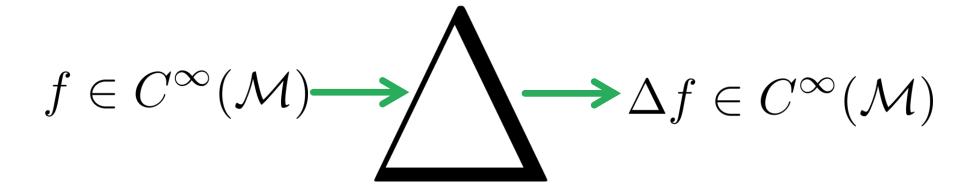
Discrete Laplacian Operators

Justin Solomon

6.8410: Shape Analysis
Spring 2023

Our Focus

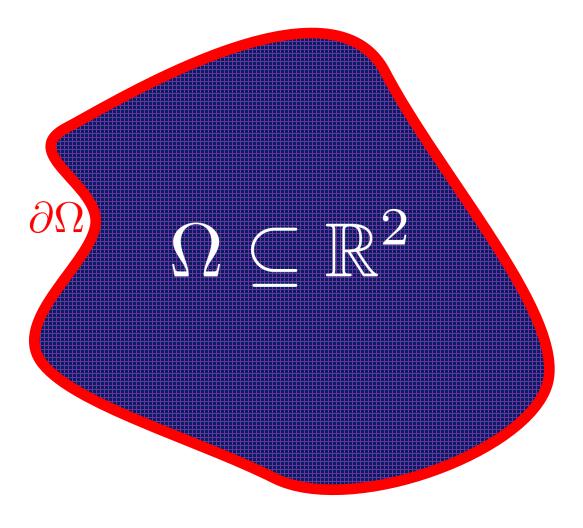


Computational version?

The Laplacian

Recall:

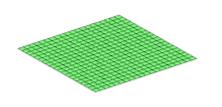
Planar Region



Wave equation:

$$\frac{\partial^2 u}{\partial t^2} = -\Delta u$$

$$\Delta := -\sum_i \frac{\partial^2}{\partial (x^i)^2}$$

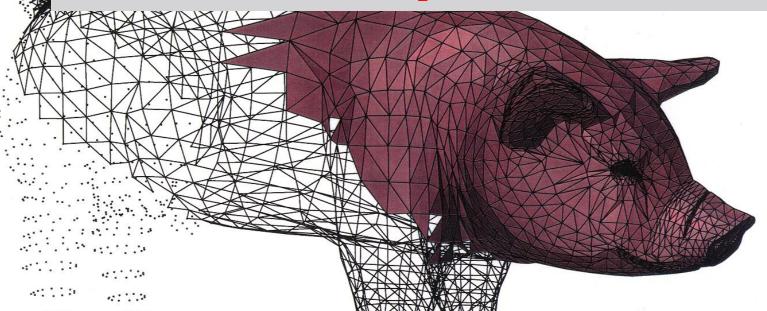


Discretizing the Laplacian

$$\Delta f = \frac{1}{\sqrt{|g|}} \partial_i \left(\sqrt{|g|} g^{ij} \partial_j f \right)$$

Problem

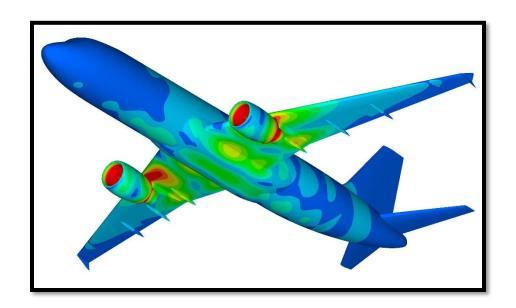
Laplacian is a differential operator!



Today's Approach

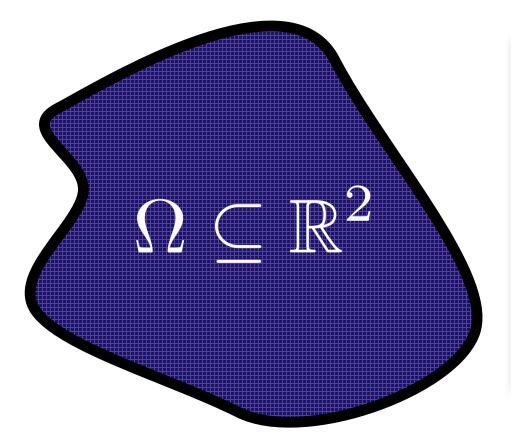
First-order Galerkin

Finite element method (FEM)



Integration by Parts to the Rescue

$$\int_{\Omega} f \Delta g \, dA = \text{boundary terms} + \int_{\Omega} \nabla f \cdot \nabla g \, dA$$



INTEGRATION BY PARTS:

GIVEN A PROBLEM OF THE FORM:

$$\int f(x)g(x)dx = ?$$

CHOOSE VARIABLES U. AND V SUCH THAT:

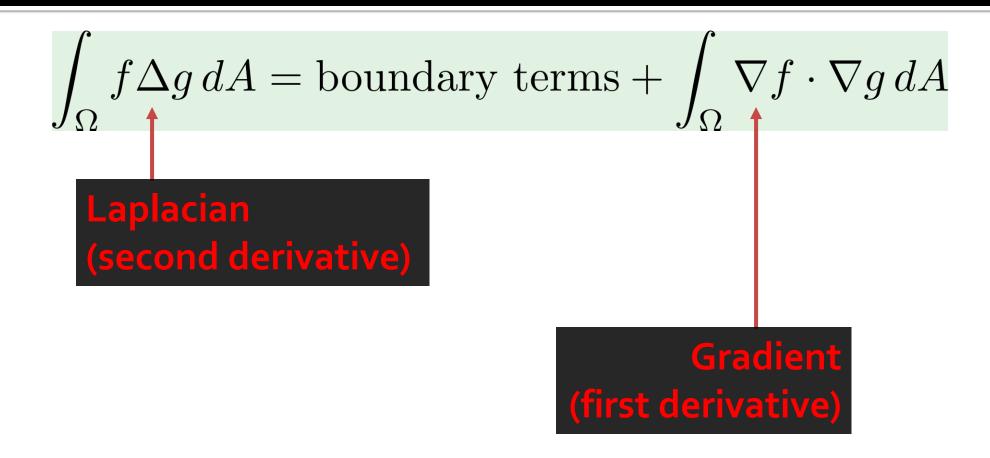
NOW THE ORIGINAL EXPRESSION BECOMES:

WHICH DEFINITELY LOOKS EASIER.

ANYWAY, I GOTTA RUN.

BUT GOOD LUCK!

Slightly Easier?



Slightly Easier?

$$\int_{\Omega} f \Delta g \, dA = \text{boundary terms} + \int_{\Omega} \nabla f \cdot \nabla g \, dA$$
 One derivative, one integral Gradient (first derivative)

Intuition: Cancels?

Overview:

Galerkin FEM Approach

$$g = \Delta f$$

$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA = [\text{boundary terms}] + \int (\nabla \psi \cdot \nabla f) \, dA$$

Approximate
$$f \approx \sum_{k} v^{k} \psi_{k}$$
 and $g \approx \sum_{k} w^{k} \psi_{k}$

$$\Longrightarrow$$
 Linear system $\sum_{k} w^{k} \langle \psi_{i}, \psi_{\ell} \rangle = \sum_{k} v^{k} \langle \nabla \psi_{k}, \nabla \psi_{\ell} \rangle$

Mass matrix:
$$M_{ij} := \langle \psi_i, \psi_j \rangle$$

Stiffness matrix:
$$L_{ij} := \langle \nabla \psi_i, \nabla \psi_j \rangle$$
 basis?

$$\Longrightarrow M\mathbf{w} = L\mathbf{v}$$

Important to Note

Not the only way

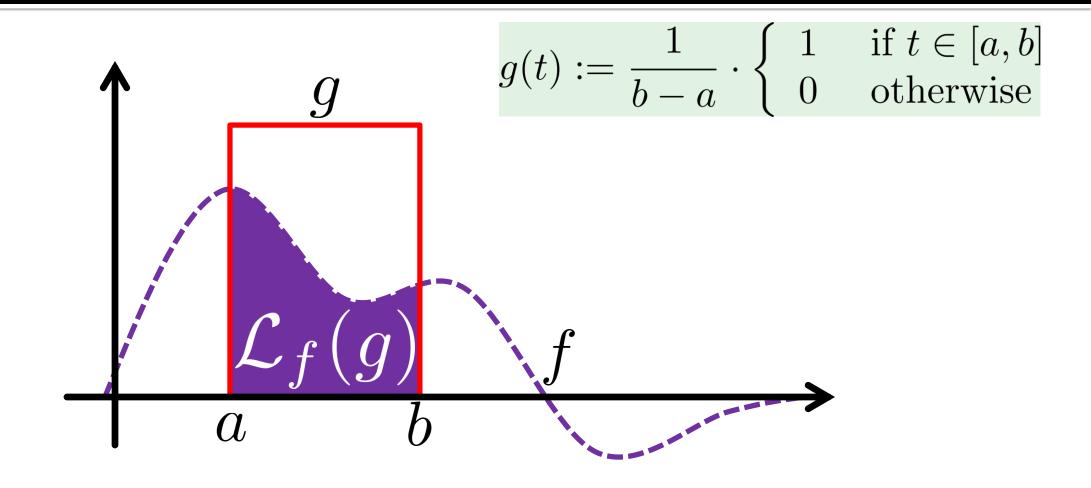
to approximate the Laplacian operator.

- Divided differences
- Higher-order elements
- Boundary element methods
- Discrete exterior calculus
- ...

L² Dual of a Function

Function
$$f:\mathcal{M} o \mathbb{R}$$
 \downarrow \downarrow Operator $\mathcal{L}_f:L^2(\mathcal{M}) o \mathbb{R}$ $\mathcal{L}_f[g]:=\int_{\mathcal{M}} f(\mathbf{x})g(\mathbf{x})\,dA(\mathbf{x})$ "Test function"

Observation



Can recover function from dual

Dual of Laplacian

Space of test functions (no boundary!):
$$\{g \in C^{\infty}(M) : g|_{\partial M} \equiv 0\}$$

$$\mathcal{L}_{\Delta v}[u] = \int_{\mathcal{M}} u(\mathbf{x}) \Delta v(\mathbf{x}) \, dA(\mathbf{x})$$

$$= \int_{\mathcal{M}} \nabla u(\mathbf{x}) \cdot \nabla v(\mathbf{x}) \, dA(\mathbf{x})$$

$$- \oint_{\partial \mathcal{M}} u(\mathbf{x}) \nabla v(\mathbf{x}) \cdot \hat{\mathbf{n}}(\mathbf{x}) \, d\ell$$

Use Laplacian without evaluating it!

Galerkin's Approach

Choose one of each:

Function space

Test functions

Often the same!

One Derivative is Enough

$$\mathcal{L}_{\Delta v}[u] = \int_{\mathcal{M}} \nabla u(\mathbf{x}) \cdot \nabla v(\mathbf{x}) \, dA(\mathbf{x})$$
$$- \oint_{\partial \mathcal{M}} u(\mathbf{x}) \nabla v(\mathbf{x}) \cdot \hat{\mathbf{n}}(\mathbf{x}) \, d\ell$$

First Order Finite Elements

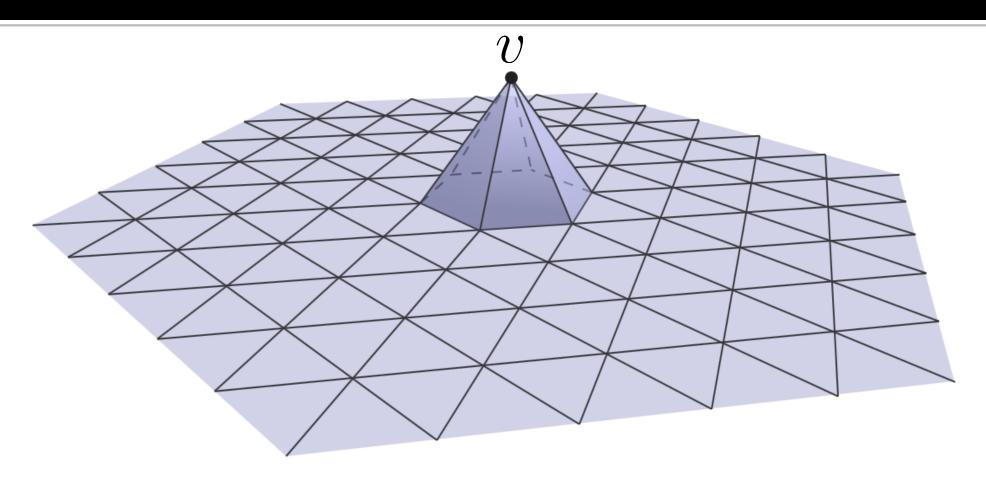
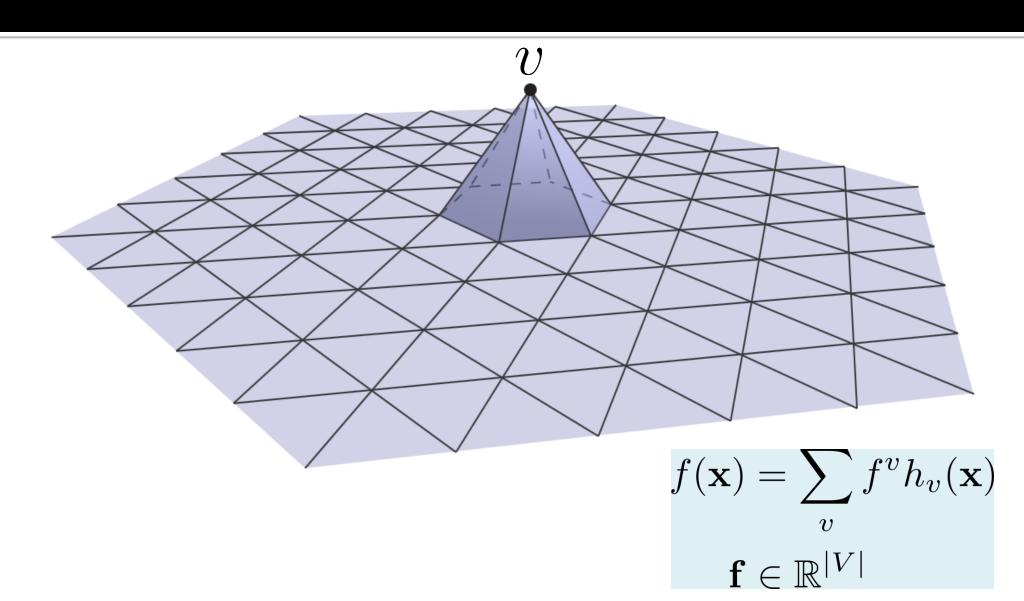
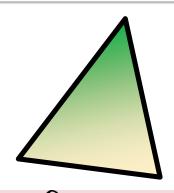


Image courtesy K. Crane, CMU

One "hat function" per vertex

Representing Functions

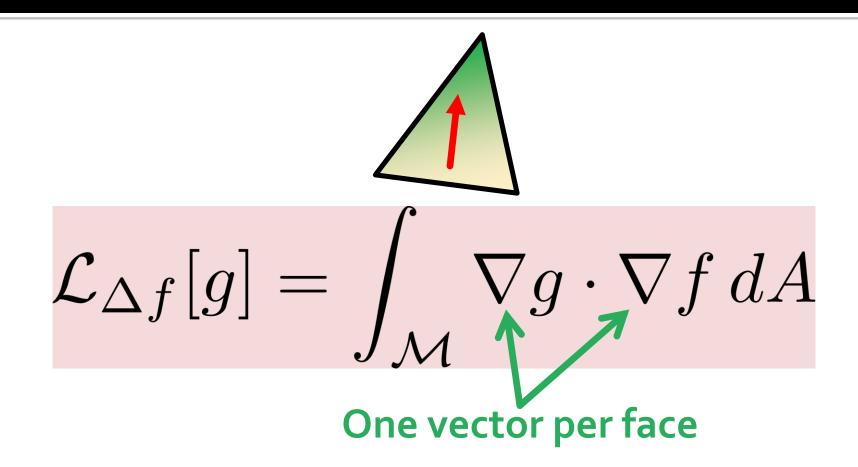


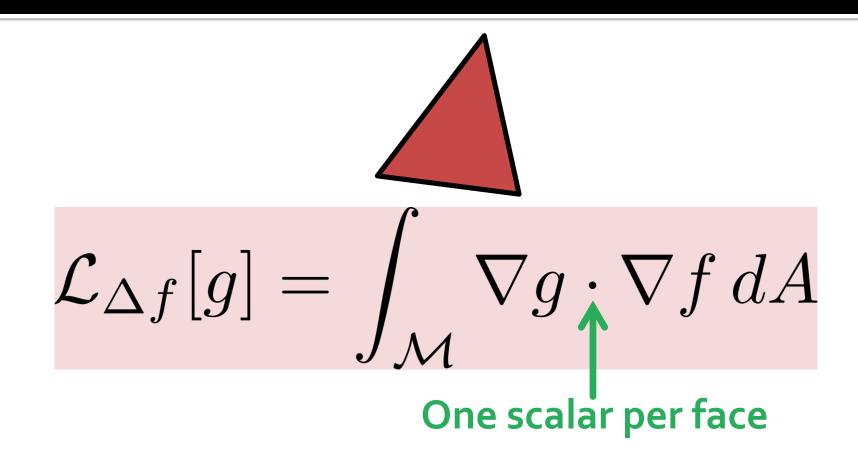


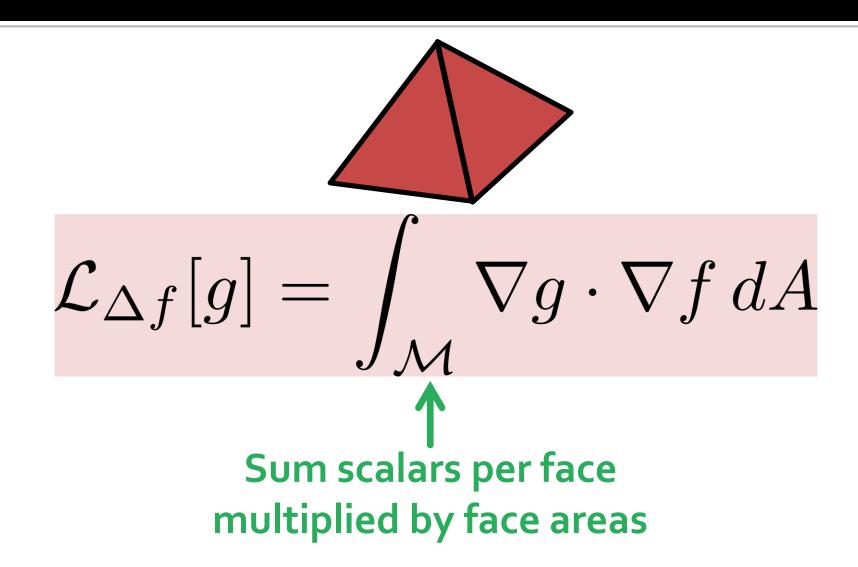
Ignoring boundary terms (for now!)

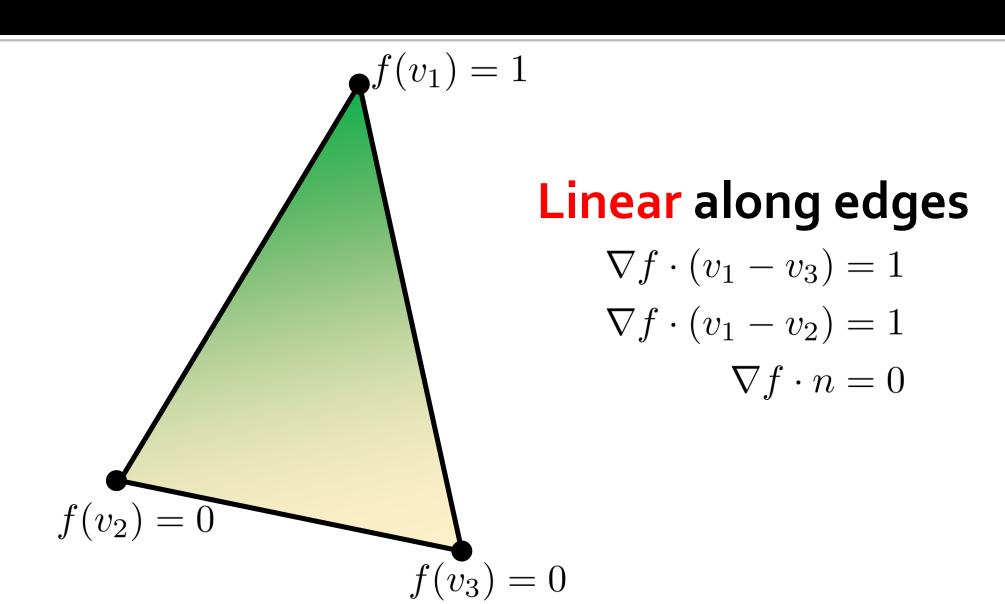
$$\mathcal{L}_{\Delta f}[g] = \int_{\mathcal{M}} \nabla g \cdot \nabla f \, dA$$

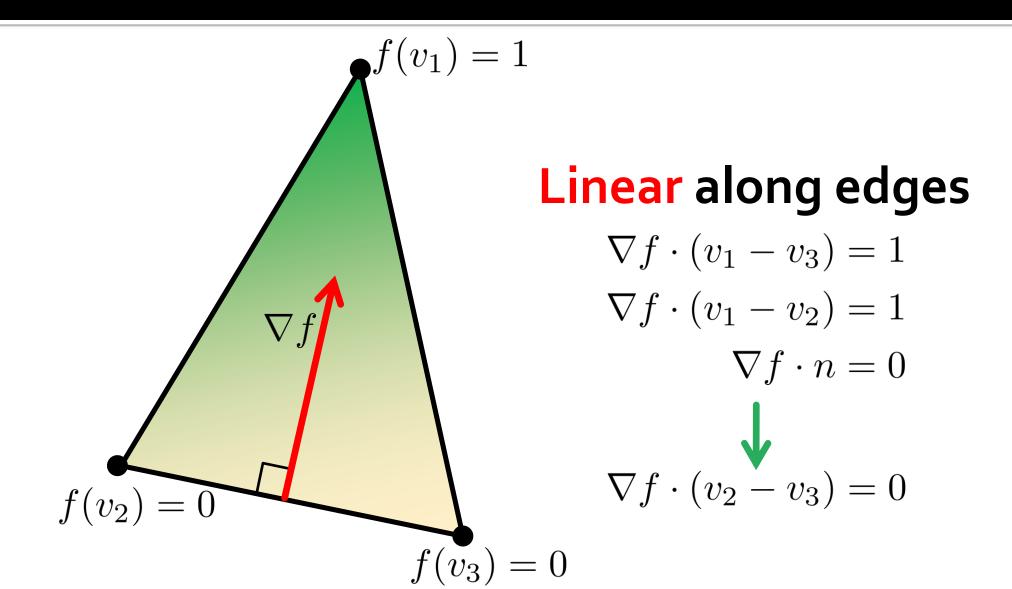
Linear combination of hats (piecewise linear)

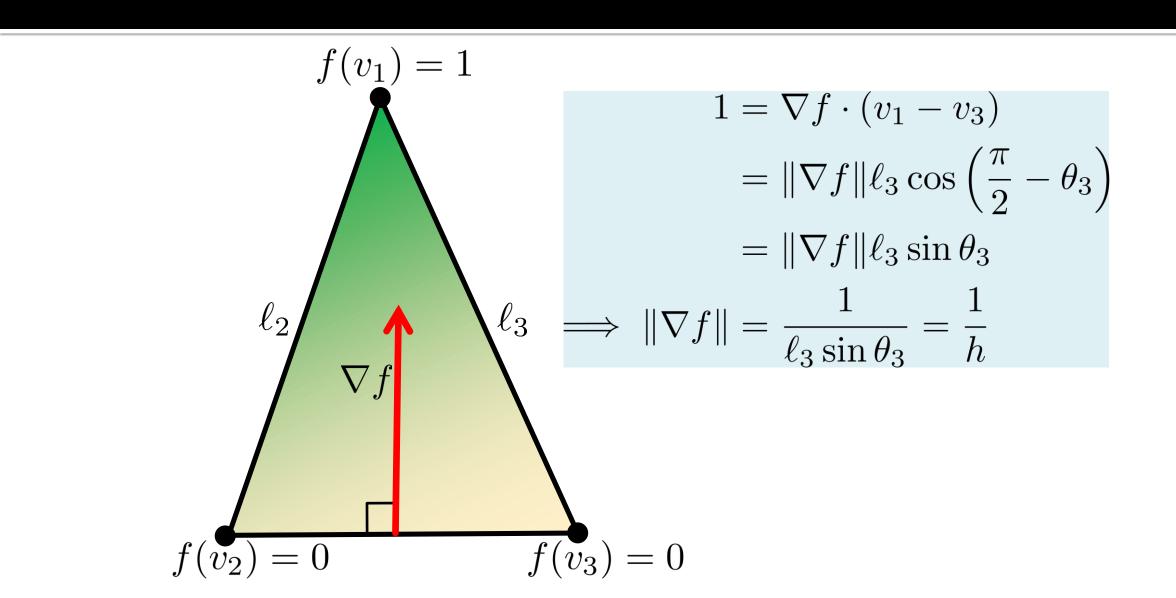


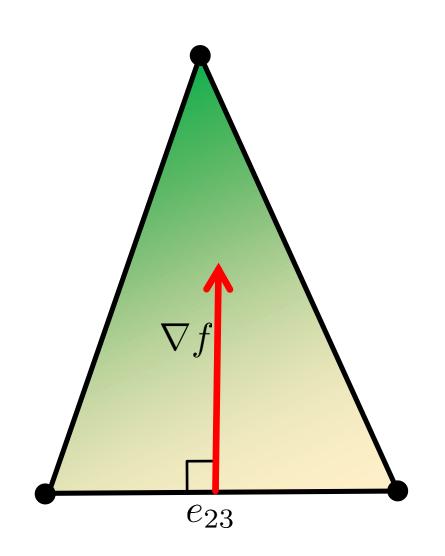




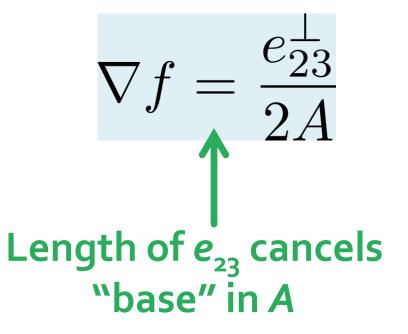


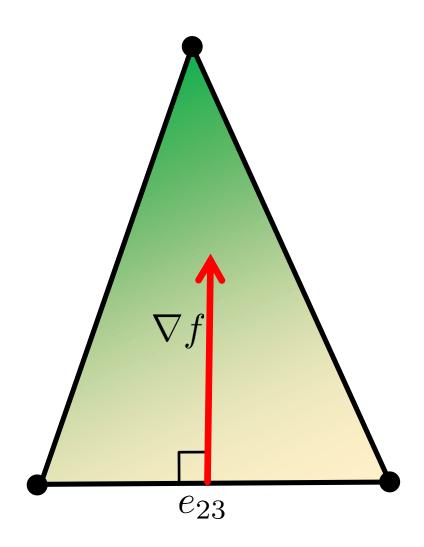






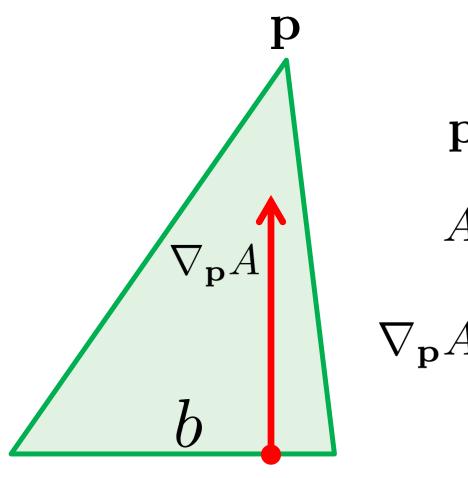
$$\|\nabla f\| = \frac{1}{\ell_3 \sin \theta_3} = \frac{1}{h}$$





$$\nabla f = \frac{e_{23}^{\perp}}{2A}$$

Single Triangle: Complete



$$\mathbf{p} = p_n \mathbf{n} + p_e \mathbf{e} + p_\perp \mathbf{e}_\perp$$

$$A = \frac{1}{2} b \sqrt{p_n^2 + p_\perp^2}$$

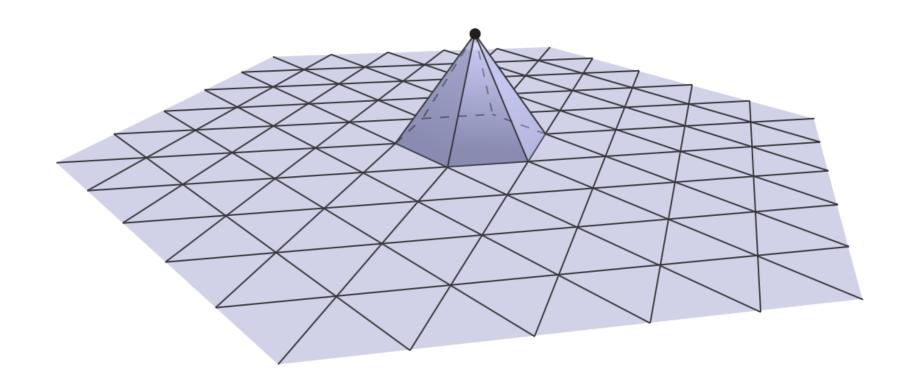
$$7_{\mathbf{p}} A = \frac{1}{2} b \mathbf{e}_\perp$$

$$e_{22}^\perp = \vec{e}_\perp \quad \nabla_{\vec{n}} A$$

$$\nabla f = \frac{e_{23}^{\perp}}{2A} = \frac{\vec{e}_{\perp}}{h} = \frac{\nabla_{\vec{p}}A}{A}$$

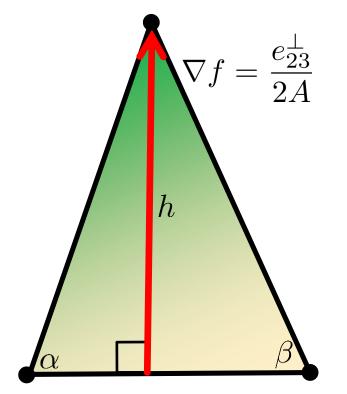
What We Actually Need

$$\mathcal{L}_{\Delta f}[g] = \int_{\mathcal{M}} \nabla g \cdot \nabla f \, dA$$



What We Actually Need

$$\mathcal{L}_{\Delta f}[g] = \int_{\mathcal{M}} \nabla g \cdot \nabla f \, dA$$



Case 1: Same vertex

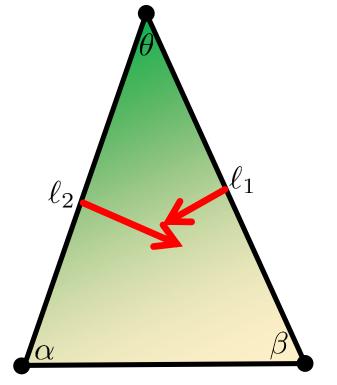
$$\int_{T} \langle \nabla f, \nabla f \rangle \, dA = A \|\nabla f\|_{2}^{2}$$

$$= \frac{A}{h^{2}} = \frac{b}{2h}$$

$$= \frac{1}{2} (\cot \alpha + \cot \beta)$$

What We Actually Need

$$\mathcal{L}_{\Delta f}[g] = \int_{\mathcal{M}} \nabla g \cdot \nabla f \, dA$$



Case 2: Different vertices

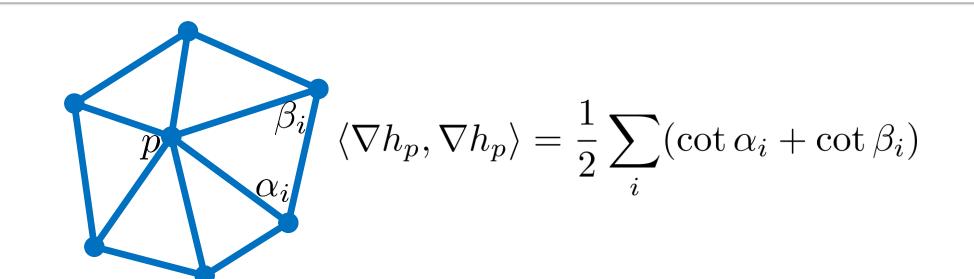
$$\int_{T} \langle \nabla f_{\alpha}, \nabla f_{\beta} \rangle dA = A \langle \nabla f_{\alpha}, \nabla f_{\beta} \rangle$$

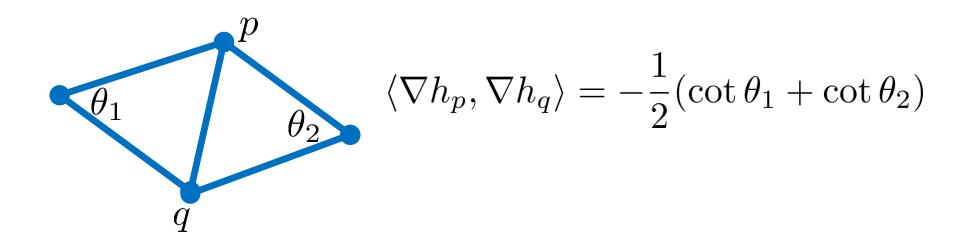
$$= \frac{1}{4A} \langle e_{31}^{\perp}, e_{32}^{\perp} \rangle = -\frac{\ell_{1} \ell_{2} \cos \theta}{4A}$$

$$= -\frac{1}{2h_{1}} \ell_{2} \cos \theta = -\frac{\cos \theta}{2 \sin \theta}$$

$$= -\frac{1}{2} \cot \theta$$

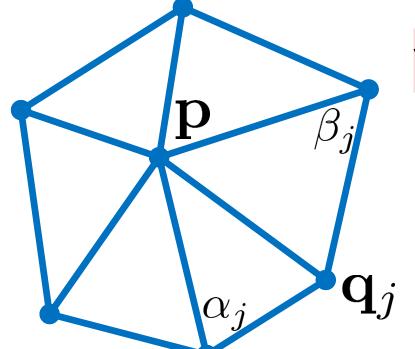
Summing Around a Vertex





Summing Around a Vertex

$$\nabla_{\mathbf{p}} A = \frac{1}{2} \sum_{j} (\cot \alpha_j + \cot \beta_j) (\mathbf{p} - \mathbf{q}_j)$$

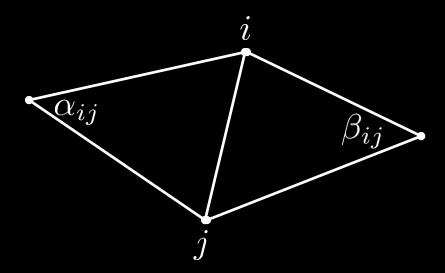


$$\nabla_{\mathbf{p}} A = \frac{1}{2} ((\mathbf{p} - \mathbf{r}) \cot \alpha + (\mathbf{p} - \mathbf{q}) \cot \beta)$$

Same operator!

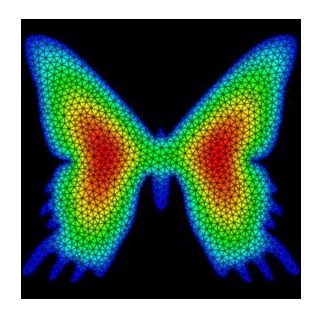
THE COTANGENT LAPLACIAN

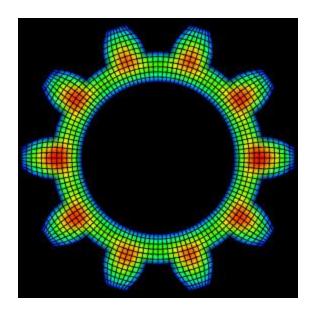
$$L_{ij} = \begin{cases} \frac{1}{2} \sum_{i \sim k} (\cot \alpha_{ik} + \cot \beta_{ik}) & \text{if } i = j \\ -\frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij}) & \text{if } i \sim j \\ 0 & \text{otherwise} \end{cases}$$



Poisson Equation

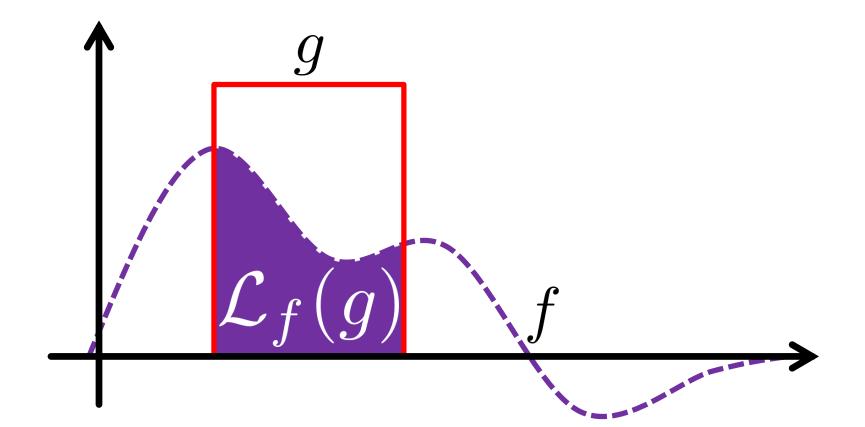
$$\Delta f = g$$





Weak Solutions

$$\int_{M} \phi \Delta f \, dA = \int_{M} \phi g \, dA \, \forall \text{ test functions } \phi$$



FEM Hat Weak Solutions

$$\int_{\mathcal{M}} h_i \Delta f \, dA = \int_{\mathcal{M}} h_i g \, dA \, \forall \text{ hat functions } h_i$$

$$\int_{\mathcal{M}} h_{\ell} \Delta f \, dA = \int_{\mathcal{M}} \nabla h_{\ell} \cdot \nabla f \, dA$$

$$= \int_{\mathcal{M}} \nabla h_{\ell} \cdot \nabla \sum_{k} v^{k} h_{k} \, dA$$

$$= \int_{\mathcal{M}} \nabla h_{\ell} \cdot \nabla \sum_{k} v^{k} h_{k} \, dA$$
Approximate $f \approx \sum_{k} v^{k} \psi_{k}$ and $g \approx \sum_{k} w^{k} \psi_{k}$

$$\Rightarrow \text{Linear system } \sum_{k} w^{k} \langle \psi_{i}, \psi_{\ell} \rangle = \sum_{k} v^{k} \langle \nabla \psi_{k}, \nabla \psi_{\ell} \rangle$$

$$= \sum_{k} V^{k} \int_{\mathcal{M}} \nabla h_{\ell} \cdot \nabla h_{k} \, dA$$

$$= \sum_{k} L_{\ell k} v^{k}$$

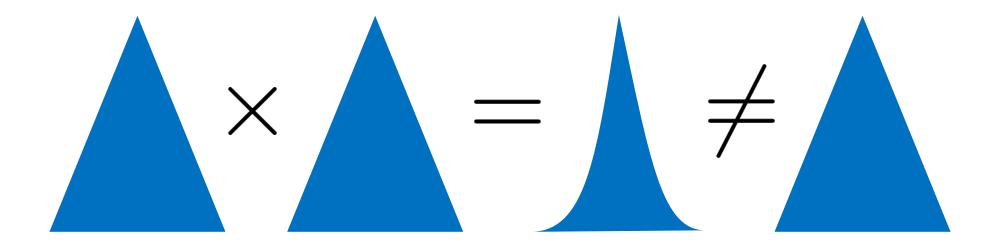
Stacking Integrated Products

$$\begin{pmatrix} \int_{\mathcal{M}} h_1 \Delta f \, dA \\ \int_{\mathcal{M}} h_2 \Delta f \, dA \\ \vdots \\ \int_{\mathcal{M}} h_{|V|} \Delta f \, dA \end{pmatrix} = \begin{pmatrix} \sum_k L_{1k} v^k \\ \sum_k L_{2k} v^k \\ \vdots \\ \sum_k L_{|V|k} v^k \end{pmatrix} = L\mathbf{v}$$

Multiply by Laplacian matrix!

Problematic Right Hand Side

$$\int_{\mathcal{M}} h_{\ell} \Delta f \, dA = \int_{\mathcal{M}} h_{\ell} g \, dA \, \forall \text{ hat functions } h_{\ell}$$



Product of hats is quadratic

Some Ways Out

-Just do the integral

"Consistent" approach

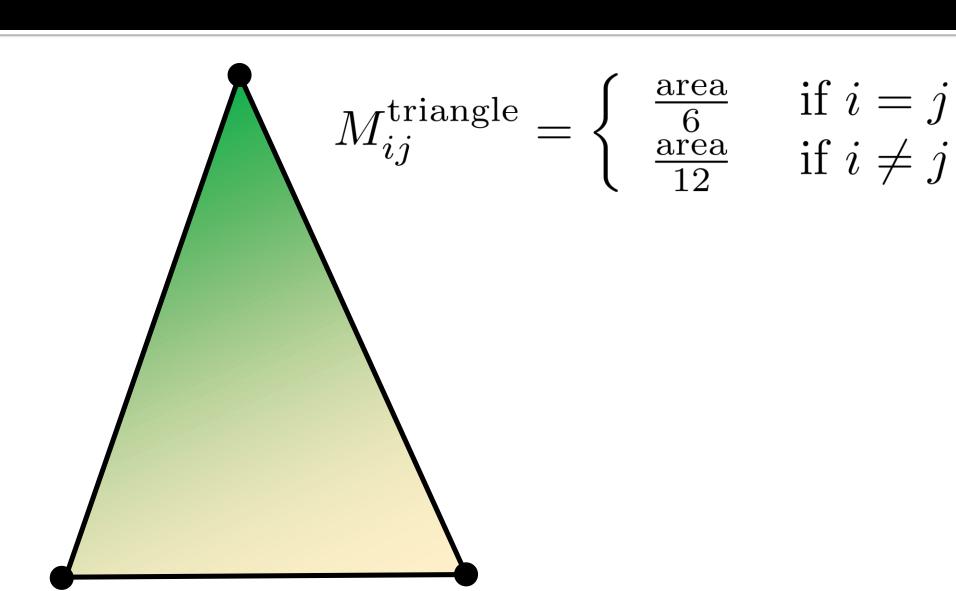
Approximate some more

The Mass Matrix

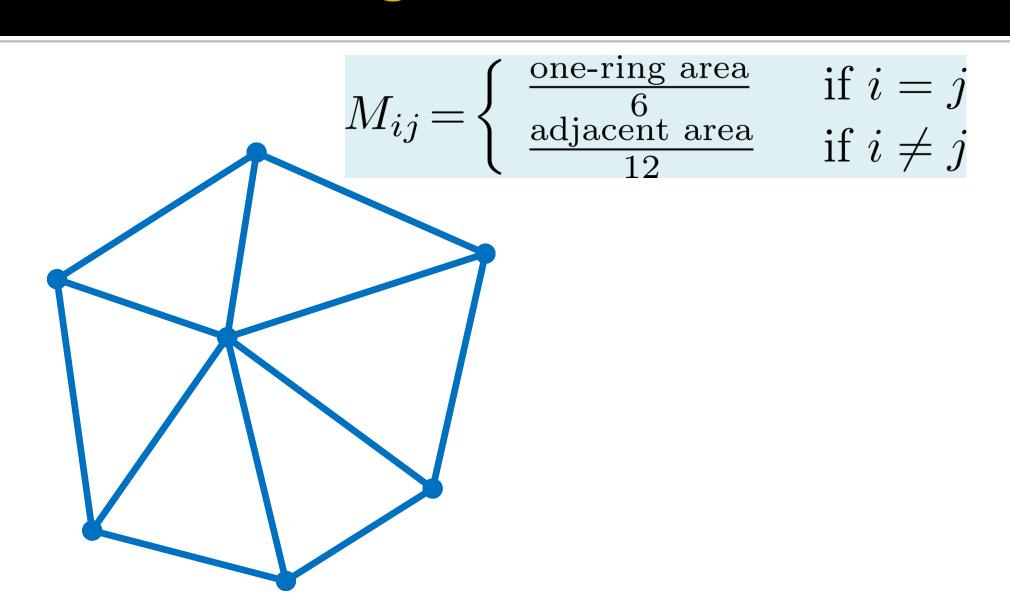
$$M_{ij} := \int_{\mathcal{M}} h_i h_j \, dA$$

- Diagonal elements: Norm of h_i
- •Off-diagonal elements: Overlap between h_i and h_j

Consistent Mass Matrix



Non-Diagonal Mass Matrix



Properties of Mass Matrix

- Rows sum to one ring area / 3
- Involves only vertex and its neighbors
- Partitions surface area

Issue: Not diagonal!

Use for Integration

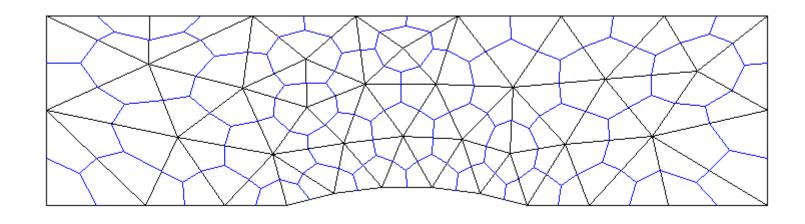
$$\int_{\mathcal{M}} f \, dA = \int_{\mathcal{M}} \left[\sum_{k} v^{k} h_{k}(\mathbf{x}) \cdot 1 \right] \, dA(\mathbf{x})$$

$$= \int_{\mathcal{M}} \left[\sum_{k} v^{k} h_{k}(\mathbf{x}) \cdot \sum_{i} h_{i}(\mathbf{x}) \right] \, dA(\mathbf{x})$$

$$= \sum_{ki} M_{ki} v^{k}$$

$$= \mathbf{1}^{\top} M \mathbf{v}$$

Lumped Mass Matrix



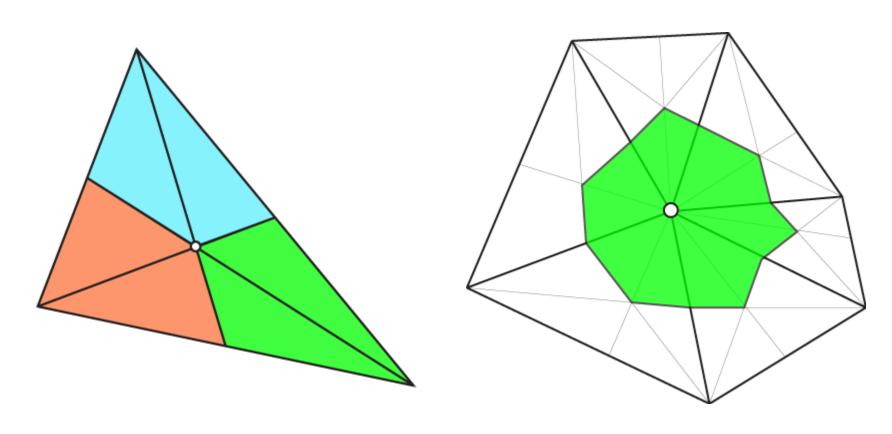
$$\tilde{a}_{ii} := \text{Area}(\text{cell } i)$$

Won't make big difference for smooth functions

http://users.led-inc.eu/~phk/mesh-dualmesh.html

Approximate with diagonal matrix

Simplest: Barycentric Lumped Mass



http://www.alecjacobson.com/weblog/?p=1146

Area/3 to each vertex

Ingredients

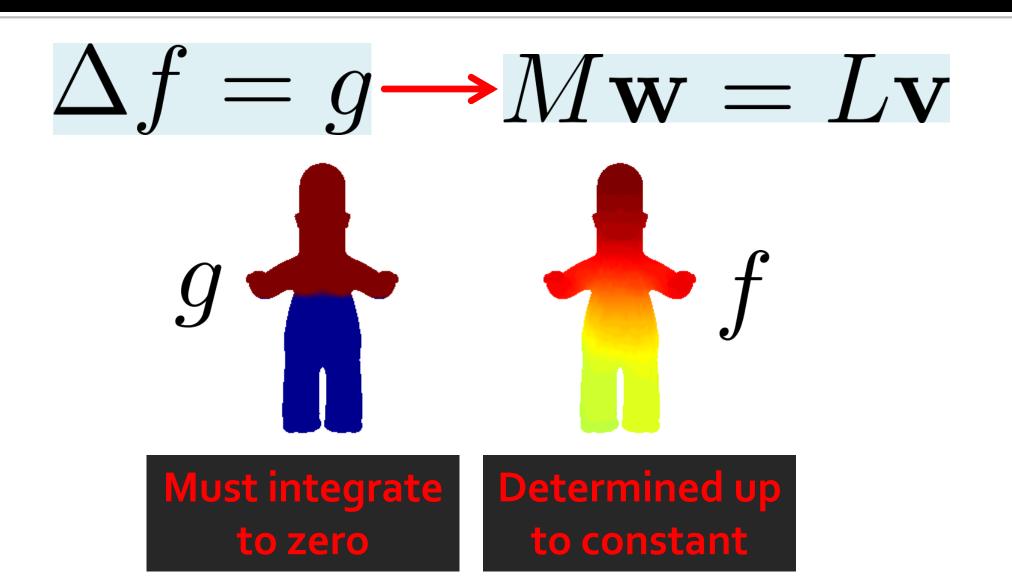
Cotangent Laplacian L

Per-vertex function to integral of its Laplacian against each hat

Mass matrix M

Integrals of pairwise products of hats (or approximation thereof)

Solving the Poisson Equation



Important Detail: Boundary Conditions

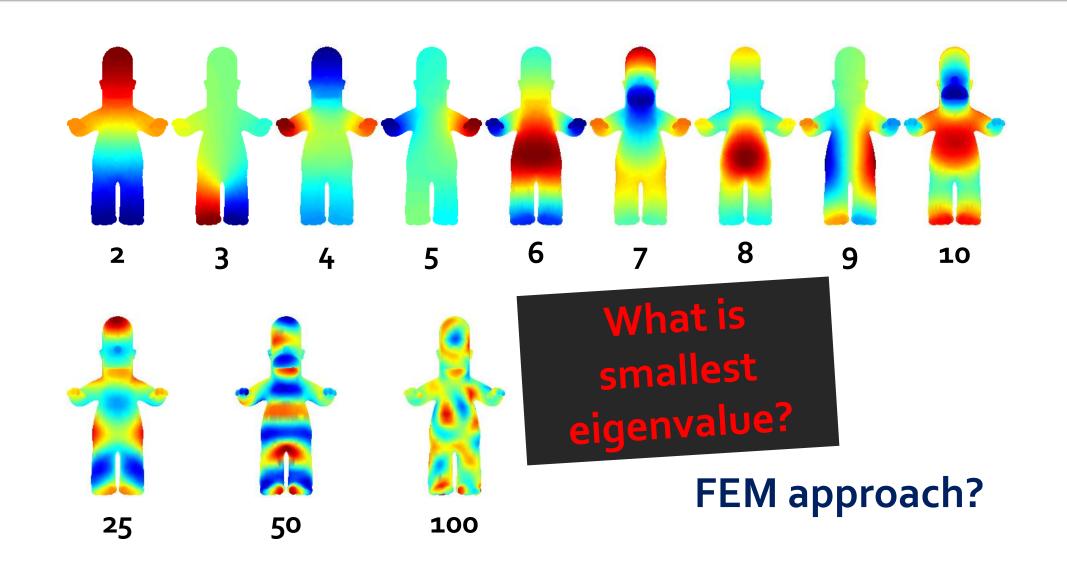
$$\Delta f(x) = g(x) \ \forall x \in \Omega$$

$$f(x) = u(x) \ \forall x \in \Gamma_D$$
 form
$$\nabla f \cdot n = v(x) \ \forall x \in \Gamma_N$$

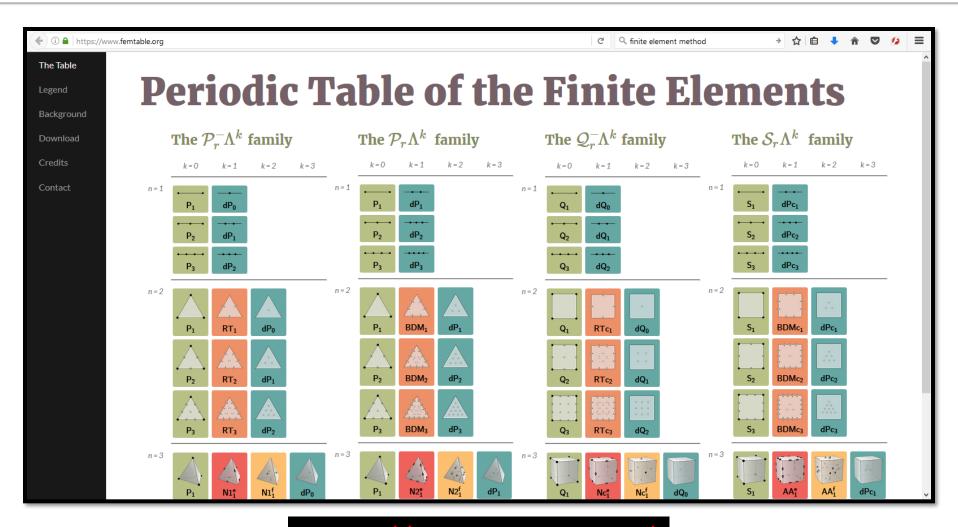
$$\int_{\Omega} \nabla f \cdot \nabla \phi = \int_{\Gamma_N} v(x)\phi(x) d\Gamma - \int_{\Omega} f(x)\phi(x) d\Omega$$
$$f(x) = u(x) \ \forall x \in \Gamma_D$$

Weak form

Eigenhomers



Higher-Order Elements



https://www.femtable.org/

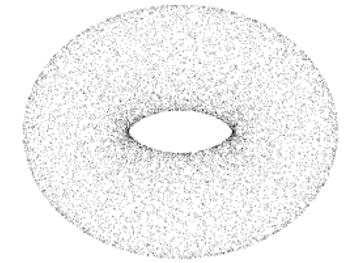
Point Cloud Laplace: Easiest Option

$$W_{ij} = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{4t}\right) \underbrace{\frac{\text{Tricky}}{\text{parameter}}}_{\text{to choose}}$$

 $D_{ii} = \sum_{j} W_{ji}$

L = D - W

 $Lf = \lambda Df$



Extra: Motivation

Interesting recent alternative for surfaces:
"A Laplacian for Nonmanifold
Triangle Meshes"
Sharp & Crane, SGP 2020

Discrete Laplacian Operators

Justin Solomon

6.8410: Shape Analysis
Spring 2023

Extra: Point Cloud Laplacian

Justin Solomon

6.8410: Shape Analysis
Spring 2023

