { hat functions } h_{\ell}
$$

Product of hats is quadratic

Some Ways Out

-Just do the integral

"Consistent" approach
-Approximate some more

The Mass Matrix

$$
M_{i j}:=\int_{\mathcal{M}} h_{i} h_{j} d A
$$

Diagonal elements: Norm of $\boldsymbol{h}_{\boldsymbol{i}}$

Off-diagonal elements: Overlap between $\boldsymbol{h}_{\boldsymbol{i}}$ and $\boldsymbol{h}_{\boldsymbol{j}}$

Consistent Mass Matrix

Non-Diagonal Mass Matrix

Properties of Mass Matrix

- Rows sum to one ring area / 3
- Involves only vertex and its neighbors
- Partitions surface area

Issue: Not diagonal!

Use for Integration

$$
\begin{aligned}
\int_{\mathcal{M}} f d A & =\int_{\mathcal{M}}\left[\sum_{k} v^{k} h_{k}(\mathbf{x}) \cdot 1\right] d A(\mathbf{x}) \\
& =\int_{\mathcal{M}}\left[\sum_{k} v^{k} h_{k}(\mathbf{x}) \cdot \sum_{i} h_{i}(\mathbf{x})\right] d A(\mathbf{x}) \\
& =\sum_{k i} M_{k i} v^{k} \\
& =\mathbf{1}^{\top} M \mathbf{v}
\end{aligned}
$$

Lumped Mass Matrix

$$
\tilde{a}_{i i}:=\operatorname{Area}(\text { cell } i)
$$

Won't make big difference for smooth functions

Approximate with diagonal matrix

Simplest: Barycentric Lumped Mass

http://www.alecjacobson.com/weblog/?p=1146
Area/3 to each vertex

Ingredients

-Cotangent Laplacian L
Per-vertex function to integral of its Laplacian against each hat

-Mass matrix M

Integrals of pairwise products of hats (or approximation thereof)

Solving the Poisson Equation

$\Delta f=g \longrightarrow M \mathbf{w}=L \mathbf{v}$
 ${ }^{9} 1$$\ell_{f}$

Important Detail: Boundary Conditions

$$
\left.\begin{array}{rl}
\Delta f(x) & =g(x) \forall x \in \Omega \\
f(x) & =u(x) \forall x \in \Gamma_{D} \quad \text { Strong } \\
\nabla f \cdot n & =v(x) \forall x \in \Gamma_{N} \\
\text { form }
\end{array}\right] \begin{gathered}
\\
\int_{\Omega} \nabla f \cdot \nabla \phi=\int_{\Gamma_{N}} v(x) \phi(x) d \Gamma-\int_{\Omega} f(x) \phi(x) d \Omega \\
f(x)=u(x) \forall x \in \Gamma_{D} \\
\text { Weak form }
\end{gathered}
$$

Eigenhomers

Higher-Order Elements

https://www.femtable.org/

Point Cloud Laplace: Easiest Option

Interesting recent alternative for surfaces: "A Laplacian for Nonmanifold Triangle Meshes" Sharp \& Crane, SGP 2020

$$
\begin{aligned}
W_{i j} & =\exp \left(-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{4 t}\right) \\
D_{i i} & =\sum_{j} W_{j i} \\
L & =D-W \\
L f & =\lambda D f
\end{aligned}
$$

"Laplacian Eigenmaps for Dimensionality Reduction and Data Representation"
Belkin \& Niyogi 2003

Discrete Laplacian Operators

 Justin Solomon6.8410: Shape Analysis

Spring 2023

MIT EECS

Extra: Point Cloud Laplacian

 Justin Solomon6.8410: Shape Analysis

Spring 2023

MIT EECS

