Distance Metrics and Embeddings

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

Last Time

Today

Many Overlapping Tasks

- Dimensionality reduction
- Embedding
- Parameterization
- Manifold learning

Basic Task

Given pairwise distances extract an embedding.

Is it always possible?
Embedding into which space?
What dimensionality?

Metric Space

Ordered pair (M, d) where M is a set and $d: M \times M \rightarrow \mathbb{R}$ satisfies

$$
\begin{gathered}
d(x, y) \geq 0 \\
d(x, y)=0 \Longleftrightarrow x=y \\
d(x, y)=d(y, x) \\
d(x, z) \leq d(x, y)+d(y, z)
\end{gathered}
$$

Many Examples of Metric Spaces

$$
\mathbb{R}^{n}, d(x, y):=\|x-y\|_{p}
$$

$$
S \subset \mathbb{R}^{3}, d(x, y):=\text { geodesic }
$$

$C^{\infty}(\mathbb{R}), d(f, g)^{2}:=\int_{\mathbb{R}}(f(x)-g(x))^{2} d x$

Isometry [ahy-som-i-tree]:
A map between metric spaces
that preserves pairwise distances.

Can you always embed a metric space isometrically in \mathbb{R}^{n} ?

Can you always embed a finite metric space isometrically in \mathbb{R}^{n} ?

Disappointing Example

$$
\begin{aligned}
X & :=\{a, b, c, d\} \\
d(a, d) & =d(b, d)=1 \\
d(a, b) & =d(a, c)=d(b, c)=2 \\
d(c, d) & =1.5
\end{aligned}
$$

Contrasting Example

$$
\begin{aligned}
\ell_{\infty}\left(\mathbb{R}^{n}\right) & :=\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right) \\
\|\mathbf{x}\|_{\infty} & :=\max _{k}\left|\mathbf{x}_{k}\right|
\end{aligned}
$$

Proposition. Every finite metric space embeds isometrically into $\ell_{\infty}\left(\mathbb{R}^{\boldsymbol{n}}\right)$ for some \boldsymbol{n}.

Approximate Embedding

$$
\begin{aligned}
\operatorname{expansion}(f) & :=\max _{x, y} \frac{\mu(f(x), f(y))}{\rho(x, y)} \\
\operatorname{contraction}(f) & :=\max _{x, y} \frac{\rho(x, y)}{\mu(f(x), f(y))} \\
\operatorname{distortion}(f) & :=\text { expansion }(f) \times \text { contraction }(f)
\end{aligned}
$$

Fréchet Embedding

Definition (Fréchet embedding). Suppose (M, d) is a metric space that $S_{1}, \ldots, S_{r} \subseteq M$. We define the Fréchet embedding of M with respect to $\left\{S_{1}, \ldots, S_{r}\right\}$ to be the map $\phi: M \rightarrow \mathbb{R}^{r}$ given by

$$
\phi(x):=\left(d\left(x, S_{1}\right), d\left(x, S_{2}\right), \ldots, d\left(x, S_{r}\right)\right),
$$

where $d(x, S):=\min _{y \in S} d(x, y)$.

Well-Known Result

Proposition (Bourgain's Theorem). Suppose (M, d) is a metric space consisting of n points, that is, $|M|=n$. Then, for $p \geq 1, M$ embeds into $\ell_{p}\left(\mathbb{R}^{m}\right)$ with $O(\log n)$ distortion, where $m=O\left(\log ^{2} n\right)$.
Matousek improved the distortion bound to $\log n / p$ [14].

```
m:= 576 log(n)
for j=1 to log n do /* levels of density */
    for i=1 to m do /* repeat for high probability */
        choose set Sij by sampling each node in X
        independently with probability }\mp@subsup{2}{}{-j
    end
end
fij}(x):=d(x,\mp@subsup{S}{ij}{}
f(x):= \mp@subsup{\bigoplus}{j=1}{\operatorname{log}n}\mp@subsup{\bigoplus}{i=1}{m}\mp@subsup{f}{ij}{}(x)

\title{
Distance Metrics and Embeddings
}

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

\section*{Embedding Metrics into Euclidean Space}

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

\section*{Recall:}

Isometry [ahy-som-i-tree]:
A map between metric spaces that preserves pairwise distances.

\section*{Euclidean Problem}
\[
P_{i j}=\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}, P \in \mathbb{R}^{n \times n}
\]

Reconstruct:
\[
\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{m}
\]

Alternative notation:
\(X \in \mathbb{R}^{m \times n}\)

\section*{Gram Matrix [gram mey triks]:}

A matrix of inner products


\section*{Classical Multidimensional Scaling}
1. Double centering: \(G:=-\frac{1}{2} J^{\top} P J\) Centering matrix \(J:=I_{n \times n}-\frac{1}{n} \mathbf{1 1}^{\top}\)
2. Find \(m\) largest eigenvalues/eigenvectors \(G=Q \Lambda Q^{\top}\)
3. \(\bar{X}=\sqrt{\Lambda} Q^{\top}\)

Extension: Landmark MDS

Torgerson, Warren S. (1958). Theory \& Methods of Scaling.

\section*{Simple Example}

\section*{Voting patterns}


\section*{Landmark MDS}

\[
\overline{\mathbf{x}}=\frac{1}{2} \Lambda^{-1} \bar{X}(\mathbf{p}-\mathbf{g})
\]
where \(\boldsymbol{p}\) contains squared distances to landmarks.

\section*{Stress Majorization}
\[
\min _{X} \sum_{i j}\left(D_{0 i j}-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}\right)^{2}
\]


\section*{SMACOF:}

Scaling by Majorizing a Complicated Function

\section*{SMACOF Potential Terms}
\[
\min _{X} \sum_{i j}\left(D_{0 i j}-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}\right)^{2}
\]
\[
\begin{aligned}
\sum_{i j}\left(D_{0 i j}\right)^{2} & =\text { const. } \\
\sum_{i j}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2} & =\operatorname{tr}\left(X V X^{\top}\right), \text { where } V=2 n J \\
-2 \sum_{i j} D_{0 i j}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2} & =-2 \operatorname{tr}\left(X B(X) X^{\top}\right) \\
\text { where } B_{i j}(X) & := \begin{cases}-\frac{2 D_{0 i j}}{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}} & \text { if } \mathbf{x}_{i} \neq \mathbf{x}_{j}, i \neq j \\
0 & \text { if } \mathbf{x}_{i}=\mathbf{x}_{j}, i \neq j \\
-\sum_{j \neq i} B_{i j} & \text { if } i=j\end{cases}
\end{aligned}
\]

\section*{SMACOF Lemma}
\[
\begin{aligned}
& \sum_{i j}\left(D_{0 i j}\right)^{2}=\text { const. } \\
& \sum_{i j}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}=\operatorname{tr}\left(X V X^{\top}\right) \text {, where } V=2 n J \\
& -2 \sum_{i j} D_{0 i j}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}=-2 \operatorname{tr}\left(X B(X) X^{\top}\right) \\
& \text { where } B_{i j}(X):= \begin{cases}-\frac{2 D_{i j}}{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}} & \text { if } \mathbf{x}_{i} \neq \mathbf{x}_{j}, i \neq j \\
0 & \text { if } \mathbf{x}_{i}=\mathbf{x}_{j}, i \neq j \\
-\sum_{j \neq i} B_{i j} & \text { if } i=j\end{cases}
\end{aligned}
\]

Lemma. Define
\[
\tau(X, Z):=\text { const. }+\operatorname{tr}\left(X V X^{\top}\right)-2 \operatorname{tr}\left(X B(Z) Z^{\top}\right)
\]

Then,
\[
\tau(X, X) \leq \tau(X, Z) \forall Z
\]
with equality exactly when \(X \propto Z\).
Proof using Cauchy-Schwarz.

\section*{SMACOF: Single Step}
\[
X^{k+1} \leftarrow \min _{X} \tau\left(X, X^{k}\right)
\]
\[
\begin{aligned}
\tau(X, Z) & :=\text { const. }+\operatorname{tr}\left(X V X^{\top}\right)-2 \operatorname{tr}\left(X B(Z) Z^{\top}\right) \\
\Longrightarrow 0 & =\nabla_{X}\left[\tau\left(X, X^{k}\right)\right] \\
& =2 X V-2 X^{k} B\left(X^{k}\right) \\
\Longrightarrow X^{k+1} & =X^{k} B\left(X^{k}\right)\left(I_{n \times n}-\frac{\mathbf{1 1}^{\top}}{n}\right)
\end{aligned}
\]

\section*{SMACOF: Single Step}


Objective convergence:
\[
\tau\left(X^{k+1}, X^{k+1}\right) \leq \tau\left(X^{k}, X^{k}\right)
\]

\section*{Graph Embedding}


Figure 9: A Telephone Call Graph, Layed Out in 2-D. Left: classical scaling (Stress=0.34); right: distance scaling (Stress=0.23). The nodes represent telephone numbers, the edges represent the existence of a call between two telephone numbers in a given time period.

\section*{Recent SMACOF Application}

DOI: \(10.1111 / \mathrm{cgf} .12558\)
EUROGRAPHICS 2015 / O. Sorkine-Hornung and M. Wimmer (Guest Editors)

Shape-from-Operator: Recovering Shapes
from Intrinsic Operators

Davide Boscaini, Davide Eynard, Drosos Kourounis, and Michael M. Bronstein
Università della Svizzera Italiana (USI), Lugano, Switzerland


Shape-from-Laplacian



Shape-from-eigenvectors

Figure 1: Examples of three different shape-from-operator problems considered in the paper. Left: shape analogy synthesis as shape-from-difference operator problem (shape \(X\) is synthesized such that the intrinsic difference operator between \(C, X\) is as
close as possible to the difference between \(A, B\) ). Center: style transfer as shape-from-Laplacian problem. The Laplacian of the close as possible to the difference between \(A, B)\). Center: style transfer as shape-from-Laplacian problem. The Laplacian of the

\section*{Related Method}




\section*{"Sammon \\ mapping"}

Sammon (1969). "A nonlinear mapping for data structure analysis." IEEE Transactions on

Computers 18.

\section*{Only Scratching the Surface}


\section*{Embedding Metrics into Euclidean Space}

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

\title{
Structure-Preserving Embedding
}

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

\section*{Change in Perspective}


Extrinsic embedding All distances equally important


Intrinsic embedding Locally distances more important

\section*{Theory: These Problems are Linked}

Theorem (Whitney embedding theorem). Any smooth, real \(k\)-dimensional manifold maps smoothly into \(\mathbb{R}^{2 k}\).

Theorem (Nash-Kuiper embedding theorem, simplified). Any \(k\)-dimensional Riemannian manifold admits an isometric, differentiable embedding into \(\mathbb{R}^{2 k}\).


\section*{Intrinsic-to-Extrinsic: ISOMAP}
- Construct neighborhood graph
\(k\)-nearest neighbor graph or \(\varepsilon\)-neighborhood graph
- Compute shortest-path distances

Floyd-Warshall algorithm or Dijkstra
- Classical MDS
 Eigenvalue problem


Tenenbaum, de Silva, Langford.
"A Global Geometric Framework for Nonlinear Dimensionality Reduction." Science (2000).

\section*{Floyd-Warshall Algorithm}
```

let dist be a $|V| \times|V|$ array of minimum distances initialized to ∞ (infinity)
for each vertex V
dist[v [v] $\leftarrow 0$
for each edge (u, v)
dist[u][v] $\leftarrow w(u, v) ~ / / ~ t h e ~ w e i g h t ~ o f ~ t h e ~ e d g e ~(u, v) ~$
for k from 1 to $|V|$
for i from 1 to $|V|$
for j from 1 to |V|
if dist[i][j] > dist[i][k] + dist[k][j]
dist[i][j] $\leftarrow \operatorname{dist[i][k]~+~dist[k][j]~}$
end if

```

\section*{Landmark ISOMAP}
- Construct neighborhood graph
\(k\)-nearest neighbor graph or \(\varepsilon\)-neighborhood graph
- Compute some shortest-path distances

Dijkstra: \(\boldsymbol{O}(\boldsymbol{k n} N \log N)\), \(n\) landmarks, \(N\) points
- MDS on landmarks

Smaller \(\boldsymbol{n} \times \boldsymbol{n}\) problem
- Closed-form embedding formula
\(\boldsymbol{\delta}(\boldsymbol{x})\) vector of squared distances from \(x\) to landmarks
\[
\operatorname{Embedding}(x)_{i}=-\frac{1}{2} \frac{v_{i}^{\top}}{\sqrt{\lambda_{i}}}\left(\delta(x)-\delta_{\text {average }}\right)
\]

\section*{Locally Linear Embedding (LLE)}
- Construct neighborhood graph \(k\)-nearest neighbor graph or \(\varepsilon\)-neighborhood graph
- Analysis step: Compute weights \(W_{i j}\)
\[
\begin{aligned}
& \min _{\omega^{1}, \ldots, \omega^{k}}\left\|\mathbf{x}_{i}-\sum_{j} \omega^{j} \mathbf{n}_{j}\right\|_{2} \\
& \text { subject to } \quad \sum_{j} \omega^{j}=1
\end{aligned}
\]
- Embedding step: Minimum eigenvalue problem
\[
\begin{array}{ll}
\min _{Y} & \left\|Y-Y W^{\top}\right\|_{\text {Fro }}^{2} \\
\text { subject to } Y Y^{\top}=I_{p \times p} \\
& Y \mathbf{1}=\mathbf{0}
\end{array}
\]

\section*{Comparison: ISOMAP vs. LLE}
\begin{tabular}{|l|l|}
\hline ISOMAP & LLE \\
\hline Global distances & Local averaging \\
\hline\(k\)-NN graph distances & \(k\)-NN graph weighting \\
\hline Largest eigenvectors & Smallest eigenvectors \\
\hline Dense matrix & Sparse matrix \\
\hline
\end{tabular}


\section*{Diffusion Maps}
- Construct similarity matrix

Example: \(K(x, y):=e^{-\|x-y\|^{2} / \varepsilon}\)
- Normalize rows
\[
M:=D^{-1} K
\]
- Embed from \(k\) largest eigenvectors
\(\left(\lambda_{1} \psi_{1}, \lambda_{2} \psi_{2}, \ldots, \lambda_{k} \psi_{k}\right)\)
(more later)

Coifman, R.R.; S. Lafon. (2006). "Diffusion maps." Applied and
Computational Harmonic Analysis. 21: 5-30.

\section*{Mesh Parameterization}

\[
\min _{\mathbf{x}} \sum_{f} A_{f} \mathcal{D}\left(J_{f}(\mathbf{x})\right)
\]
\begin{tabular}{lllll}
\hline Name & \(\mathcal{D}(\mathbf{J})\) & \(\mathcal{D}(\sigma)\) & \(\left(\nabla_{\mathbf{S}} \mathcal{D}(\mathbf{S})\right)_{i}\) & \(\left(\mathbf{S}_{\Lambda}\right)_{i}\) \\
\hline Symmetric Dirichlet & \(\|\mathbf{J}\|_{F}^{2}+\left\|\mathbf{J}^{-1}\right\|_{F}^{2}\) & \(\sum_{i=1}^{n}\left(\sigma_{i}^{2}+\sigma_{i}^{-2}\right)\) & \(2\left(\sigma_{i}-\sigma_{i}^{-3}\right)\) & 1 \\
\hline Exponential & & & & 1 \\
\begin{tabular}{l} 
Symmetric \\
Dirichlet
\end{tabular} & \(\exp \left(s\left(\|\mathbf{J}\|_{F}^{2}+\left\|\mathbf{J}^{-1}\right\|_{F}^{2}\right)\right)\) & \(\exp \left(s \sum_{i=1}^{n}\left(\sigma_{i}^{2}+\sigma_{i}^{-2}\right)\right)\) & \(2 s\left(\sigma_{i}-\sigma_{i}^{-3}\right) \exp \left(s\left(\sigma_{i}^{2}+\sigma_{i}^{-2}\right)\right)\) & 1 \\
\hline Hencky strain & \(\left\|\log \mathbf{J}^{\top} \mathbf{J}\right\|_{F}^{2}\) & \(\sum_{i=1}^{n}\left(\log ^{2} \sigma_{i}\right)\) & \(2\left(\frac{\log \sigma_{i}}{\sigma_{i}}\right)\) & \(s \cdot \exp \left(s \cdot\left(\frac{1}{4}\left(\sigma_{i+1}-\frac{1}{\sigma_{i+1} \sigma_{i}^{2}}\right)\right.\right.\) \\
\hline & \(\exp \left(s \cdot \frac{1}{2}\left(\frac{\operatorname{tr}\left(\mathbf{J}^{\top} \mathbf{J}\right)}{\operatorname{det}(\mathbf{J})}\right.\right.\) & \(\exp \left(s\left(\frac{1}{2}\left(\frac{\sigma_{1}}{\sigma_{2}}+\frac{\sigma_{2}}{\sigma_{1}}\right)\right.\right.\) & \(\sqrt{\frac{2 \sigma_{i+1}^{2}+1}{\sigma_{i+1}^{2}+2}}\) \\
AMIPS & \(\left.+\frac{1}{2}\left(\operatorname{det}(\mathbf{J})+\operatorname{det}\left(\mathbf{J}^{-1}\right)\right)\right)\) & \(\left.+\frac{1}{4}\left(\sigma_{1} \sigma_{2}+\frac{1}{\sigma_{1} \sigma_{2}}\right)\right)\) & \(\left.+\frac{1}{2}\left(\frac{1}{\sigma_{i+1}}-\frac{\sigma_{i+1}}{\sigma_{i}^{2}}\right)\right)\) & \(\sqrt{1}\) \\
\hline Conformal AMIPS 2D \(\frac{\operatorname{tr}\left(\mathbf{J}^{\top} \mathbf{J}\right)}{\operatorname{det}(\mathbf{J})}\) & \(\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{\sigma_{1} \sigma_{2}}\) & \(\frac{\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}}{\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)^{\frac{2}{3}}}\) & \(\frac{1}{\sigma_{i+1}-\frac{\sigma_{i+1}}{\sigma_{i}^{2}}}\) & \(\sqrt{\sigma_{1} \sigma_{2}}\) \\
\hline Conformal AMIPS 3D \(\frac{\operatorname{tr}\left(\mathbf{J}^{\top} \mathbf{J}\right)}{\operatorname{det}(\mathbf{J})^{\frac{2}{3}}}\) & & \(\sqrt{\frac{\sigma_{1}^{2}+\sigma_{3}^{2}}{2}}\) \\
\hline
\end{tabular}
- Key consideration: Injectivity
- Connection to PDE

Images/table from: Rabinovich et al. "Scalable Locally Injective Mappings." Line search: Smith \& Schaefer. "Bijective Parameterization with Free Boundaries."

\section*{Embedding from Geodesic Distance}

\section*{On reconstruction of non-rigid shapes with intrinsic regularization}

\author{
Yohai S. Devir Guy Rosman Alexander M. Bronstein Michael M. Bronstein Ron Kimmel \\ \{yd|rosman|bron|mbron|ron\}@cs.technion.ac.il \\ Department of Computer Science \\ Technion - Israel Institute of Technology
}

\begin{abstract}
Shape-from-X is a generic type of inverse problems in computer vision, in which a shape is reconstructed from some measurements. A specially challenging setting of this problem is the case in which the reconstructed shapes are non-rigid. In this paper, we propose a framework for intrinsic regularization of such problems. The assumption is that we have the geometric structure of a shape which is intrinsically (up to bending) similar to the one we would like to reconstruct. For that goal, we formulate a variation with respect to vertex coordinates of a triangulated mesh approximating the continuous shape. The numerical core of the proposed method is based on differentiating the fast marching update step for geodesic distance computation.
\end{abstract}

\section*{1. Introduction}
many other problems, in which an object is reconstructed based on some measurement, are known as shape reconstruction problems. They are a subset of what is called inverse problems. Most such inverse problems are under determined, in the sense that measuring different objects may yield similar measurements. Thus, in the above illus tration, the essence of the shadow theater is that it is hard to distinguish between shadows cast by an animal and shadows cast by hands. Therefore unknown object is needed. ing non-rigid shapes. The world of the proposed method is based on differentiating the fas objects such as live bodies, pap marching update step for geodesic distance computation. etc., which may be deformed objects may be deformed to an infinite number of different postures. While bending, though, objects tends to preserve their internal geometric structure. Two objects differing by a bending are said to be intrinsically similar. In many cases, while we do not know the measured object, we have a prior

\section*{Relative Distance Embedding}

\section*{ASIF: coupled data turns unimodal models to multimodal without training \\ Antonio Norelli, Marco Fumero, Valentino Maiorca, Luca Moschella, Emanuele Rodolà, Francesco Locatello \\ Published: 01 Feb 2023, Last Modified: 13 Feb 2023 Submitted to ICLR 2023 Readers: Everyone Show Bibtex Show Revisions Keywords: Representation learning, Multimodal models, Analogy, Sparsity, Relative representations \\ Abstract: Aligning the visual and language spaces requires to train deep neural networks from scratch on giant multimodal datasets; CLIP trains both an image and a text encoder, while LiT manages to train just the latter by taking advantage of a pretrained vision network. In this paper, we show that sparse relative representations are sufficient to align text and images without training any network. Ou method relies on readily available single-domain encoders (trained with or without supervision) and a modest (in comparison) number of image-text pairs. ASIF redefines what constitutes a multimod
model by explicitly disentangling memory from processing: here the model is defined by the embedded pairs of all the entries in the multimodal dataset, in addition to the parameters of the two model by explicitly disentangling memory from processing: here the model is defined by the embedded pairs of all the entries in the multimodal dataset, in addition to the parameters of the two
encoders. Experiments on standard zero-shot visual benchmarks demonstrate the typical transfer abbility of image-text models. Overall, our method represents a simple yet surprisingly strong baselin for foundation multi-modal models, raising important questions on their data efficiency and on the role of retrieval in machine learning. Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity. \\ No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review. \\ Code of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics \\ Submission Guidelines: Ye \\ Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning}

[Silverstone et al. 1995]

\section*{ASIF recipe. Ingredients}
- Two good encoders, each mapping a single data modality to a vector space. Let \(X\) and \(Y\) be the mode domains, for instance a pixel space and a text space, we need \(E_{1}: X \rightarrow \mathbb{R}^{d 1}\) and \(E_{2}: Y \rightarrow \mathbb{R}^{d 2}\).
- A collection of ground truth multimodal pairs: \(D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}\), for instance captioned images.

Procedure to find the best caption among a set of original ones \(\hat{Y}=\left\{\hat{y}_{1}, \ldots, \hat{y}_{c}\right\}\) for a new image \(x^{*}\) :
1. Compute and store the embeddings of the multimodal dataset \(D\) with the encoders \(E_{1}, E_{2}\) and discard \(D\). Now in memory there should be just \(D_{E}=\) \(\left\{\left(E_{1}\left(x_{1}\right), E_{2}\left(y_{1}\right)\right), \ldots,\left(E_{1}\left(x_{n}\right), E_{2}\left(y_{n}\right)\right)\right\}\)
2. Compute the \(n\)-dimensional relative representation for each candidate caption \(\operatorname{rr}\left(\hat{y}_{i}\right)=\) \(\left(\operatorname{sim}\left(E_{2}\left(\hat{y}_{i}\right), E_{2}\left(y_{1}\right)\right), \ldots, \operatorname{sim}\left(E_{2}\left(\hat{y}_{i}\right), E_{2}\left(y_{n}\right)\right)\right.\), where \(\operatorname{sim}\) is a similarity function, e.g. cosine similarity. Then for each \(\operatorname{rr}\left(\hat{y}_{i}\right)\) set to zero all dimensions except for the highest \(k\), and raise them to \(p \geq 1\). Finally normalize and store the processed \(c\) vectors \(\operatorname{rr}\left(y_{i}\right)\). Choose \(k\) and \(p\) to taste, in our experiments \(k=800\) and \(p=8\);
3. Compute the relative representation of \(x^{*}\) using the other half of the embedded multimodal dataset \(D_{E}\) and repeat the same processing with the chosen \(k\) and \(p\);
4. We consider the relative representation of the new image \(x^{*}\) as if it was the relative representation of its ideal caption \(y^{*}\), i.e. we define \(\tilde{\mathrm{r}}\left(y^{*}\right):=\tilde{\mathrm{rr}}\left(x^{*}\right)\). So we choose the candidate caption \(\hat{y}_{i}\) most similar to the ideal one, with \(i=\) \(\operatorname{argmax}_{i}\left(\operatorname{sim}\left(\tilde{\mathrm{rr}}\left(y^{*}\right), \tilde{\mathrm{r}}\left(\hat{y}_{i}\right)\right)\right)\).

\footnotetext{
To assign one of the captions to a different image \(x^{* *}\) repeat from step 3 .
}

\section*{Take-Away}

\section*{Huge zoo of embedding techniques.}

Each with different theoretical properties: Try them all!

But what if the distance matrix is incomplete or noisy?

\section*{More General: Metric Nearness}

\section*{\(\min \|X-D\|_{\text {Fro }}^{2}\) \(X \in \mathcal{M}_{N \times N}\)}
```

Triangle_Fixing(D,\epsilon)
Input: Input dissimilarity matrix D, tolerance \epsilon
Output: }M=\mp@subsup{\operatorname{argmin}}{\boldsymbol{X}\in\mp@subsup{\mathscr{M}}{N}{}}{|}|\boldsymbol{X}-\boldsymbol{D}\mp@subsup{|}{2}{2
for 1\leqi<j<k\leqn
(zijk},\mp@subsup{z}{jki}{},\mp@subsup{z}{kij}{*})\leftarrow
for 1\leqi<j\leqn
eij}\leftarrow
\delta}\leftarrow1+
while (\delta>\epsilon).\quad{convergence test}
foreach triangle (i,j,k)
b\leftarrowd}\mp@subsup{d}{ki}{}+\mp@subsup{d}{jk}{}-\mp@subsup{d}{ij}{
\mu\leftarrow\frac{1}{3}(\mp@subsup{e}{ij}{}-\mp@subsup{e}{jk}{}-\mp@subsup{e}{ki}{}-b)
0\leftarrow\operatorname{min}{-\mu,\mp@subsup{z}{ijk}{}}\quad{Stay within half-space of constraint}
e}\mp@subsup{e}{ij}{}\leftarrow\mp@subsup{e}{ij}{}-0,\mp@subsup{e}{jk}{}\leftarrow\mp@subsup{e}{jk}{}+0,\mp@subsup{e}{ki}{}\leftarrow\mp@subsup{e}{ki}{}+
zijk}\leftarrow\mp@subsup{z}{ijk}{}-0\quad\mathrm{ {Update correction term}
end foreach
\delta}\mathrm{ sum of changes in the e
end while
return M=D+E
Dhillon, Sra, Tropp. "Triangle Fixing Algorithms for the Metric Nearness Problem." NIPS 2004.

```

\section*{Euclidean Matrix Completion}
\[
\begin{array}{ll}
\min _{G} & \left\|H \circ\left(P(G)-P_{0}\right)\right\|_{\text {Fro }}^{2} \\
\text { s.t. } G \succeq 0 & \text { Convex program }
\end{array}
\]

Alfakih, Khandani, and Wolkowicz. "Solving Euclidean distance matrix completion problems via semidefinite programming." Comput. Optim. Appl., 12 (1999).

\section*{Maximum Variance Unfolding}
\[
\begin{aligned}
& \max _{G} \operatorname{tr}(G) \\
& \text { s.t. } G \succeq 0 \\
& \\
& \quad G_{i i}+G_{j j}-G_{i j}-G_{j i}=D_{0 i j}^{2} \forall\left(i, j, D_{0 i j}\right) \\
& \\
& G \mathbf{1}=\mathbf{0}
\end{aligned}
\]

Alfakih, Khandani, and Wolkowicz. "Solving Euclidean distance matrix completion problems via semidefinite programming." Comput. Optim. Appl., 12 (1999).

\section*{Challenging Computational Problems}
- Is my data embeddable?
- Can you compute intrinsic dimensionality?
- Are two metric spaces isometric?
- How similar are two metric spaces?
- What is the average of two metric spaces?
- Can I embed into non-Euclidean spaces?

\section*{NP-Hardness Result}

\section*{Robust Euclidean Embedding}

Lawrence Cayton
Sanjoy Dasgupta
Department of Computer Science and Engineering, University of California, San Diego 9500 Gilman Dr. La Jolla, CA 92093

\section*{Abstract}

We derive a robust Euclidean embedding procedure based on semidefinite programming that may be used in place of the popular classical multidimensional scaling (cMDS) algorithm. We motivate this algorithm by arguing that cMDS is not particularly robust and has several other deficiencies. Generalpurpose semidefinite programming solvers are too memory intensive for medium to large sized applications, so we also describe a fast subgradient-based implementation of the robust algorithm. Additionally, since cMDS is often used for dimensionality reduction, we provide an in-depth look at reducing dimensionality with embedding procedures. In particular, we show that it is NP-hard to find optimal low-dimensional embeddings under a variety of cost functions.
choice for embedding seems to be
sional scaling (cMDS). Its popula ing relatively fast, parameter-free and optimal for its cost function
from a variant of not-all-equal 3SAT.
In this work, we
look carefully at the algorithm and has some problematic features as we we argue that the cost function is \(n\) conceptually awkward.

We propose a robust alternative to cl clidean embedding (REE), that reta desirable features of cMDS, but av pitfalls. We show that the global REE cost function can be found nite program (SDP). Though this is dard SDP-solvers can only manage th gram for around 100 points. So t used on more reasonably sized data a subgradient-based implementation

The hardness result can be extended to distortion functions of the form \(\sum_{i, j} g\left(f\left(d_{i j}\right)-f\left(\left|x_{i}-x_{j}\right|\right)\right)\) We assume that \(f, g\) are
1. symmetric;
2. monotonically increasing in the absolute values of their arguments
3. Lipschitz on \([0,1]\) with constant \(\lambda_{U}\), that is, for \(x, y \in[0,1],|f(x)-f(y)| \leq \lambda_{U}|x-y| ;\) and
4. similarly lower-bounded: for some \(\lambda_{L}>0\), for any \(x, y \in[0,1],|f(x)-f(y)| \geq \lambda_{L}|x-y| \max \{x, y\}\).

Notice that \(f(x), g(x) \in\left\{x, x^{2}\right\}\) satisfy these condi tions with \(\lambda_{U}=2, \lambda_{L}=1\), meaning that \(\left\|D-D^{*}\right\|_{1}\) and \(\left\|D-D^{*}\right\|_{2}\) are both hard to minimize over one-
dimensional embeddings.

\section*{Metric Learning}

Typical approaches:
- Parameterize a distance \(\boldsymbol{d}(\cdot, \cdot)\) directly

Example: Mahalanobis metric \(d(x, y):=\sqrt{(x-y)^{\top} A(x-y)}, A \geqslant 0\)
- Use closed-form distances on a kernel space

Example: Network embedding \(x \mapsto \phi_{\theta}(x)\)

\section*{Kernelization}

\section*{\(\phi_{\theta}:\) Data \(\rightarrow \mathbb{R}^{n}\)}

Preserve proximity relationships
Useful for downstream tasks
\(\phi_{\theta}\) can be interpreted as a kernel
"Feature vector"

\section*{Metric Learning: Example Losses \& Constraints}
\[
\begin{array}{ll}
\text { Bound constraints: } \\
d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)^{\leq} \leq u \quad & \forall(i, j) \in \mathcal{S} \\
d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq \ell \quad & \forall(i, j) \in \mathcal{D}
\end{array}
\]

Hinge loss:
\(\max \left(0, d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-u\right) \quad \forall(i, j) \in \mathcal{S}\) \(\max \left(0, \ell-d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right) \quad \forall(i, j) \in \mathcal{D}\)

Triplet loss:
\(\max \left(d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-d\left(\mathbf{x}_{i}, \mathbf{x}_{k}\right)+\alpha, 0\right)\)
\[
\forall(i, j) \in \mathcal{S},(i, k) \in \mathcal{D}
\]

\section*{Well-Known Example: Word2Vec}

\section*{Distributed Representations of Words and Phrases and their Compositionality}

Tomas Mikolov
Google Inc.
Mountain View
mikolov@google.com
\begin{tabular}{cc} 
Ilya Sutskever & Kai Chen \\
Google Inc. & Google Inc. \\
Mountain View & Mountain View \\
ilyasu@google.com & kai@google.com \\
& \\
& Jeffrey Dean \\
Google Inc. \\
& Mountain View \\
jeff@google.com
\end{tabular}

Greg Corrado
Google Inc.
Mountain View gcorrado@google.com


Skip-gram architecture: Predict neighborhood of a word

The recently introduced continuo learning high-quality distributed ber of precise syntactic and seman several extensions that improve b speed. By subsampling of the fre also learn more regular word repr tive to the hierarchical softmax ca An inherent limitation of word ref and their inability to represent idi "Canada" and "Air" cannot be easi

Efficient Estimation of Word Representations in

\section*{Vector Space}

Kai Chen
Google Inc., Mountain View, CA kaichen@google.com

\section*{Fair Metrics: Modern Consideration}

\section*{Two Simple Ways to Learn Individual Fairness Metrics from Data}

Debarghya Mukherjee \({ }^{1 *}\) Mikhail Yurochkin \({ }^{2 *}\) Moulinath Banerjee \({ }^{1}\) Yuekai Sun \({ }^{1}\)

\section*{Abstract}

Individual fairness is an intuitive definition of algorithmic fairness that addresses some of the drawbacks of group fairness. Despite its benefits, it depends on a task specific fair metric that encodes our intuition of what is fair and unfair for the ML task at hand, and the lack of a widely accepted fair metric for many ML tasks is the main barrier to broader adoption of individual fairness. In this paper, we present two simple ways to learn fair metrics from a variety of data types. We show empirically that fair training with the learned metrics leads to improved fairness on three machine learning tasks susceptible to gender and racial biases. \({ }^{1}\) We also provide theoretical guarantees on the statistical performance of both approaches.

\section*{1. Introduction}

Machine learning (ML) models are an integral part of modern decision-making pipelines. They are even part of some high-stakes decision support systems in criminal justice, lending, medicine etc.. Although replacing humans with ML models in the decision-making process appear to elim inate human biases, there is growing concern about ML
fairness and individual fairness. Group fairness divides the feature space into (non-overlapping) protected subsets and imposes invariance of the ML model on the subsets. Most prior work focuses on group fairness because it is amenable o statistical analysis. Despite its prevalence, group fairness suffers from two critical issues. First, it is possible for an ML model that satisfies group fairness to be blatantly unfair with respect to subgroups of the protected groups and individuals (Dwork et al., 2011). Second, there are fundamental incompatibilities between seemingly intuitive notions of group fairness (Kleinberg et al., 2016; Chouldechova, 2017).

In light of the issues with group fairness, we consider in dividual fairness in our work. Intuitively, individually fair ML models should treat similar users similarly. Dwork et al (2011) formalize this intuition by viewing ML models as maps between input and output metric spaces and defining individual fairness as Lipschitz continuity of ML models The metric on the input space is the crux of the definition because it encodes our intuition of which users are similar Unfortunately, individual fairness was dismissed as impractical because there is no widely accepted similarity metric for most ML tasks. In this paper, we take a step towards operationalizing individual fairness by showing it is possible to learn good similarity metrics from data.
The rest of the paper is organized as follows. In Section

\section*{t-SNE}
t -distributed stochastic neighbor embedding
1. Compute probabilities on input data \(x_{i}\)
\(p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|_{2}^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|_{2}^{2} / 2 \sigma_{i}^{2}\right)} \quad \begin{aligned} & \text { Likelihood of choosing } j \text { as a neighbor under } \\ & \text { Gaussian prior at } i(\sigma \text { is perplexity, or variance })\end{aligned}\)
2. Symmetrize
\(p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 N}\)
2. Optimize for an embedding
\[
\mathrm{KL}(P \| Q)=\sum_{i \neq j} p_{i j} \log \frac{p_{i j}}{q_{i j}} \quad q_{i j}=\frac{\left(1+\left\|y_{i}-y_{j}\right\|_{2}^{2}\right)^{-1}}{\sum_{k \neq i}\left(1+\left\|y_{i}-y_{k}\right\|_{2}^{2}\right)^{-1}}
\]

Find low-dimensional points \(y_{i}\) whose heavy-tailed Student t-distribution resembles \(p\). (Gradient descent!)
[van der Maaten and Hinton 2008]

\section*{Heuristic Explanation}

Normal vs Cauchy (Students-T) Distribution


\section*{Typical Result}


\section*{Required Reading}

"How to Use t-SNE Effectively" (Wattenberg et al., 2016)

\section*{Another Popular Choice: UMAP}


Embeds a "fuzzy simplicial complex"
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction (McInnes, Healy)
Comparison: https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
Nice article: https://pair-code.github.io/understanding-umap/

\title{
Structure-Preserving Embedding
}

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS```

