Distance Metrics and Embeddings

Justin Solomon

6.8410: Shape Analysis
Spring 2023

Ry MIT EECS



Last Time

Geodesic distance

Right bunny from “"Geodesics in Heat” (Crane et al.)



Geodesic distance

Right bunny from “"Geodesics in Heat” (Crane et al.)



Many Overlapping Tasks

Dimensionality reduction
Embedding
Parameterization

Manifold learning



Given pairwise distances
extract an embedding.

Is it always possible?
Embedding into which space?
What dimensionality?



Metric Space




Many Examples of Metric Spaces

R™, d(z,y) == ||z — ZUHp

S C R®, d(z,y) := geodesic



Isometry [ahy-som-i-tree]:

A map between metric spaces
that preserves pairwise
distances.

—




Can you always embed
a metric space
iIsometrically in R"?



Can you always embed
a finite metric space
iIsometrically in R"?



Disappointing Example

X :={a,b,c,d}
d(a,d) =d(b,d) =1
d(a,b) = d(a,c) = d(b,c) = 2
d(c,d) = 1.5

d b
Cannot be embedded ir Laclidean $p ace! a
C

https://chiasme.wordpress.com/2013/10/07/when-does-a-finite-metric-space-embed-isometrically-into-an-euclidean-space/



Contrasting Example

loo(R™)

%[00 -

(R [+ lloo)

IMax | X
; X},

Proposition. Every finite metric space embeds
isometrically into £, (R") for some n.

Extends to infinite-dimensional spaces!




Approximate Embedding

expansion( f) := max p(f(x), F(y)
vy p(z,y)
p(z,y)

contraction(f) := max

vy u(f(z), f(y))

distortion( f) := expansion(f) x contraction(f)

http://www.cs.toronto.edu/~avner/teaching/S6-2414/LN1.pdf



Frechet Embedding

Definition  (Fréchet embedding). Suppose (M, d) is a metric space that Sq,...,S; C M. We define
the Fréchet embedding of M with respect to {Sq,...,S;} to be the map ¢ : M — R" given by

p(x):= (d(x,51),d(x,S2),...,d(x,S:)),

where d(x,S) := min,csd(x,y).



Well-Known Result

Proposition  (Bourgain’s Theorem). Suppose (M, d) is a metric space consisting of n points, that is,
|M| = n. Then, for p > 1, M embeds into {,(IR™) with O(logn) distortion, where m = O(log*n).

Matousek improved the distortion bound to logn/p [14].

m := 576 logn)
for j =1 to logn do /* levels of density */
for i =1 to m do /* repeat for high probability */
choose set S;; by sampling each node in X
independently with probability 277
end
end

fij(x) = d(x, Sij)
( @log n @m fZ](

http://ttic.uchicago.edu/~harry/teaching/pdf/lecture3.pdf
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Isometry [ahy-som-i-tree]:

A map between metric spaces
that preserves pairwise
distances.

—




Euclidean Problem

Given:

Pi; = ||x; — %45, P € R™*"

Reconstruct:

X1,...,Xp € R

Alternative notation:

X E M XN




Gram Matrix [gram mey-triks]:

A matrix of inner products




Classical Multidimensional Scaling

1. Double centering: G := —2J " PJ
Centering matrix J := I,,«, — 511T

2. Find m largest eigenvalues/eigenvectors

G =QAQ"
3. X =vVAQT
Extension: Landmark MDS

Torgerson, Warren S. (1958). Theory & Methods of Scaling.



Simple Example

Voting patterns
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https://en.wikipedia.org/wiki/Multidimensional_scaling#/media/File:RecentVotes.svg



Landmark MDS
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where p contains squared distances to landmarks.

de Silva and Tenenbaum. (2004). “"Sparse Multidimensional Scaling
Using Landmark Points.” Technical Report, Stanford University, 41.
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Stress Majorization

m)%nz (Doij — ||xi — Xj||2)2

) Nonconvext

SMACOF:

Scaling by Majorizing a Complicated Function

de Leeuw, J. (1977), "Applications of convex analysis to multidimensional scaling” Recent
developments in statistics, 133-145.



SMACOF Potential Terms

Z(DOM)Q = const.

]
Z Ix; — x5 = tr(XVX"), where V = 2nJ
]
=2 Doijllxi — xjll2 = —2tr(XB(X)X ")
©]
2Dy, ; . S
_||xi—2<j||2 it X; 7 Xj,1 7 ]
where BZJ(X) = 0 if X; = Xj,’i %]



SMACOF Lemma

Z(DOij)Q = const.

1J
D i — x5 = tr(XVXT), where V = 2nJ
j

—2 " Dojjllx; — x;[2 = —2tr(XB(X)X ")

J

where B;;(X) 1= if x; =Xj,1 7 J

2Doi; : .

—ﬁ if X; # Xj,1# ]

0
— By ifi=j

Lemma. Define
7(X,Z) = const. + tr(XVX ") — 2tr(XB(2)Z ")
Then,
(X, X)<7(X,Z)VZ
with equality exactly when X « Z.

Proof using Cauchy-Schwarz.

See Modern Multidimensional Scaling (Borg, Groenen)



SMACOF: Single Step

XFHL min 7(X, X")

7(X,Z) :=const. + tr(XVX ") — 2tr(XB(Z)Z ")
— (0 = Vx[T(X, Xk)]
= 2XV - 2X*B(X")

11"
— X"t = X*B(XF) (Im - —>
T

Objective convergence:
T(XFTL XA < 7(XF XF)




SMACOF: Single Step

XFr min 7(X, X")

11"
Xk—l—l _ XkB(Xk) (Inxn . _)
n

Objective convergence:
T(XFHL XFL) < 7 (XFXF)

Image from “Sparse Modeling for Image and Vision Processing” (Mairal, Bach, and Ponce)



Graph Embedding

Figure 9: A Telephone Call Graph, Layed Out in 2-D. Left: classical scaling (Stress=0.34);
right: distance scaling (Stress=0.23). The nodes represent telephone numbers, the edges
represent the existence of a call between two telephone numbers in a given time period.

Image from “"Data Visualization with Multidimensional Scaling” (Buja et al.)



Recent SMACOF Application

DOI: 10.1111/cgf 12558
EUROGRAPHICS 2015/ O. Sorkine-Hornung and M. Wimmer
(Guest Editors)

Volume 34 (2015), Number 2

Shape-from-Operator: Recovering Shapes
from Intrinsic Operators

Davide Boscaini, Davide Eynard, Drosos Kourounis, and Michael M. Bronstein

Universita della Svizzera Italiana (USI), Lugano, Switzerland
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Shape-from-difference

Shape-from-Laplacian

Shape-from-eigenvectors

Figure 1: Examples of three different shape-from-operator problems considered in the paper. Left: shape analogy synthesis as
shape-from-difference operator problem (shape X is synthesized such that the intrinsic difference operator between C,X is as
close as possible to the difference between A, B). Center: stvle transfer as shape-from-Laplacian problem. The Laplacian of the



Related Method

0

ﬁ‘:‘% ° o n&:uu : % .
| AR : Sammon (1969). “A nonlinear
" : 0 mapping for data structure
Classical MDS Sammon

analysis.” IEEE Transactions on
Computers 18.

http://www.stat.pitt.edu/sungkyu/course/2221Fall13/lec8_mds_combined.pdf



Only Scratching the Surface

Ingwer Borg IS
Patrick J.FE. Groenen

Theory and Applications

Second Edition

@; Springer
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Change in Perspective

N

Extrinsic embedding Intrinsic embedding
All distances equally important Locally distances more important




Theory: These Problems are Linked

Theorem  (Whitney embedding theorem). Any smooth, real k-dimensional manifold maps smoothly
into R?*,

Theorem  (Nash-Kuiper embedding theorem, simplified). Any k-dimensional Riemannian mani-
fold admits an isometric, differentiable embedding into R,

\\\\\\\\\\\\\\\\\ Y

Wy A
muum,,,{(
7

Image: HEVEA Project/PNAS



Intrinsic-to-Extrinsic: ISOMAP

Construct neighborhood graph
k-nearest neighbor graph or e-neighborhood graph

Compute shortest-path distances
Floyd-Warshall algorithm or Dijkstra

Classical MDS

Eigenvalue problem

Re® sy 2 / e e — /

7~ SR 1
& i b 1

Tenenbaum, de Silva, Langford.
“A Global Geometric Framework for Nonlinear Dimensionality Reduction.” Science (2000).



Floyd-Warshall Algorithm

let dist be a |V| x |V| array of minimum distances initialized to = (infinity)
for each vertex v
dist[v][Vv] « O
for each edge (u,v)
dist[u]l [v] « w(u,Vv) // the weight of the edge (u,v)
for kK from 1 to |V|
for i from 1 to |V]|
for j from 1 to |V]
if dist[i][j] > dist[i][k] + dist[k][7]
dist[i][J] « dist[i][k] + distl[k][7]
end if

https://en.wikipedia.org/wiki/Floyd%E 2%80%93Warshall_algorithm



Landmark ISOMAP

Construct neighborhood graph
k-nearest neighbor graph or e-neighborhood graph

Compute some shortest-path distances
Dijkstra: O(kn N log N), nlandmarks, N points

MDS on landmarks

Smaller n X n problem

Closed-form embedding formula
6 (x) vector of squared distances from x to landmarks

1 v,
- (6(33) - 5avera,ge)

2V —

Embedding(zx); =




Locally Linear Embedding (LLE)

Construct neighborhood graph
k-nearest neighbor graph or £-neighborhood graph

Analysis step: Compute weights W ;;

min ok ‘ X; —.Zj wjnjHQ
subject to )} ;jw/ =1
Embedding step: Minimum eigenvalue problem
miny Y — YWTH%FO
subject to YY! = Ipxp
Y1=0



omparison: ISOMAP vs. LLE

Global distances
k-NN graph distances
Largest eigenvectors

Dense matrix

Local averaging
k-NN graph weighting
Smallest eigenvectors

Sparse matrix
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Image from “Incremental Alignment Manifold Learning.” Han et al. JCST 26.1 (2011).




Diffusion Maps

Construct similarity matrix
2
Example: K (z,y) := e e vlI"/¢

Normalize rows
M:=D 'K

Embed from k largest eigenvectors

(A101, Ao, . ooy ARr)

Coifman, R.R.; S. Lafon. (2006). “Diffusion maps.” Applied and
Computational Harmonic Analysis. 21: 5-3o0.



Mesh Parameterization

)) . [lteration 12

Name @(J) ﬂ)(cr) (VS'D(S))z (SA)i
Symmetric Dirichlet || 3|7 + |3~ |2 Y (02 +0;2) 2(0i —0;°) 1 :
Exponential min E AfD(Jf (X))
Symmetric «
Dirichlet exp(s(HJwa + [T %)) exp(s> " (0% + Ji_z)) 2s(o; — 03._3) exp(s(o? + Ji_z)) 1 f
Hencky strain HlogJ[JHi S (log?ey) 2(105;;‘1) 1
1, tr(J7J) 1,01 03 s exp(s - (~(0iq — —
- (422 p(s- (5 (oit1 )

exp(s - 5 det(J) CXP(S(Q(JQ " 01) 4 04107 2071141
AMIPS 1 1 1 1 1 Oit1 a-?+1+2

+ 5 (det(J) +det(371)))  + gloroz+ o) 2o o2 ) * Key consideration: Injectivity

r T Jz Jz o; .
Conformal AMIPS 2D 443 iz o — Tt NGITD * Connectionto PDE
Conformal AMIPS 3D% M ~205410i42(07 +0'7'2-{i)—2725772) \/aT) 205

det(J)3 (010203)3 (30j0ir10i42)3

Images/table from: Rabinovich et al. "Scalable Locally Injective Mappings.”
Line search: Smith & Schaefer. "Bijective Parameterization with Free Boundaries.”



Embedding from Geodesic Distance

On reconstruction of non-rigid shapes with intrinsic regularization

Yohai S. Devir Guy Rosman Alexander M. Bronstein Michael M. Bronstein
Ron Kimmel

{ydlrosman\bronlmbron|ron}@cs.technion.ac.il
Department of Computer Science
Technion - Israel Institute of Technology

Abstract

Shape-from-X is a generic type of inverse problems in
computer vision, in which a shape is reconstructed from
some measurements. A specially challenging setting of this
problem is the case in which the reconstructed shapes are
non-rigid. In this paper, we propose a framework for in-
trinsic regularization of such problems. The assumption is
that we have the geometric structure of a shape which is
intrinsically (up to bending) similar to the one we would
like to reconstruct. For that goal, we formulate a variation
with respect to vertex coordinates of a triangulated mesh
approximating the continuous shape. The numerical core
of the proposed method is based on differentiating the fast
marching update step for geodesic distance computation.

1. Introduction

many other problems, in which an object is reconstructed
based on some measurement, are known as shape recon-
struction problems. They are a subset of what is called
inverse problems. Most such inverse problems are under-
determined, in the sense that measuring different objects
may yield similar measurements. Thus, in the above illus-
tration, the essence of the shadow theater is that it is hard to
distinguish between shadows cast by an animal and shad-

ows cast by hands. Therefore
unknown object is needed.

The numerical core

Of particular interest are recod o the proposed method is based on differentiating the fast

ing non-rigid shapes. The world

objects such as live bodies, papdimarching update step for geodesic distance computation.

etc., which may be deformed t _

objects may be deformed to an infinite number of different
postures. While bending, though, objects tends to preserve
their internal geometric structure. Two objects differing by
a bending are said to be intrinsically similar. In many cases,
while we do not know the measured object, we have a prior




Relative Distance Embedding

ASIF: coupled data turns unimodal models to multimodal without
training @

Antonio Norelli, Marco Fumero, Valentino Maiorco, Luca Moschella, Emanuele Rodold, Francesco Locatello * Two good encoders, each mapping a single data modality to a vector space. Let X
Published: 01 Feb 2023, Last Modified: 13 Feb 2023 Submitted to ICLR 2023 Readers @ Everyone Show Bibtex Show Revisions and Y be the mOde domains, fOI' inStance a pixel Space and a text Spacev we need
Keywords: Representation learning, Multimodal models, Analogy, Sparsity, Relative representations E] 3 X = Rdl and E2 5 Y = RIIQ.

TL;DR: How to build a CLIP-like model with two pretrained encoders and a limited amount of image-text pairs without tuning a neuron.

ASIF recipe. Ingredients:

. 1 1 - arre: — " y
Abstract: Aligning the visual and language spaces requires to train deep neural networks from scratch on giant multimodal datasets; CLIP trains both an image and a text encoder, while LiT manages to A CO“CCUOH _Of grqund trUth mu“lmOddl pairs: D {(Tl » Y1 ) 1 ('I’ ns Yn ) }’ fOl‘
train just the latter by taking advantage of a pretrained vision network. In this paper, we show that sparse relative representations are sufficient to align text and images without training any network. Our instance Captloned 1mages.
method relies on readily available single-domain encoders (trained with or without supervision) and a modest (in comparison) number of image-text pairs. ASIF redefines what constitutes a multimodal

model by explicitly disentangling memory from processing: here the model is defined by the embedded pairs of all the entries in the multimodal dataset, in addition to the parameters of the two Procedure to find the best caption among set of original ones )‘/ = {,A N } oL ane
encoders. Experiments on standard zero-shot visual benchmarks demonstrate the typical transfer ability of image-text models. Overall, our method represents a simple yet surprisingly strong baseline s u* S p gas 1gina S = 1Y1)---,Yec w
for foundation multi-modal models, raising important questions on their data efficiency and on the role of retrieval in machine learning lmage &L

Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review. 1. Compu[e and store the embeddingg of the multimodal dataset 1D with the en-

Code Of Ethics: Iacknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics coders El.E2 and discard D. Now in memory there should be jUSt DE =
Submission Guidelines: Yes

Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning { (El ('Tl ) Ez(yl ))' SRS (El (:E”)' E-g (y“)) };

2. Compute the n-dimensional relative representation for each candidate caption rr(y;) =
(sim(E2(9i), E2(y1)), - - - sim(Es(y:), B2(yn)), where sim is a similarity function,
e.g. cosine similarity. Then for each rr(y;) set to zero all dimensions except for the
highest k, and raise them to p > 1. Finally normalize and store the processed c vectors
r(7;). Choose k and p to taste, in our experiments & = 800 and p = 8;

3. Compute the relative representation of 2* using the other half of the embedded multi-
modal dataset D and repeat the same processing with the chosen £ and p;

4. We consider the relative representation of the new image z* as if it was the rel-
ative representation of its ideal caption y*, i.e. we define rr(y*) = rr(x*).
So we choose the candidate caption ¢; most similar to the ideal one, with ¢ =
argmax, (sim(rr(y*), rr(7;))).

To assign one of the captions to a different image z** repeat from step 3.

© ez

[Silverstone et al. 1995]

ICLR 2023



LELGRA\VEL

Huge zoo
of embedding techniques.

Each with different theoretical properties: Try them all!

But what if the distance matrix is incomplete or noisy?



More General: Metric Nearness

j X — D
| [ Fro

TRIANGLE _FIXING(D ,€) In other words, the vector e is projected orthogonally onto
. recimilar 1 - the constraint set {e’ : .. — €., — e}.. < b;.; }. This is tantamount to solvin
Input: Input dissimilarity matrix 1), tolerance ¢ ij — €k T Chi J g
Output: M = argminy . 4, | X — DlJ. ming: 1[(el — ei)? + (g — e38)? + (b — ei)?)]
forl<i<j<k<n ¢ 2\~ Ci) Ak T Eik)T T (i T ki)l (32)
- = subjectto €. — e/ — ep; = bijk. '
(Zigkes Zjkei 2keij) < O o
forl <1< j <n It is easy to check that the solution is given by
eii «— 0
- tJ (i,g,- — €45 — Mijk, (if-k — €kt Hijks and (i!k'i — Cki + Mijk, (3.3)
0«—1+4¢€ ! !
while (0 > ¢) {convergence test} where 11,55 = %(€ij — €jk — €ri — bijr) > 0.

foreach triangle (7, 7, k)
b« dh.ﬂ + djk: — ffgj
o %(eij — €k — €ki — b)

0 «— min{—pu, ik } {Stay within half-space of constraint}
€55 + €45 — l(), €k < €5k + O.} €pi +— Cpi + 7,
Zijk — Zijk — 6 {Update correction term }

end foreach

d — sum of changes in the e Dhillon, Sra, Tropp. “Triangle F|X|ng Algorlthms

end while

return M — D + E for the Metric Nearness Problem.” NIPS 2004.




Euclidean Matrix Completion

min ||H o (P(G) — Po)llf

s.t. G =0 -

Alfakih, Khandani, and Wolkowicz. “Solving Euclidean distance matrix completion
problems via semidefinite programming.” Comput. Optim. Appl., 12 (1999).




Maximum Variance Unfolding

max tr(G)
G [Convex program
s.t. G = 0
Gii + Gjj — Gij — Gj; = Dg;; V(4, 7, Dosj)
G1=0

Alfakih, Khandani, and Wolkowicz. “Solving Euclidean distance matrix completion
problems via semidefinite programming.” Comput. Optim. Appl., 12 (1999).



Challenging Computational Problems

Is my data embeddable?

Can you compute intrinsic dimensionality?
Are two metric spaces isometric?

How similar are two metric spaces?

What is the average of two metric spaces?

Can | embed into non-Euclidean spaces?



NP-Hardness Result

Robust Euclidean Embedding

Lawrence Cayton
Sanjoy Dasgupta

Department of Computer Science and Engineering, University of California, San Diego

9500 Gilman Dr. La Jolla, CA 92093

Abstract

We derive a robust Euclidean embedding pro-
cedure based on semidefinite programming
that may be used in place of the popular
classical multidimensional scaling (¢cMDS) al-
gorithm. We motivate this algorithm by ar-
guing that cMDS is not particularly robust
and has several other deficiencies. General-
purpose semidefinite programming solvers
are too memory intensive for medium to large
sized applications, so we also describe a fast
subgradient-based implementation of the ro-
bust algorithm. Additionally, since ¢cMDS is
often used for dimensionality reduction, we
provide an in-depth look at reducing dimen-
sionality with embedding procedures. In par-
ticular, we show that it is NP-hard to find
optimal low-dimensional embeddings under a
variety of cost functions.

LCAYTON@CS.UCSD.EDU
DASGUPTA@QQS.UCSD.EDU

{1 EUCLIDEAN EMBEDDING
Input: A dissimilarity matrix D = (d;;).
QOutput: An embedding into the line: xy,25,... € R

. Goal: Minimize S . . |d;; — |z; — 3]l
choice for embedding seems to be Zi*-”' | “ i 3l

sional scaling (¢cMDS). Its populafWe show that this problem is NP-hard by reducing

ing relatively fast, parameter-freeffrom a variant of not-all-equal 3SAT.

and optimal for its cost function. In this work, we
look carefully at the algorithm and a ——
has some problematic features as we
we argue that the cost function is n
conceptually awkward.

The hardness result can be extended to distortion
functions of the form }, ; g(f(dij) — f(lzi — J:J—|)) We
assume that f, g are

We propose a robust alternative to c)J 1. symmetric;
clidean embedding (REE), that rete
desirable features of ¢cMDS, but av
pitfalls. We show that the global
REE cost function can be found u
nite program (SDP). Though this is
dard SDP-solvers can only manage th
gram for around 100 points. So th
used on more reasonably sized data
a subgradient-based implementation

2. monotonically increasing in the absolute values of}
their arguments;

3. Lipschitz on [0, 1] with constant Ay, that is, for
z,y € [0,1], [f(z) — f(y)| < Av|z — y[; and

4. similarly lower-bounded: for some Ay > 0, for any
z,y € (0,1, [f(z) = f(y)] Z Azlz — y| max{z, y}.

Notice that f(z),g(z) € {x,2?} satisfy these condi-
tions with Ay = 2, A;, = 1, meaning that |D — D*||
and ||D — D*||z are both hard to minimize over one-

. . ] ) . . dimensional embeddings.
DlIIleIlSlOIl‘dllty I'ed‘LlCtlUIl 15 an mmporvant P pPrCatTort

™ E Y anTel a1 1 *99 R amTal ™




Metric Learning

Typical approaches:

Parameterize a distance d(-,-) directly
Example: Mahalanobis metric d(x,y) = \/(x —y)TA(x—v),A =0

Use closed-form distances on a kernel space
Example: Network embedding x = ¢g(x)



Kernelization

¢9 . Data — R"

Preserve proximity relationships
Useful for downstream tasks
¢ can be interpreted as a kernel

“Feature vector”



Metric Learning: Example Losses & Constraints

Bound constraints:

d(Xz‘, ')<’LL \V/( ) cS
d(x;,x;) > € V(i,j5) €D

Hinge loss:

max(0,d(x;,x;) —u) V(i,5) €S
max(0, — d(x;,x;)) VY(i,7) € D

Triplet loss:

max (d(XZ', X]) — d(x;,X1) + a, O)
V(z,7) € S, (i, k) € D

From “Metric Learning: A Survey” (Kulis 2013)



Well-Known Example: Word2Vec

Distributed Representations of Words and Phrases

. o, e . Input projection  output
and their Compositionality e
/ w(t-1)
Tomas Mikolov Ilya Sutskever Kai Chen Y / Sklp'gram archltecture:
Google Inc. Google Inc. Google Inc. " : :
Mountain View Mountain View Mountain View \ 1 P red Ictn elg h bO rh OOd Of
mikolov@google.com ilyasu@google.com kai@google.com e a Word
Greg Corrado Jeffrey Dean w(t+2)
Google Inc. Google Inc.
Mountain View Mountain View
gcorrado@google.com jeff@google.com
Country and Capital Vectors Projected by PCA
Chinas Seiing
- - . . . 15 Russiac
Efficient Estimation of Word Representations in 1 _—
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Fair Metrics: Modern Consideration

Two Simple Ways to Learn Individual Fairness Metrics from Data

Debarghya Mukherjee '

Abstract

Individual fairness is an intuitive definition of
algorithmic fairness that addresses some of the
drawbacks of group fairness. Despite its benefits,
it depends on a task specific fair metric that en-
codes our intuition of what is fair and unfair for
the ML task at hand, and the lack of a widely ac-
cepted fair metric for many ML tasks is the main
barrier to broader adoption of individual fairness.
In this paper, we present two simple ways to learn
fair metrics from a variety of data types. We show
empirically that fair training with the learned met-
rics leads to improved fairness on three machine
learning tasks susceptible to gender and racial bi-
ases.! We also provide theoretical guarantees on
the statistical performance of both approaches.

1. Introduction

Machine learning (ML) models are an integral part of mod-
ern decision-making pipelines. They are even part of some
high-stakes decision support systems in criminal justice,
lending, medicine efc.. Although replacing humans with
ML models in the decision-making process appear to elim-
f inate human biases, there is growing concern about ML

Mikhail Yurochkin?”

Moulinath Banerjee' Yuekai Sun'

fairness and individual fairness. Group fairness divides the
feature space into (non-overlapping) protected subsets and
imposes invariance of the ML model on the subsets. Most
prior work focuses on group fairness because it is amenable
to statistical analysis. Despite its prevalence, group fairness
suffers from two critical issues. First, it is possible for an ML
model that satisfies group fairness to be blatantly unfair with
respect to subgroups of the protected groups and individuals
(Dwork et al., 2011). Second, there are fundamental incom-
patibilities between seemingly intuitive notions of group
fairness (Kleinberg et al., 2016; Chouldechova, 2017).

In light of the issues with group fairness, we consider in-
dividual fairness in our work. Intuitively, individually fair
ML models should treat similar users similarly. Dwork et al|
(2011) formalize this intuition by viewing ML models as
maps between input and output metric spaces and defining
individual fairness as Lipschitz continuity of ML models.
The metric on the input space is the crux of the definition
because it encodes our intuition of which users are similar,
Unfortunately, individual fairness was dismissed as impracH
tical because there is no widely accepted similarity metric
for most ML tasks. In this paper, we take a step towards
operationalizing individual fairness by showing it is possible
to learn good similarity metrics from data.

The rest of the paper is organized as follows. In Section
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t-SNE

t-distributed stochastic neighbor embedding

1. Compute probabilities on input data x;

o exp(—||z; — xj”%/Q%?) Likelihood of choosing j as a neighbor under
Pjli = Zk;éi exp(—||z; — xk”%/gag) Gaussian prior at i (o is perplexity, or variance)

2. Symmetrize
_ Pili T Pi)j
2N

2. Optimize for an embedding

Pij

D 2yl
KUPIQ) =Y opglosyl g o il
i] t ' Zk7£7;(1 + i — yxll5)~

Find low-dimensional points y;, whose heavy-tailed
Student t-distribution resembles p. (Gradient descent!)

[van der Maaten and Hinton 2008]



Heuristic Explanation

Normal vs Cauchy (Students-T) Distribution

Intuition:

Overcome curse of dimensionality
=== Cauchy

Normal

Heavy tails

'

https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1
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Typical Result

t-SNE Results: Digits
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https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1
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Required Reading
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“"How to Use t-SNE Effectively” (Wattenberg et al., 2016)
https://distill. pub/2016/misread-tsne/
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Another Popular Choice: UMAP

Embeds a “fuzzy simplicial complex”

UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction (Mclnnes, Healy)
Comparison: https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
Nice article: https://pair-code.github.io/understanding-umap/
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Structure-Preserving Embedding
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