Continuous Curves

 Justin Solomon6.8410: Shape Analysis

Spring 2023

What is a curve?

Defining "Curve"

A function?

Subtlety

$$
\gamma(t) \equiv(0,0)
$$

Not a curve

Different from Calculus

$$
\begin{aligned}
& \gamma_{1}(t)=(t, 2 t) \\
& \gamma_{2}(t)= \begin{cases}(t, 2 t) & t \leq 1 \\
\left(2\left(t-\frac{1}{2}\right), 4\left(t-\frac{1}{2}\right)\right. & t>1\end{cases}
\end{aligned}
$$

Graphs of Smooth Functions

$$
\gamma(t)=\left(t^{2}, t^{3}\right)
$$

Geometry of a Curve

A curve is a set of points with certain properties.

It is not a function.

Geometric Definition

Set of points that locally looks like a line.

Differential Geometry Definition

Formal Statement

Parameterized Curve

Some Vocabulary

- Trace of parameterized curve

$$
\{\gamma(t): t \in(a, b)\} \subseteq \mathbb{R}^{n}
$$

- Component functions

$$
\gamma(t)=(x(t), y(t), z(t))
$$

Change of Parameter

$$
t \mapsto \gamma \circ \phi(t)
$$

Geometric measurements should be invariant to changes of parameter.

Dependence of Velocity

$$
\tilde{\gamma}(t):=\gamma(\phi(t))
$$

Effect on velocity and acceleration?

Arc Length

$$
\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\|_{2} d t
$$

Independent of parameter!

Parameterization by Arc Length

http://www.planetclegg.com/projects/WarpingTextToSplines.html

Constant-speed parameterization

Moving Frame in 2D

$$
\begin{aligned}
\mathbf{T}(s) & :=\gamma^{\prime}(s) \\
& \Longrightarrow\|\mathbf{T}(s)\|_{2} \equiv 1 \\
\mathbf{N}(s) & :=J \mathbf{T}(s)=\kappa(s)^{-1} \mathbf{T}^{\prime}(s)
\end{aligned}
$$

Philosophical Point

Differential geometry "should" be coordinate-invariant.

Referring to x and y is a hack!
(but sometimes convenient...)

How do you describe a curve

 without coordinates?
Turtles All The Way Down

$$
\frac{d}{d s}\binom{\mathbf{T}(s)}{\mathbf{N}(s)}:=\left(\begin{array}{cc}
0 & \kappa(s) \\
-\kappa(s) & 0
\end{array}\right)\binom{\mathbf{T}(s)}{\mathbf{N}(s)}
$$

Signed curvature κ is rate of change of turning angle θ.

$$
\begin{aligned}
& \mathbf{T}(s)=\cos \theta(s) \mathbf{e}_{1}+\sin \theta(s) \mathbf{e}_{2} \\
& \kappa(s):=\theta^{\prime}(s)
\end{aligned}
$$

https://en.wikipedia.org/wiki/Frenet\�\�\�Serret_formulas

Use coordinates from the curve to express its shape!

Radius of Curvature

Radius of Curvature

Fundamental theorem of the local theory of plane curves:

$\kappa(s)$ distinguishes a planar curve up to rigid motion.

Fundamental theorem of the local theory of plane curves:

$\kappa(s)$ distinguishes a planar curve up to rigid motion.

Idea of Proof

Image from DDG course notes by E. Grinspun
Provides intuition for curvature

Gauss Map

Normal map from curve to S^{1}

Winding Number

$$
W[\gamma]:=\frac{1}{2 \pi} \int_{a}^{b} \kappa(s) d s \in \mathbb{Z}
$$

$W[\gamma]$ is an integer, and smoothly deforming γ does not affect $W[\gamma]$.

Frenet Frame: Curves in \mathbb{R}^{3}

$$
\frac{d}{d s}\left(\begin{array}{c}
\mathbf{T}(s) \\
\mathbf{N}(s) \\
\mathbf{B}(s)
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa(s) & 0 \\
-\kappa(s) & 0 & \tau(s) \\
0 & -\tau(s) & 0
\end{array}\right)\left(\begin{array}{c}
\mathbf{T}(s) \\
\mathbf{N}(s) \\
\mathbf{B}(s)
\end{array}\right)
$$

- Binormal: $\boldsymbol{T} \times \boldsymbol{N}$
- Curvature: In-plane motion
- Torsion: Out-of-plane motion

Fundamental theorem of the local theory of space curves:

Curvature and torsion distinguish a 3D curve up to rigid motion.

Aside: Generalized Frenet Frame

$$
\begin{gathered}
\gamma(s): \mathbb{R} \rightarrow \mathbb{R}^{n} \\
\frac{d}{d s}\left(\begin{array}{c}
\left(\begin{array}{c}
e_{1}(s) \\
e_{2}(s) \\
e_{n}(s)
\end{array}\right)
\end{array}\right)=\left(\begin{array}{cccc}
0 & \chi_{1}(s) & & \\
e_{\chi_{1}(s)} & \ddots & \ddots & \\
& \ddots & 0 & \chi_{n-1}(s) \\
& \chi_{n-1}(s) \\
0
\end{array}\right)\left(\begin{array}{c}
e_{1}(s) \\
e_{2}(s) \\
\vdots \\
e_{n}(s)
\end{array}\right)
\end{gathered}
$$

Suspicion: Application to time series analysis? ML?
C. Jordan, 1874

Gram-Schmidt on first n derivatives

Continuous Curves

 Justin Solomon6.8410: Shape Analysis

Spring 2023

Discrete Curves

Justin Solomon
6.8410: Shape Analysis

Spring 2023

Frenet Frame: Curves in \mathbb{R}^{2}

$$
\frac{d}{d s}\binom{\mathbf{T}(s)}{\mathbf{N}(s)}:=\left(\begin{array}{cc}
0 & \kappa(s) \\
-\kappa(s) & 0
\end{array}\right)\binom{\mathbf{T}(s)}{\mathbf{N}(s)}
$$

Signed curvature κ is rate of change of turning angle θ.

$$
\begin{aligned}
& \mathbf{T}(s)=\cos \theta(s) \mathbf{e}_{1}+\sin \theta(s) \mathbf{e}_{2} \\
& \kappa(s):=\theta^{\prime}(s)
\end{aligned}
$$

https://en.wikipedia.org/wiki/Frenet\�\�\�Serret_formulas

Use coordinates from the curve to express its shape!

Winding Number

$$
W[\gamma]:=\frac{1}{2 \pi} \int_{a}^{b} \kappa(s) d s \in \mathbb{Z}
$$

$W[\gamma]$ is an integer, and smoothly deforming γ does not affect $W[\gamma]$.

Frenet Frame: Curves in \mathbb{R}^{3}

$$
\frac{d}{d s}\left(\begin{array}{c}
\mathbf{T}(s) \\
\mathbf{N}(s) \\
\mathbf{B}(s)
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa(s) & 0 \\
-\kappa(s) & 0 & \tau(s) \\
0 & -\tau(s) & 0
\end{array}\right)\left(\begin{array}{c}
\mathbf{T}(s) \\
\mathbf{N}(s) \\
\mathbf{B}(s)
\end{array}\right)
$$

- Binormal: $\boldsymbol{T} \times \boldsymbol{N}$
- Curvature: In-plane motion
- Torsion: Out-of-plane motion

What do these
 calculations look like in software?

Old-School Approach

Piecewise smooth approximations

Question

What is the arc length of a cubic Bézier curve?

$$
\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\|_{2} d t
$$

Question

What is the arc length of a cubic Bézier curve?

$$
\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\|_{2} d t
$$

Sad fact:
 Closed-form

 expressions rarely exist. When they do exist, they usually are messy.
Only Approximations Anyway

$\{$ Bézier curves $\} \subsetneq\left\{\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}\right\}$

Simpler Approximation

Piecewise linear: Poly-line

Big Problem

Boring differential structure

Finite Difference Approach

$$
f^{\prime}(x) \approx \frac{1}{h}[f(x+h)-f(x)]
$$

THEOREM: As $\Delta \boldsymbol{h} \rightarrow \mathbf{0}$, [insert statement].

Reality Check

$$
f^{\prime}(x) \approx \frac{1}{h}[f(x+h)-f(x)]
$$

Two Key Considerations

-Convergence to continuous theory

-Discrete behavior

Goal

Examine discrete theories of differentiable curves.

Goal

Examine discrete theories of differentiable curves.

Recall:
 Signed Curvature on Plane Curves

$\mathbf{T}(s)=(\cos \theta(s), \sin \theta(s))$

Gauss map:
Map from curve to its normals.

$$
\begin{aligned}
\mathbf{T}^{\prime}(s) & =\theta^{\prime}(s)(-\sin \theta(s), \cos \theta(s)) \\
& :=\kappa(s) \mathbf{N}(s)
\end{aligned}
$$

Turning Numbers

\bigcirc

$+1$
-1
$+2$ \qquad

Discrete Gauss Map

Discrete Gauss Map

Discrete Gauss Map

Key Observation

What's Going On?

$\theta=\int_{\Gamma} \kappa d s$

Integrated curvature

What's Going On?

Total change in curvature

Interesting Distinction

$$
\kappa_{1} \neq \kappa_{2}
$$

Same integrated curvature

Interesting Distinction

$$
\kappa_{1} \neq \kappa_{2}
$$

Same integrated curvature

What's Going On?

$$
\theta=\int_{\Gamma} \kappa d s
$$

Integrated quantity
Γ Dual cell

Total change in curvature

Discrete Turning Angle Theorem

First Variation Formula

$\kappa \mathbf{N}$ decreases length the fastest.

Discrete Case

$$
\nabla_{\mathbf{x}_{i}} L=2 \mathbf{N}_{i} \sin \frac{\theta_{i}}{2}
$$

Exercise

For Small $\boldsymbol{\theta}$

$$
\begin{aligned}
2 \sin \frac{\theta}{2} & \approx 2 \cdot \frac{\theta}{2} \\
& =\theta
\end{aligned}
$$

Same behavior in the limit

No Free Lunch

Choose one:

- Discrete curvature with turning angle theorem
- Discrete curvature from gradient of arc length

Remaining Question

Does discrete curvature

 converge in limit?
Remaining Question

Does discrete curvature converge in limit?

Questions:

- Type of convergence?
- Sampling?
- Class of curves?

Discrete Differential Geometry

-Different discrete behavior
-Same convergence

Curves in 3D?

Frenet Frame

Application

NMR scanner

Kinked alpha helix

Structure Determination of Membrane Proteins Using Discrete Frenet Frame and Solid State NMR Restraints Achuthan and Quine
Discrete Mathematics and its Applications, ed. M. Sethumadhavan (2006)

Potential Discretization

$$
\begin{aligned}
& \mathbf{T}_{j}=\frac{\mathbf{p}_{j+1}-\mathbf{p}_{j}}{\left\|\mathbf{p}_{j+1}-\mathbf{p}_{j}\right\|_{2}} \\
& \mathbf{B}_{j}=\mathbf{T}_{j-1} \times \mathbf{T}_{j} \\
& \mathbf{N}_{j}=\mathbf{B}_{j} \times \mathbf{T}_{j} \\
& \text { Discrete Frenet frame }
\end{aligned}
$$

Transfer Matrix

$$
\left(\begin{array}{l}
\mathbf{T}_{i+1} \\
\mathbf{N}_{i+1} \\
\mathbf{B}_{i+1}
\end{array}\right)=R_{i+1, i}\left(\begin{array}{l}
\mathbf{T}_{i} \\
\mathbf{N}_{i} \\
\mathbf{B}_{i}
\end{array}\right)
$$

Discrete construction that works for fractal curves and converges in continuum limit.

Discrete Frenet Frame, Inflection Point Solitons, and Curve Visualization
with Applications to Folded Proteins
Hu, Lundgren, and Niemi
Physical Review E 83 (2011)

Frenet Frame: Issue

$$
\frac{d}{d s}\left(\begin{array}{c}
\mathbf{T}(s) \\
\mathbf{N}(s) \\
\mathbf{B}(s)
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa(s) & 0 \\
-\kappa(s) & 0 & \tau(s) \\
0 & -\tau(s) & 0
\end{array}\right)\left(\begin{array}{c}
\mathbf{T}(s) \\
\mathbf{N}(s) \\
\mathbf{B}(s)
\end{array}\right)
$$

Segments Not Always Enough

Simulation Goal

Adapted Framed Curve

$$
\Gamma=\left\{\gamma(s) ; \mathbf{T}, \mathbf{m}_{1}, \mathbf{m}_{2}\right\}
$$

Bending Energy

$$
E_{\mathrm{bend}}(\Gamma):=\frac{1}{2} \int_{\Gamma} \alpha \kappa^{2} d s
$$

Penalize turning the steering wheel

$$
\begin{aligned}
\kappa \mathbf{N} & =\mathbf{T}^{\prime} \\
& =\left(\mathbf{T}^{\prime} \cdot \mathbf{T}\right) \mathbf{T}+\left(\mathbf{T}^{\prime} \cdot \mathbf{m}_{1}\right) \mathbf{m}_{1}+\left(\mathbf{T}^{\prime} \cdot \mathbf{m}_{2}\right) \mathbf{m}_{2} \\
& =\left(\mathbf{T}^{\prime} \cdot \mathbf{m}_{1}\right) \mathbf{m}_{1}+\left(\mathbf{T}^{\prime} \cdot \mathbf{m}_{2}\right) \mathbf{m}_{2} \\
& :=\omega_{1} \mathbf{m}_{1}+\omega_{2} \mathbf{m}_{2}
\end{aligned}
$$

Bending Energy

$$
E_{\text {bend }}(\Gamma):=\frac{1}{2} \int_{\Gamma} \alpha\left(\omega_{1}^{2}+\omega_{2}^{2}\right) d s
$$

Penalize turning the steering wheel

$$
\begin{aligned}
\kappa \mathbf{N} & =\mathbf{T}^{\prime} \\
& =\left(\mathbf{T}^{\prime} \cdot \mathbf{T}\right) \mathbf{T}+\left(\mathbf{T}^{\prime} \cdot \mathbf{m}_{1}\right) \mathbf{m}_{1}+\left(\mathbf{T}^{\prime} \cdot \mathbf{m}_{2}\right) \mathbf{m}_{2} \\
& =\left(\mathbf{T}^{\prime} \cdot \mathbf{m}_{1}\right) \mathbf{m}_{1}+\left(\mathbf{T}^{\prime} \cdot \mathbf{m}_{2}\right) \mathbf{m}_{2} \\
& :=\omega_{1} \mathbf{m}_{1}+\omega_{2} \mathbf{m}_{2}
\end{aligned}
$$

Twisting Energy

$$
E_{\mathrm{twist}}(\Gamma):=\frac{1}{2} \int_{\Gamma} \beta m^{2} d s
$$

Penalize non-tangent change in material frame

$$
\begin{aligned}
m & :=\mathbf{m}_{1}^{\prime} \cdot \mathbf{m}_{2} \\
& =\frac{d}{d t}\left(\mathbf{m}_{1} \cdot \mathbf{m}_{2}\right)-\mathbf{m}_{1} \cdot \mathbf{m}_{2}^{\prime} \\
& =-\mathbf{m}_{1} \cdot \mathbf{m}_{2}^{\prime} \longleftarrow \begin{array}{l}
\text { Swapping } m_{1} \text { and } m_{2} \\
\text { does not affect } E_{\text {twist }}
\end{array}
\end{aligned}
$$

Bishop Frame: The Hipster Framed Curve

THERE IS MORE THAN ONE WAY TO FRAME A CURVE

RICHARD L. BISHOP

The Frenet frame of a 3-times continuously differentiable (that is, C^{3}) nondegenerate curve in euclidean space has long been the standard vehicle for analysing properties of the curve invariant under euclidean motions. For arbitrary moving frames, that is, orthonormal basis fields, we can express the derivatives of the frame with respect to the curve parameter in terms of the frame itself, and due to orthonormality the coefficient matrix is always skew-symmetric. Thus it generally has three nonzero entries. The Frenet frame gains part of its special significance from the fact that one of the three derivatives is always zero. Another feature of the Frenet frame is that it is adapted to the curve: the members are either tangent to or perpendicular to the curve. It is the purpose of this paper to show that there are other frames which have these same advantages and to compare them with the Frenet frame.

Relatively parallel fields. We say that a normal vector field M along a cur atively parallel if its derivative is tangential. Such a field turns only whate int is necessary for it to remain normal, so it is as close to being parallel ble without losing normality Since_its_derivative_is perpendicular to it, a parallel normal fie (couldn't decide on a meme)
fields occur classically $\frac{10 \text { sumbauman }}{140}$

Bishop Frame

$$
\begin{aligned}
& \mathbf{T}^{\prime}=\boldsymbol{\Omega} \times \mathbf{T} \\
& \mathbf{u}^{\prime}=\boldsymbol{\Omega} \times \mathbf{u} \\
& \mathbf{v}^{\prime}=\boldsymbol{\Omega} \times \mathbf{v} \\
& \boldsymbol{\Omega}:=\kappa \mathbf{B} \text { ("curvature binormal") }
\end{aligned}
$$

Darboux vector

Most relaxed frame

Bishop Frame

$$
\begin{aligned}
\mathbf{T}^{\prime} & =\boldsymbol{\Omega} \times \mathbf{T} \\
\mathbf{u}^{\prime} & =\boldsymbol{\Omega} \times \mathbf{u} \\
\mathbf{v}^{\prime} & =\boldsymbol{\Omega} \times \mathbf{v} \\
\boldsymbol{\Omega} & =\kappa \mathbf{B} \text { ("curvature binormal") }
\end{aligned}
$$

Darboux vector

Most relaxed frame

Curve-Angle Representation

$$
\begin{gathered}
\mathbf{m}_{1}=\mathbf{u} \cos \theta+\mathbf{v} \sin \theta \\
\mathbf{m}_{2}=-\mathbf{u} \sin \theta+\mathbf{v} \cos \theta \\
E_{\mathrm{twist}}(\Gamma):=\frac{1}{2} \int_{\Gamma} \beta\left(\theta^{\prime}\right)^{2} d s
\end{gathered}
$$

Degrees of freedom for elastic energy:

- Shape of curve
- Twist angle $\boldsymbol{\theta}$

Discrete Kirchoff Rods

$$
\mathbf{x}_{0} \mathbf{e}^{0} \quad{\underset{\text { Upper index: dual }}{\mathbf{x}_{1}} \mathbf{e}^{\mathbf{e}^{1}} \mathbf{e}^{2} \mathbf{x}_{\text {Lower index: primal }}^{\mathbf{x}_{2}}}_{\mathbf{e}^{3}}^{\mathbf{x}_{4}} \mathbf{e}^{4}
$$

Discrete Kirchoff Rods

$$
\begin{gathered}
\mathbf{x}_{0} \mathbf{e}^{0} \stackrel{\mathbf{x}}{1}^{\mathbf{e}^{1}} \xrightarrow[\mathbf{e}^{2}]{\mathbf{x}_{3} \mathbf{e}^{\mathbf{x}_{2}}} \xrightarrow[\mathbf{x}_{4} \mathbf{e}^{4}]{ } \\
\mathbf{T}^{i}:=\frac{\mathbf{e}^{i}}{\left\|\mathbf{e}^{i}\right\|_{2}}
\end{gathered}
$$

Tangent unambiguous on edge

Discrete Kirchoff Rods

$$
\begin{gathered}
\mathbf{x}_{0} \mathbf{e}^{0} \mathbf{x}_{1} \mathbf{e}^{1} \mathbf{e}^{2} \mathbf{x}_{\mathbf{x}_{3}}^{\mathbf{x}_{2}} \\
\kappa_{i}:=2 \tan \frac{\mathbf{x}_{i}}{2} \\
\mathbf{e}^{\text {Turning angle another curvature! }}
\end{gathered}
$$

Integrated curvature

Discrete Kirchoff Rods

$$
\begin{gathered}
\mathbf{x}_{0} \mathbf{e}^{0} \mathbf{x}_{1} \quad \mathbf{e}^{1} \\
\kappa_{i}:=2 \tan \frac{\mathbf{e}_{i}}{2} \quad(\kappa \mathbf{B})_{i}:=\frac{2}{\left\|\mathbf{e}^{i-1}\right\|_{2}\left\|\mathbf{e}^{i}\right\|_{2}+\mathbf{e}^{i-1} \cdot \mathbf{e}^{i}} \\
\begin{array}{c}
\text { Orthogonal to osculating plane, } \\
\text { norm } \boldsymbol{\kappa}_{\boldsymbol{i}}
\end{array}
\end{gathered}
$$

Bending Energy

$$
\begin{aligned}
E_{\text {bend }}(\Gamma) & :=\frac{\alpha}{2} \sum_{i}\left(\frac{(\kappa \mathbf{B})_{i}}{\ell_{i} / 2}\right)^{2} \frac{\ell_{i}}{2} \\
& =\alpha \sum_{i} \frac{\left\|(\kappa \mathbf{B})_{i}\right\|_{2}^{2}}{\ell_{i}}
\end{aligned}
$$

Convert to pointwise and integrate

Discrete Parallel Transport

$$
\begin{aligned}
P_{i}\left(\mathbf{T}^{i-1}\right) & =\mathbf{T}^{i} \\
P_{i}\left(\mathbf{T}^{i-1} \times \mathbf{T}^{i}\right) & =\mathbf{T}^{i-1} \times \mathbf{T}^{i}
\end{aligned}
$$

- Map tangent to tangent
- Preserve binormal
- Orthogonal

$$
\begin{aligned}
\mathbf{u}^{i} & =P_{i}\left(\mathbf{u}^{i-1}\right) \\
\mathbf{v}^{i} & =\mathbf{T}^{i} \times \mathbf{u}^{i}
\end{aligned}
$$

Discrete Material Frame

$\mathbf{m}_{1}^{i}=\mathbf{u}^{i} \cos \theta^{i}+\mathbf{v}^{i} \sin \theta^{i}$ $\mathbf{m}_{2}^{i}=-\mathbf{u}^{i} \sin \theta^{i}+\mathbf{v}^{i} \cos \theta^{i}$

Discrete Twisting Energy

$$
E_{\mathrm{twist}}(\Gamma):=\beta \sum_{i} \frac{\left(\theta^{i}-\theta^{i-1}\right)^{2}}{\uparrow \ell_{i}}
$$

Note $\boldsymbol{\theta}_{0}$ can be arbitrary

Simulation

\omit\{physics\}
Worth reading!

Extension and Speedup

Discrete Viscous Threads

Miklós Bergou
Columbia University

Basile Audoly UPMC Univ. Paris 06 \& CNRS

Etienne Vouga
Columbia University

Max Wardetzky Universität Göttingen

Eitan Grinspun Columbia University

Extension and Speedup

Discrete Viscous Threads

Miklós Bergou
Columbia University

Basile Audoly UPMC Univ. Paris 06 \& CNRS

Etienne Vouga
Columbia University

Max Wardetzky Universität Göttingen

Eitan Grinspun Columbia University

Morals

One curve, three curvatures.

θ

$$
2 \sin \frac{\theta}{2} \quad 2 \tan \frac{\theta}{2}
$$

Morals

Easy theoretical object, hard to use.

$$
\frac{d}{d s}\left(\begin{array}{l}
\mathbf{T}(s) \\
\mathbf{N}(s) \\
\mathbf{B}(s)
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa(s) & 0 \\
-\kappa(s) & 0 & \tau(s) \\
0 & -\tau(s) & 0
\end{array}\right)\left(\begin{array}{l}
\mathbf{T}(s) \\
\mathbf{N}(s) \\
\mathbf{B}(s)
\end{array}\right)
$$

Morals

Proper frames and DOFs go a long way.

$\mathbf{m}_{1}^{i}=\mathbf{u}^{i} \cos \theta^{i}+\mathbf{v}^{i} \sin \theta^{i}$
$\mathbf{m}_{2}^{i}=-\mathbf{u}^{i} \sin \theta^{i}+\mathbf{v}^{i} \cos \theta^{i}$

Next

http://graphics.stanford.edu/data/3Dscanrep/stanford-bunny-cebal-ssh.jpg http://www.stat.washington.edu/wxs/images/BUNMID.gif

Surfaces

Discrete Curves

Justin Solomon
6.8410: Shape Analysis

Spring 2023

