Smooth Surface Curvature

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

Today's Goal

Quantify how a surface deviates from flatness.

Curvature.

High-Level Questions

(a) $K G>0, K H>0$ elliptic concave

(d) $K G=0, K H>0$ parabolic concave

(g) $K G<0, K H<0$ hyperbolic-like

(b) $K G>0, K H<0$ elliptic convexe

(e) $K G=0, K H<0$ parabolic convexe

(h) $K G<0, K H>0$ hyperbolic-like

(c) $K G=0, K H=0$ plane

(f) $K G<0, K H=0$ saddle (hyperbolic)

How to distinguish?

High-Level Questions

High-Level Questions

surrounding

space matter?

Practical Application

Bend It Like Gauss:

https://www.bustle.com/articles/43697-the-best-way-to-eat-pizza-according-to-science-means-you-probably-have-been-doing-it

Can curvature/torsion

 of a curve help us understand surfaces?
Recolld
 Unit Normal

Gauss Map

Normal map from curve to S^{1}

Frenet Frame: Curves in \mathbb{R}^{3}

$$
\frac{d}{d s}\left(\begin{array}{l}
\mathbf{T} \\
\mathbf{N} \\
\mathbf{B}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{l}
\mathbf{T} \\
\mathbf{N} \\
\mathbf{B}
\end{array}\right)
$$

- Binormal: $\boldsymbol{T} \times \boldsymbol{N}$
- Curvature: In-plane motion
- Torsion: Out-of-plane motion

Theorem:
Curvature and torsion determine

Gauss Map for an Oriented Surface

Differential of a Map

$$
\begin{aligned}
& \text { Definition (Differential). Suppose } \varphi: \mathcal{M} \rightarrow \mathcal{N} \text { is a map from a submanifold } \mathcal{M} \subseteq \mathbb{R}^{k} \text { into a } \\
& \text { submanifold } \mathcal{N} \subseteq \mathbb{R}^{\ell} \text {. Then, the differential } d \varphi_{\mathbf{p}}: T_{\mathbf{p}} \mathcal{M} \rightarrow T_{\varphi(\mathbf{p})} \mathcal{N} \text { of } \varphi \text { at a point } \mathbf{p} \in \mathcal{M} \text { is given by } \\
& d \varphi_{\mathbf{p}}(\mathbf{v}):=(\varphi \circ \gamma)^{\prime}(0), \\
& \text { where } \gamma:(-\varepsilon, \varepsilon) \rightarrow \mathcal{M} \text { is any curve with } \gamma(0)=\mathbf{p} \text { and } \gamma^{\prime}(0)=\mathbf{v} \in T_{\mathbf{p}} \mathcal{M} \text {. }
\end{aligned}
$$

Linear map of tangent spaces

$$
d \varphi_{\mathbf{p}}\left(\gamma^{\prime}(0)\right):=(\varphi \circ \gamma)^{\prime}(0)
$$

Calculation

Where is the derivative of n ? $d \mathbf{n}_{\mathbf{p}}: T_{\mathbf{p}} \mathcal{M} \rightarrow ? ?$

Second Fundamental Form

$$
\mathbb{I}_{\mathbf{p}}: T_{\mathbf{p}} \mathcal{M} \times T_{\mathbf{p}} \mathcal{M} \rightarrow \mathbb{R}
$$

Defined by:
$\Pi_{\mathbf{p}}(\mathbf{v}, \mathbf{w}):=-\mathbf{v} \cdot d \mathbf{n}_{\mathbf{p}}(\mathbf{w})$

Calculation

$$
\mathbb{I}(\Gamma, \Gamma)
$$

Relationship to Curvature of Curves

Calculation

$\mathbb{I}(\mathbf{v}, \mathbf{w})=\mathbb{I}(\mathbf{w}, \mathbf{v})$

Principal Curvatures/Directions

$$
\begin{aligned}
\kappa_{\min } & :=\left\{\begin{array}{rl}
\min _{\mathbf{v} \in T_{\mathbf{p}} \mathcal{M}} & \mathbb{I}(\mathbf{v}, \mathbf{v}) \\
\text { subject to } & \|\mathbf{v}\|_{2}=1
\end{array}\right. \\
\kappa_{\max } & :=\left\{\begin{array}{rl}
\max _{\mathbf{v} \in T_{\mathbf{p}} \mathcal{M}} & \mathbb{I}(\mathbf{v}, \mathbf{v}) \\
\text { subject to } & \|\mathbf{v}\|_{2}=1
\end{array}\right.
\end{aligned}
$$

Principal Directions and Curvatures

Principal Curvatures

Curvature Measures

$$
H:=\frac{1}{2}\left(\kappa_{\min }+\kappa_{\max }\right)=\frac{1}{2} \operatorname{tr} \mathbb{I I}
$$

Interpretation

Mean Curvature

$$
H=\frac{1}{2 \pi} \int_{0}^{2 \pi} \kappa(\theta) d \theta
$$

Byproduct of linear structure
Minimal

suriaces

Gaussian Curvature

(a) $K G>0, K H>0$ elliptic concave

(d) $K G=0, \mathrm{KH}>0$ parabolic concave

(g) $K G<0, K H<0$ hyperbolic-like

(b) $K G>0, K H<0$ elliptic convexe

(e) $K G=0, K H<0$ parabolic convexe

(h) $K G<0, K H>0$ hyperbolic-like

(c) $K G=0, K H=0$ plane

(f) $K G<0, K H=0$ saddle (hyperbolic)

Geodesic Circle Formulae

$$
K=\lim _{r \rightarrow 0^{+}} 3 \frac{2 \pi r-C(r)}{\pi r^{3}}=\lim _{r \rightarrow 0^{+}} 12 \frac{\pi r^{2}-A(r)}{\pi r^{4}}
$$

Uniqueness Result

Theorem:
 The first and second fundamental forms determine a surface up to rigid motion.

Gauss-Codazzi-Mainardi equations: Compatibility conditions

Who Cares?

Curvature determines

local surface geometry.

Smooth Surface Curvature

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

Discrete Surface Curvature

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

Curvature Measures

$$
H:=\frac{1}{2}\left(\kappa_{\min }+\kappa_{\max }\right)=\frac{1}{2} \operatorname{tr} \mathbb{I I}
$$

Use as a Descriptor

Smoothing and Reconstruction

Linear Surface Reconstruction from Discrete Fundamental Forms on Triangle Meshes
Wang, Liu, and Tong
Computer Graphics Forum 31.8 (2012)

Fairness Measure

Implicit Fairing of Irregular Meshes
using Diffusion and Curvature Flow
Desbrun et al.
SIGGRAPH 1999
... and many more

Guiding Rendering

Highlight Lines for Conveying Shape
DeCarlo, Rusinkiewicz
NPAR (2007)

Guiding Meshing

input mesh

direction fields

sampling

Anisotropic Polygonal Remeshing
Alliez et al. SIGGRAPH (2003)

Special Topic for Me...

Challenge on Meshes

Curvature is a
 second derivative
 but triangles are flat.

Standard Citation

ESTIMATING THE TENSOR OF CURVATURE OF A SURFACE FROM A POLYHEDRAL APPROXIMATION

Gabriel Taubin

ICCV 1995

IBM T.J.Watson Research Center P.O.Box 704, Yorktown Heights, NY 10598
taubin@watson.ibm.com

Abstract

Estimating principal curvatures and principal directions of a surface from a polyhedral approximation with a large number of small faces, such as those produced by iso-surface construction algorithms, has become a basic step in many computer vision algorithms. Particularly in those targeted at medical applications. In this paper we describe a method to estimate the tensor of curvature of a surface at the vertices of a polyhedral approximation. Principal curvatures and principal directions are obtained by computing in closed form the eigenvalues and eigenvectors of certain 3×3

mate principal curvatures at the vertices of a triangulated surface. Both this algorithm and ours are based on constructing a quadratic form at each vertex of the polyhedral surface and then computing eigenvalues (and eigenvectors) of the resulting form, but the quadratic forms are different. In our algorithm the quadratic form associated with a vertex is expressed as an integral, and is constructed in time proportional to the number of neighboring vertices. In the algorithm of Chen and Schmitt, it is the least-squares solution of an overdetermined linear system, and the complexity of constructing it is quadratic in the number of neighbors.

Taubin Matrix

$$
\begin{aligned}
& M_{\mathbf{p}}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \kappa_{\theta} \mathbf{t}_{\theta} \mathbf{t}_{\theta}^{\top} d \theta \\
& \kappa_{\theta}:=\kappa_{\text {min }} \cos ^{2} \theta+\kappa_{\text {max }} \sin ^{2} \theta \\
& \mathbf{t}_{\theta}:=\mathbf{t}_{\text {min }} \cos \theta+\mathbf{t}_{\text {max }} \sin \theta
\end{aligned}
$$

Taubin Matrix

$$
M_{\mathbf{p}}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \kappa_{\theta} \mathbf{t}_{\theta} \mathbf{t}_{\theta}^{\top} d \theta
$$

- Eigenvectors are $\boldsymbol{n}, \boldsymbol{t}_{1}$, and \boldsymbol{t}_{2}
- Eigenvalues are $\frac{3}{8} \kappa_{\text {min }}+\frac{1}{8} \kappa_{\text {max }}$ and $\frac{1}{8} \kappa_{\text {min }}+\frac{3}{8} \kappa_{\max }$

Prove at home!

Taubin's Approximation

$$
\begin{aligned}
& M_{\mathbf{p}}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \kappa_{\theta} \mathbf{t}_{\theta} \mathbf{t}_{\theta}^{\top} d \theta \\
& \downarrow \\
& M_{\mathbf{v}} \approx \sum_{\mathbf{u} \sim \mathbf{v}} w_{\mathbf{v} \mathbf{u}} \kappa_{\mathbf{v u}} \mathbf{t}_{\mathbf{v u}} \mathbf{t}_{\mathbf{v} \mathbf{u}}^{\top}
\end{aligned}
$$

Taubin's Approximation

$$
\begin{aligned}
& \mathbf{t}_{\mathbf{v u}}:=\frac{\left(I_{3 \times 3}-\mathbf{n}_{\mathbf{v}} \mathbf{n}_{\mathbf{v}}^{\top}(\mathbf{u}-\mathbf{v})\right.}{\|\left(I_{3 \times 3}-\mathbf{n}_{\mathbf{v}} \mathbf{n}_{\mathbf{v}}^{\top}(\mathbf{u}-\mathbf{v}) \|_{2}\right.} \\
& \kappa_{\mathbf{v u}}:=\frac{2 \mathbf{n}_{\mathbf{v}}^{\top}(\mathbf{u}-\mathbf{v})}{\|\mathbf{u}-\mathbf{v}\|_{2}^{2}}
\end{aligned}
$$

Problem

Local estimates are noisy

General Strategy

A WARNING

ENGINEERING DISGUISED AS MATH

Main Take-Away

Use application to motivate choice of curvature.

Simulation, smoothing, analysis, meshing, nonphotorealistic rendering, ...

Another Example

Estimating Curvatures and Their Derivatives on Triangle Meshes

Szymon Rusinkiewicz
Princeton University

3DPVT'O4

Abstract

The computation of curvature and other differential properties of surfaces is essential for many techniques in analysis and rendering. We present a finite-differences approach for estimating curvatures on irregular triangle meshes that may be thought of as an extension of a common method for estimating per-vertex normals. The technique is efficient in space and time, and results in significantly fewer outlier estimates while more broadly offering accuracy comparable to existing methods. It generalizes naturally to computing derivatives of curvature and higher-order surface differentials.

1 Introduction

As the acquisition and use of sampled 3D geometry become more widespread, 3D models are increasingly becoming the focus of analysis and signal processing techniques previously applied to data types such as audio, images, and video. A key component of algorithms such as feature detection, filtering, and indexing, when applied to both geometry and other data

Figure 1: Left: suggestive contours for line drawings [DeCarlo et al. 2003] are a recent example of a driving application for the estimation of curvatures and derivatives of curvature. Right: suggestive contours are drawn along the zeros of curvature in the view direction, shown here in blue, but only where the derivative of curvature in the view direction is positive (the curvature deriva-

Second Fundamental Form Matrix

$$
\left.\begin{array}{rl}
\mathbb{I}_{\mathbf{p}} & =\left(\begin{array}{l}
d \mathbf{n}_{\mathbf{p}}(\mathbf{u}) \cdot \mathbf{u} d \mathbf{n}_{\mathbf{p}}(\mathbf{v}) \cdot \mathbf{u} \\
d \mathbf{n}_{\mathbf{p}}(\mathbf{u}) \cdot \mathbf{v}
\end{array} d \mathbf{n}_{\mathbf{p}}(\mathbf{v}) \cdot \mathbf{v}\right.
\end{array}\right), \begin{aligned}
\mathbf{w} & =c^{1} \mathbf{u}+c^{2} \mathbf{v} \\
& \Longrightarrow \mathbb{I}_{\mathbf{p}} \cdot\binom{c^{1}}{c^{2}}=d \mathbf{n}_{\mathbf{p}}(\mathbf{w})
\end{aligned}
$$

Finite Difference Per-Face

Average for Per-Vertex

- Rotate tangent plane about cross product of normals

- Average using Voronoi weights

Completely Different Formula

Consistent Computation of First- and Second-Order Differential Quantities for Surface Meshes

Xiangmin Jiao*
Dept. of Applied Mathematics \& Statistics
Stony Brook University

Hongyuan Zha ${ }^{\dagger}$
College of Computing
Georgia Institute of Technology

Conserved Quantity Approach

Discrete Differential-Geometry Operators for Triangulated 2-Manifolds

Mark Meyer ${ }^{1}$, Mathieu Desbrun ${ }^{1,2}$, Peter Schröder ${ }^{1}$, and Alan H. Barr ${ }^{1}$

Summary. This paper proposes a unified and consistent set of flexible tools to approximate important geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We present a consistent derivation of these first and second order differential properties using averaging Voronoi cells and the mixed Finite-Element/Finite-Volume method, and compare them to existing formulations. Building upon previous work in discrete geometry, these operators are closely related to the continuous case, guaranteeing an appropriate extension from the continuous to the discrete setting: they respect most intrinsic properties of the continuous differential operators. We show that these estimates are optimal in accuracy under mild smoothness conditions, and demonstrate their numerical quality. We also present applications of these operators, such as mesh smoothing, enhancement, and quality checking, and show results of denoising in higher dimensions, such as for tensor images.

Recall:
Structure preservation
[struhk-cher pre-zur-vey-shuhn]: Keeping properties from the continuous abstraction exactly true in a discretization.

Gauss-Bonnet Theorem

$$
\int_{M} K \not \prod_{\substack{\text { Gaussian } \\ \text { curvature }}} K d A+\int_{\partial M} k_{g} d s=2 \pi \chi(\mathcal{M})
$$

Geodesic curvature (curvature projected on tangent plane)

For Polygonal Voronoi Cells

Simplification

Flip Things Backward

DEFINITION:

Gaussian curvature integrated over Voronoi region V is given by

$$
\int_{V} K d A=2 \pi-\sum_{j} \theta_{j}
$$

Divide by area for curvature estimate

Rocolle

Euler Characteristic

$$
T \sim \text { P- }
$$

Consequences for Triangle Meshes

$$
V-E+F:=\chi
$$

"Each edge is adjacent to two faces. Each face has three edges."

$2 E=3 F$

Closed mesh: Easy estimates!

Discrete Gauss-Bonnet

$$
\int_{M} K d A=\sum_{i} \int_{V_{i}} K d A
$$

Discrete Gauss-Bonnet

$$
\begin{aligned}
\int_{M} K d A & =\sum_{i} \int_{V_{i}} K d A \\
& =\sum_{i}\left(2 \pi-\sum_{j} \theta_{i j}\right)
\end{aligned}
$$

Apply our definition

Discrete Gauss-Bonnet

$$
\begin{aligned}
\int_{M} K d A & =\sum_{i} \int_{V_{i}} K d A \\
& =\sum_{i}\left(2 \pi-\sum_{j} \theta_{i j}\right) \\
& =2 \pi V-\sum_{i j} \theta_{i j}
\end{aligned}
$$

Discrete Gauss-Bonnet

$$
\begin{aligned}
\int_{M} K d A & =\sum_{i} \int_{V_{i}} K d A \\
& =\sum_{i}\left(2 \pi-\sum_{j} \theta_{i j}\right) \\
& =2 \pi V-\sum_{i j} \theta_{i j} \\
& =2 \pi V-\pi F
\end{aligned}
$$

Consider sum over triangles

Discrete Gauss-Bonnet

$$
\begin{aligned}
\int_{M} K d A & =\sum_{i} \int_{V_{i}} K d A \\
& =\sum_{i}\left(2 \pi-\sum_{j} \theta_{i j}\right) \\
& =2 \pi V-\sum_{i j} \theta_{i j} \\
& =2 \pi V-\pi F \\
\text { By definition } & =\pi(2 V-F) \\
& =2 \pi \chi \quad \text { <qed } />
\end{aligned}
$$

Reallernative Definition

κN decreases
 length the fastest.

Mean Curvature Normal

Derived in extra lecture video.

$$
\begin{aligned}
& E(\mathcal{M})=\operatorname{Area}(\mathcal{M}) \\
& " \nabla E(\mathbf{p}) "=H \mathbf{n} \\
& \text { "Variational derivative" }
\end{aligned}
$$

$$
\nabla \underset{\text { Minimal surfaces }}{E(\mathbf{p}) \equiv \mathbf{0} \forall p \in \operatorname{int} \mathcal{M}}
$$

Area Functional for Meshes

Single Triangle

Single Triangle: Derivatives

$$
\begin{aligned}
& \mathbf{p}=p_{n} \mathbf{n}+p_{e} \mathbf{e}+p_{\perp} \mathbf{e}_{\perp} \\
& A=\frac{1}{2} b \sqrt{p_{n}^{2}+p_{\perp}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial A}{\partial p_{e}} & =0 \\
\frac{\partial A}{\partial p_{n}} & =\frac{b_{p n}^{2} n^{0}}{2 \sqrt{p_{n}^{2}+p_{\perp}^{2}}}=0 \Longrightarrow \nabla_{\mathbf{p}} A=\frac{1}{2} b \mathbf{e}_{\perp} \\
\frac{\partial A}{\partial p_{\perp}} & =\frac{b p_{\perp}}{2 \sqrt{p_{n}^{2}+p_{\perp}^{2}}}
\end{aligned}
$$

Single Triangle: Complete

Ratio of Base to Height

Height Vector

$$
\mathbf{h}=\mathbf{p}-\mathbf{p}_{0}=\mathbf{p}-\frac{\mathbf{r} \cot \alpha+\mathbf{q} \cot \beta}{\cot \alpha+\cot \beta}
$$

Alternative Gradient Formula

$$
\begin{aligned}
\nabla_{\mathbf{p}} A & =\frac{1}{2} b \mathbf{e}_{\perp} \\
& =\frac{1}{2} \frac{b}{\|\mathbf{h}\|_{2}} \mathbf{h} \\
& =\frac{1}{2}(\cot \alpha+\cot \beta)\left[\mathbf{p}-\frac{\mathbf{r} \cot \alpha+\mathbf{q} \cot \beta}{\cot \alpha+\cot \beta}\right] \\
& =\frac{1}{2}((\mathbf{p}-\mathbf{r}) \cot \alpha+(\mathbf{p}-\mathbf{q}) \cot \beta)
\end{aligned}
$$

Summing Around a Vertex

$$
\nabla_{\mathbf{p}} A=\frac{1}{2} \sum_{j}\left(\cot \alpha_{j}+\cot \beta_{j}\right)\left(\mathbf{p}-\mathbf{q}_{j}\right)
$$

Integrated Mean Curvature Normal

DEFINITION:

The discrete mean curvature normal integrated over region V is given by

$$
\nabla_{\mathbf{p}} A=\frac{1}{2} \sum_{j}\left(\cot \alpha_{j}+\cot \beta_{j}\right)\left(\mathbf{p}-\mathbf{q}_{j}\right)
$$

Divide by area for curvature estimate

Pipeline

- Compute integrated H, K

Divide by area of cell for estimated value

Another Mean Curvature

J.A. Bærentzen et al., Guide to Computational Geometry Processing (2012)

Used for triangulation applications

Tuned for Variational Applications

Computing discrete shape operators on general meshes

Yotam Gingold New York University gingold@mrl.nyu.edu

Jason Reisman New York University jasonr@mrl.nyu.edu

Denis Zorin New York University dzorin@mrl.nyu.edu

[^0]
${ }^{\text {out dir }}$ al obj. Theirs l by me highly highly techni،
al prob its siml umber,

Tuned for Robustness

Eurographics Symposium on Geometry Processing (2007) Alexander Belyaev, Michael Garland (Editors)

Robust statistical estimation of curvature on discretized surfaces

Evangelos Kalogerakis, Patricio Simari, Derek Nowrouzezahrai and Karan Singh

Dynamic Graphics Project, Computer Science Department, University of Toronto

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Modeling]: Geometric algorithms, languages, and systems; curve, surface, solid, and object representations.

Alternative Strategies

- Locally fit a smooth surface

 What type of surface? How to fit?- Different formula

Function of curvature? Where on mesh? Convergence of approximation?

- Learn curvature computation Tune for application? Training data?

Practical Advice

Try as many as you can.
 Most are easy to implement!

Discrete Surface Curvature

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

[^0]: Abstract
 Discrete curvature and shape operators, which c are essential in a variety of applications: simulat geometric data processing. In many of these appl approaches for formulating curvature operators expensive methods used in engineering applicatic computer graphics.
 We propose a simple and efficient formulation for degrees of freedom associated with normals. On curvature operators commonly used in graphics; and produces consistent results for different types

