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Geodesic Distances




Geodesic distance
[jee-uh-des-ik dis-tuh-ns].

Length of the shortest path,
constrained not to leave the

manifold. E




Complicated Problem

Local minima



Reality Check

Extrinsic may suffice for near vs. far



Related Queries

https://www.ceremade.dauphine.fr/~peyre/teaching/manifold/tp3.html http://www.sciencedirect.com/science/article/pii/S0010448511002260
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http://www.cse.ohio-state.edu/~tamaldey/isotopic.html

Meshes are graphs




Pernicious Test Case
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What Happened

Asymmetric
Anisotropic

May not improve
under refinement



Conclusion 1

Graph shortest-path
does not converge to
geodesic distance.

pﬁe/( an aceep table %oﬁm}xa tion,



Conclusion 2

Geodesic distances
need special discretization.

So, we need to understand the theory!



Three Possible Definitions

Globally shortest path

Local minimizer of length

Locally straight path



Arc Length

/ab V' () |2 dt




Geodesic Distance: Global Definition

Definition  (Geodesic distance). The geodesic distance between two points p, q € M on a subman-
ifold M is given by
( .
1nf'y:[0,1]—>/\/l L[’H
subject to v(0) =p
(1) =4q
\ v € C([0,1]).

Here, the curve y connects p to q, and we are minimizing arc length as defined in (3.2). A curve -y realizing
this infimum is known as a global (minimizing) geodesic curve.

d_/\/[(p, q) = S




Energy of a Curve
b
— [ @

Fasier to a/ﬂl"lg with:
f I (1) dt

Lemma: L* < 2(b—a)E

Equality exactly when parameterized with constant speed.



First Variation of Arc Length

Proposition Let ¢ : [a,b] — M be a family of curves with fixed endpoints p, q € M on submanifold
M, and for convenience assume <y is parameterized by arc length at t = 0. Then,

a _ M) ,
aE[’M = —/a ( vr 'PrO]T,MS)Mht (S)]) ds.

Here, we do not assume s is an arc length parameter when t # 0.



First Variation of Arc Length

Proposition If a curve v : |a,b] — M is a geodesic, then
prOjT,Y(S)M 7"(s)] =0

fors € (a,b).



Projr .., m 7' (s)] =0

The only acceleration is out of the surface
No steering wheel!




Two Local Perspectives

Projr .., m 7' (s)] =0

Boundary value problem
Given: y(0),y(1)

Initial value problem (ODE)
Given: y(0),y'(0)



Exponential Map

CXPp (V) == (1)

vY,(1) wherey,, is
(unique) geodesic from p
with velocity v.

https://en.wikipedia.org/wiki/Exponential_map_(Riemannian_geometry)



Instability of Geodesics

http://parametricwood2o11.files.wordpress.com/2011/01/cone-with-three-geodesics.png



Cut Locus

Cut point:
Point where geodesic
ceases to be minimizing

“Cut Logus and Topology from Surface Point Data” (Dey & Li

Set of cut points from a source p



Eikonal Equation

‘V’UJP o=1VpeM

eikonal = “image” (Greek)

https://www.mathworks.com/matlabcentral/fileexchange/24827-hamilton-jacobi-solver-on-unstructured-triangular-
grids/content/HJB_Solver_Package/@SolveEikonal/SolveEikonal.m
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eminder: Geodesic Distance Queries

https://www.ceremade.dauphine.fr/~peyre/teaching/manifold/tp3.html http://www.sciencedirect.com/science/article/pii/S0010448511002260



Initial Value Problem: Straightest Geodesics

Polthier and Schmies. “Shortest Geodesics on Polyhedral Surfaces.”
SIGGRAPH course notes 2006.

Trace a single geodesic exactly



Intuition: Unfolding

i

e

Spherical Vertex Euclidean Vertex Hyperbolic Vertex
2n'29i>0 Zn'zei=0 2n'zei<0

X

<Fr-



Are They Shortest Paths?

Y

Figure 5: Locally shortest geodesics cannot be extended through a spherical vertex
p and there exist multiple continuations at a hyperbolic vertex q.

K>o (spherical): Straightest geodesic is never shortest
K<o (hyperbolic): Multiple shortest but one straightest




New Algorithm for Geodesic Paths

You Can Find Geodesic Paths in Triangle Meshes by Just Flipping Edges

NICHOLAS SHARP and KEENAN CRANE, Carnegie Mellon University

This paper introduces a new approach to computing geodesics on polyhe-
dral surfaces—the basic idea is to iteratively perform edge flips, in the same
spirit as the classic Delaunay flip algorithm. This process also produces a

use intrinsic edge f.lips
to straighten path

input path iteration 10

i B\ (

iteration 100 exact geodesic (time: < Tms)

ics, which is immediately
merical simulation. More
iven sequence of edges into
ossings (formally: it finds a
m is guaranteed to termi-
runtimes are on the order
ions of triangles. The same
ple paths, including closed
rves. We explore how the
ts and segmentation bound-
g the notion of constrained
es, and providing accurate
ations (PDEs). Evaluation
tes that the method is both
lations.

Shape modeling.
ge flip, triangulation
an Find Geodesic Paths in

ns. Graph. 39, 6, Article 249
45/3414685.3417839

1 INTRODUCTION

S I G G RAP H AS | a 2020 A geodesic is the natural generalization of a straight line to a curved

surface: it is a trajectory of zero acceleration, or equivalently, a

geodesic eodesic geodesic
path oop network
geodesic

triangulations
containing
geodesics as
edge paths

Bézier

Fig. 1. We introduce an edge-flip based algorithm for computing geodesic
paths, loops, and networks on triangle meshes. The algorithm also yields a
triangulation containing these curves as edges, which can be used directly
for subsequent geometry processing (e.g., for cutting, or for solving PDEs).

but rather to find locally shortest curves within the given isotopy
class, i.e., to “pull the given curves tight”
Importantly, geodesics are intrinsic: they do not depend at all



Globally Shortest Path?

Graph shortest path algorithms are
well-understood.

Can we use them (carefully) to compute geodesics?



Useful Principles

“Shortest path had to
come from somewhere.”

“All pieces of a shortest path
are optimal.”



Dijkstra’s Algorithm

vg = Source vertex
d(v) = Current distance to vertex v

S = Vertices with known optimal distance

Initialization:
d(vo) =
d(v) =00 Vv € V\{vo}
5 =1}



Dijkstra’s Algorithm

vg = Source vertex
d(v) = Current distance to vertex v

S = Vertices with known optimal distance

Iteration k:
— in d
v=arg min d(v)
S+ Su{v}

d(u) < min{d(u),d(v) +w(e)} Ve = (u,v) € E

During each iteration, S
remains optimal. O(\E\ 1+ \V\log \V\)



Advancing Fronts







Fast Marching

Dijkstra’s algorithm, modified to
approximate geodesic distances.






Planar Front Approximation




At Local Scale

dx)=n'x+c

Infl2 =1




Planar Calculations

Given:
d1 — HTX1 —+ C
X9 do =1n' xo + C
d=X"n+cl

Find:

0
ds=n'x3+c=c

X1

Derivation from Bronstein et al., Numerical Geometry of Nonrigid Shapes



Planar Calculations

d=X"n+cl

l
n=X '(d-ecl)

l=n'n

="' X' X))+ 21" (X" X)) e+ [dT (X X) ]

Quadratic equation for ¢ = d;!



Two Roots

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Two orientations for the normal



Larger Root: Consistent

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Two orientations for the normal



Additional Issue

T1 L2

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Front from outside the triangle



Condition for Front Direction

T1 L2

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Front from outside the triangle



Obtuse Triangles

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Must reach x, after x, and x,



Fixing the Issues

Alternative edge-based update:
d3 < min{ds, dy + ||z1], d2 + [[z2||}

Add connections as needed

[Kimmel and Sethian 1998]
Obstuse y
and splitfing section



Fast Marching vs. Dijkstra

Modified update step

Update all triangles adjacent to a
given vertex



Eikonal Equation

Vdilo =1

Infj2 =1

Solutions are geodesic distance



A WARNING

STILL AN
APPROXIMATION




Modifying Fast Marching

[Novotni and Klein 2002]:
Circular wavefront



Modifying Fast Marching

Bronstein, Numerical Geometry of Nonrigid Shapes

Grids and parameterized surfaces



Alternative to Eikonal Equation

Algorithm 1 The Heat Method

I. Integrate the heat flow @« = Aw for time ¢.
[1. Evaluate the vector field X = —Vu/|Vul.
III. Solve the Poisson equation A¢ = V - X.

Crane, Weischedel, and Wardetzky. “Geodesics in Heat.” TOG 2013.



Tracing Geodesic Curves

Trace gradient of distance function



Exact Geodesics

SIAM J. COMPUT. 1987 Society for Industrial and Applied Mathematics
Vol. 16, No. 4, August 1987 005

THE DISCRETE GEODESIC PROBLEM*

JOSEPH S. B. MITCHELL?f, DAVID M. MOUNT+ AND CHRISTOS H. PAPADIMITRIOUS$

Abstract. We present an algorithm for determining the shortest path between a source and a destination
on an arbitrary (possibly nonconvex) polyhedral surface. The path is constrained to lie on the surface, and
distances are measured according to the Euclidean metric. Our algorithm runs in time O(n*logn) and
requires O(n?) space, where n is the number of edges of the surface. After we run our algorithm, the distance
from the source to any other destination may be determined using standard techniques in time O(log n) by
locating the destination in the subdivision created by the algorithm. The actual shortest path from the source
to a destination can be reported in time O(k+log n), where k is the number of faces crossed by the path.
The algorithm generalizes to the case of multiple source points to build the Voronoi diagram on the surface,
where n is now the maximum of the number of vertices and the number of sources.

Key words. shortest paths, computational geometry, geodesics, Dijkstra’s algorithm

AMS(MOS) subject classification. 68E99



MMP Algorithm: Bigldea

w

Image from: Surazhsky et al. “Fast Exact and Approximate Geodesics on Meshes.” SIGGRAPH 2005.



Practical Implementation

Fast Exact and Approximate Geodesics on Meshes

Vitaly Surazhsky
University of Osle

Tatiana Surazhsky
University of Oslo

Abstract

The computation of geodesic paths and distances on triangle
meshes 15 a common operation m many computer graphics applica-
tions. We present several practical algorithms for computing such
geodesics from a source point to one or all other points efficiently.
First, we describe an implementation of the exact “single source,
all destination™ algorithm presented by Mitchell. Mount, and Pa-
padimitrion (MMP). We show that the algorithm runs much faster
in practice than suggested by worst case analysis. Next, we extend
the algorithm with a merging operation to obtain computationally
efficient and accurate approximations with bounded error. Finally,
to compute the shortest path between two given points, we use a
lower-bound property of our approximate geodesic algorithm to ef-
ficiently prune the frontier of the MMP algorithm, thereby obtain-
ing an exact solution even more quickly.

Keywords: shortest path, geodesic distance.

1 Introduction

In this paper we present practical methods for computing both exact
and approximate shortest (Le. geodesic) paths on a triangle mesh.
These geodesic paths typically cut across faces in the mesh and are
therefore not found by the traditional graph-based Dijkstra aloo-
rithm for shortest paths.

The computation of geodesic paths
computer graphics applications.

mesh often inmvolves cutting the
(e [Ershnamurthy and Levov 1906; Sander et al. 20037, and

Daml Kirsanov

Harvard University

Steven J. Gortler

Harvard University

Hugues Hoppe

Microsoft Fesearch

Figure 1: Geodesic paths from a source veriex, and isolines of the
geodesic distance function.

tance function over the edges, the implementation is actually prac-
tical even though, to our knowledge, it has never been done pre-
viously. We demeonstrate that the algonthm’s worst case munning
time of O(n-logn) is pessimistic, and that in practice, the algo-
rithm muns in sub-guadratic time. For instance, we can compute
the exact geodesic distance from a source point to all vertices of a

O{n log n) time even for small error thresholds.




Cut Locus

Cut point:
Point where geodesic
ceases to be minimizing

http://www.cse.ohio- d/ maldey/paper/geodesic/cutloc.pdf

Set of cut points from a source p



Fuzzy Geodesics

G, (x) = exp(—|d(p,z) + d(z,q) — d(p,q)|/0)

Function on surface
expressing difference in
triangle inequality

.

Sun, Chen, Funkhouser. “Fuzzy geodesics and consistent
sparse correspondences for deformable shapes.” CGF201o0.

Stable version of geodesic distance
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Defect-Tolerant Geodes

Parameterizations.” Eurographics 2011.

Campen and Kobbelt. “Walking On Broken Mesh



All-Pairs Distances

Sample Geodesic Triangulate
points field (Delaunay)

Fix edges (planar
embedding)

Xin, Ying, and He. “Constant-time all-pairs geodesic distance query on triangle meshes.”
13D 2012.



Geodesic Voronoi & Delaunay

Triangulation

N = 10000 samples Triangulation

Fig. 4.12 Geodesic remeshing with an increasing number of poinls.

From Geodesic Methods in Computer Vision and Graphics (Peyré et al., FnT 2010)



High-Dimensional Problems

Figure 1: Discrete geodesic computed from two input poses (leftmost and rightmost hand).

Heeren et al. Time-discrete geodesics in the space of shells. SGP 2012.



In ML: Be Careful!

Shortest path distance in random k-nearest neighbor graphs

Morteza Alamgir! MORTEZAQ@TUEBINGEN.MPG.DE
Ulrike von Luxburg!? ULRIKE.LUXBURG@QTUEBINGEN.MPG.DE
I Max Planck Institute for Intelligent Systems, Tiibingen, Germany

2 Department of Computer Science, University of Hamburg, Germany

Abstract The first question has already been studied in some

special cases. Tenenbaum et al. (2000) discuss the case

Consider a weighted or unweighted k-nearest of e- and kNN graphs when p is uniform and D is the

neighbor graph that has been built on n data geodesic distance. Sajama & Orlitsky (2005) extend
points drawn randomly according to some these Tesults tomamsiaiba e o oo S PRSP T

density p on R%. We study the convergence of introducing edg

g edg W
the shortest path distance in such graphs as timate of the u i e. pI‘O.Ve
the sample size tends to infinity. We prove Hwang & Hero that for unwelghted kNN graphs, this dis-
that for unweighted kNN graphs, this dis- graphs whose §tance converges to an unpleasant distance
tance converges to an unpleasant distance and whose edgq

function on the underlying space whose prop- fU_IlCtiOl’l on the underlyiﬂg Space WhOSQ pProp-
erties are detrimental to machine learning. There is little

We also study the behavior of the shortest Tenenbaum et §erties are detrimental to machine learning.

path distance in weighted kNN graphs. special case wi L) =L alnd uniori p. - HWals o

TT vy 1 oy \ 2 1 1 7 7/ 0\ n N - " q .



Intriguing Theoretical Progress

APPROXIMATING GEODESICS VIA RANDOM POINTS
ERIK DAVIS AND SUNDER SETHURAMAN

ABSTRACT. Given a ‘cost’ functional F on paths 7 in a domain D C R4, in the
form F(v) = f[]l F(~v(2),4(t))dt, it is of interest to approximate its minimum
cost and geodesic paths. Let Xi,...,2 X be points drawn independently from
D according to a distribution with a density. Form a random geometric graph
on the points where X; and X are connected when 0 < |X; — X;| < ¢, and
the length scale € = €, vanishes at a suitable rate.

For a general class of functionals F', associated to Finsler and other dis-
tances on D, using a probabilistic form of Gamma convergence, we show that
the minimum costs and geodesic paths, with respect to types of approximating
discrete ‘cost’ functionals, built from the random geometric graph, converge
almost surely in various senses to those corresponding to the continuum cost
F', as the number of sample points diverges. In particular, the geodesic path
convergence shown appears to be among the first results of its kind.

1. INTRODUCTION

Understanding the ‘shortest’ or geodesic paths between points in a medium is
an intrinsic concern in diverse applied problems, from ‘optimal routing’ in networks
and disordered materials to ‘identifying manifold structure in large data sets’; as
well as in studies of probabilistic Z%percolation models, since the seminal paper
of [5] (cf. recent survey [4]). See also [17], [18], [19], [20], [21], [22] which consider
percolation in R? continuum settings.

There are sometimes abstract formulas for the geodesics, from the calculus of
variations, or other differential equation approaches. For instance, with respect to
a patch of a Riemannian manifold (M, g), with M C R and tensor field g(-), it is
known that the distance function U(-) = d(z, ), for fixed z, is a viscosity solution

of the Eikonal equation ||[VU(y)||4¢,)-1 = 1 for y # z, with boundary condition
U(z) = 0. Here, ||v]|a = v/(v, Av), where (-,-) is the standard innerproduct on

R<. Then, a geodesic v connecting z and z may be recovered from U by solving a
‘descent’ equation. ~(t) = —n(H a1 (~(t\ VU (~(1)). where n(t) is a scalar function

Roughly:
Statistical convergence of approximate
geodesics on geometric graphs.

I' convergence?!



In ML: Be Careful!

Geodesic Exponential Kernels: When Curvature and Linearity Conflict

Aasa Feragen
DIKU, University of Copenhagen
Denmark
aasal@diku.dk

Abstract

We consider kernel methods on general geodesic metric
spaces and provide both negative and positive results. First
we show that the common Gaussian kernel can only be gen-
eralized to a positive definite kernel on a geodesic metric
space if the space is flat. As a result, for data on a Rieman-
nian manifold, the geodesic Gaussian kernel is only posi-

[ if the Riemannian manifold is Euclidean. This
any attempt to design geodesic Gaussian ker-
ed Riemannian manifolds is futile. However,
at for spaces with conditionally negative defi-
es the geodesic Laplacian kernel can be gen-
le retaining positive definiteness. This implies
Laplacian kernels can be generalized to some
werces, including spheres and hyperbolic spaces.
Our theoretical results are verified empirically.

francois@diku.dk

Francois Lauze S¢ren Hauberg
DIKU, University of Copenhagen DTU Compute
Denmark Denmark

sohau@dtu.dk

Extends to general
‘ Metric spaces | Riemannian manifolds
No (only if flat) | No (only if Euclidean)
Yes, iff metric is CND | Yes, iff metric is CND
Geodesic exp. (g > 2) Not known No
Table 1. Overview of results: For a geodesic metric, when is the
geodesic exponential kernel (1) positive definite for all A > 0?

Kernel

Gaussian (¢ = 2)
Laplacian (g = 1)

While this idea has an appealing similarity to familiar Eu-

lid , ,
th'Theorem 2. Let M be a complete, smooth Riemannian

manifold with its associated geodesic distance metric d. As-
E;k sume, moreover, that k(z,y) = exp(—\d*(z,y)) is a PD
Hilj seodesic Gaussian kernel for all N > 0. Then the Rieman-

we . . . . . .
andlian manifold M is isometric to a Euclidean space.
—

o

e The geodesic Gaussian kernel is positive definite (PD)
for all A\ =~ 0O onlv if the 11inderlvine metric enace ic



Renewed Interest in Practical Aspects

Metrics for Deep Generative Models

Nutan Chen*
Xueyan Jiang

Alexej Klushyn*
Justin Bayer

Richi
Patrick -

{first name dot last name}@volkswagen.de
Al Research, Data:Lab, Volkswagen Group, Munich, Germany

Abstract

Neural samplers such as variational autoen-
coders (VAEs) or generative adversarial net-
works (GANs) approximate distributions by
transforming samples from a simple random
source—the latent space—to samples from a
more complex distribution represented by a
dataset. While the manifold hypothesis im-
plies that a dataset contains large regions of
low density, the training criterions of VAEs
and GANSs will make the latent space densely
covered. Consequently points that are sep-
arated by low-density regions in observation
space will be pushed together in latent space,
making stationary distances poor proxies for

similarigy We transfer ideas from RBieman.

such as k-nearest neighbour, m
or stationary kernels. In the ¢
spaces, obtaining a meaningfi
ing for two reasons. First, che
instance of Minkowski distance
sumptions on the data—e.g., d
rotation under the L2 norm.

become increasingly meaningle
[Aggarwal et al., 2001]. Nun
proposed to learn distances fr
ferred to as metric learning [2
berger et al., 2006, Davis et
2013]. For data distributed 2
variate normal, the Mahalan
ular choice, making the dista
invariant to translation and se
ear transformation of the dati

Fast A'pproximate Geodesics for Deep
Generative Models

-

Nutan Chen!, Francesco Ferroni?, Alexej Klushyn', Alexa
Justin Bayer!, and Patrick van der Smagt

Machine Learning Research Lab, Volkswagen Gr
Autonomous Intelligent Driving GmbH

Uniform Interpolation Constrained Geodesic

Learning on Data Manifold

Abstract. The length of the geodesic between two daté
a Riemannian manifold, induced by a deep generative
a principled measure of similarity. Current approaches i

Cong Geng, Jia Wang, Li Chen, Wenbo Bao, Chu Chu, Zhiyong Gao
Institute of Image Communication and Network Engineering

low-dimensional latent spaces, due to the
solving a non-convex optimisation problem.
paths in a finite graph of samples from the ¢
rior, that can be solved exactly, at greatly r
a notable loss in quality. OQur approach, the
high-dimensional problems, e.g., in the vis

(191333358
T

Shanghai Jiao Tong University, Shanghai, China

,jiawang,hilichen,baowenbo,chu_chu,zhiyong.gao}@sjtu.edu.cn
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aper, we propose a method to learn a minimizing geodesic within a data
d. Along the learned geodesic, our method is able to generate high-quality
ations between two given data samples. Specifically, we use an autoencoder
to map data samples into the latent space and perform interpolation via
olation network. We add prior geometric information to regularize our
oder for the convexity of representations so that for any given interpolation
h, the generated interpolations remain within the distribution of the data
d. The Riemannian metric on data manifold is induced by the canonical
the Euclidean space in which the data manifold is isometrically immersed.

TODOU altirt

Thie work atme o hrino a ool .

n this defined Riemannian metric, we introduce a constant-speed loss and

is employed for

a9 minimizine ceode<ic lo<s to rectilarize the internolation network to cenerate
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