Linear and Variational Problems

Justin Solomon

6.8410: Shape Analysis Spring 2023

Motivation

Extremely debatable perspective!

Part I:

Linear algebra \subseteq **Geometry**

"Geometry of flat spaces"

Part II:

Geometry \subseteq **Optimization**

Quick intro to variational calculus

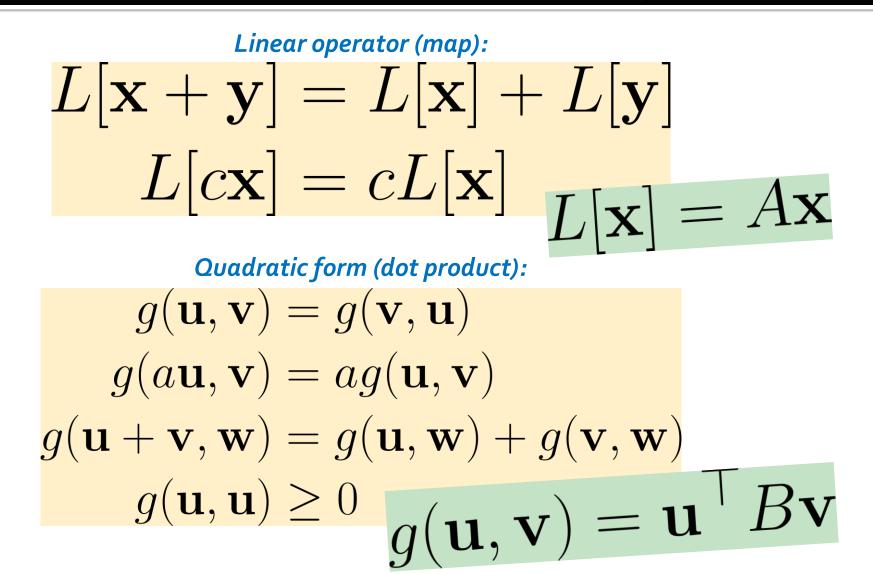
Motivation

Part I:

Linear algebra \subseteq **Geometry**

"Geometry of flat spaces"

Review and Notation


(Column) vector:
$$\mathbf{x} \in \mathbb{R}^n$$

Matrix: $A \in \mathbb{R}^{k \times \ell}$
Transpose: $\mathbf{x}^{\top} \in \mathbb{R}^{1 \times n}, A^{\top} \in \mathbb{R}^{\ell \times k}$

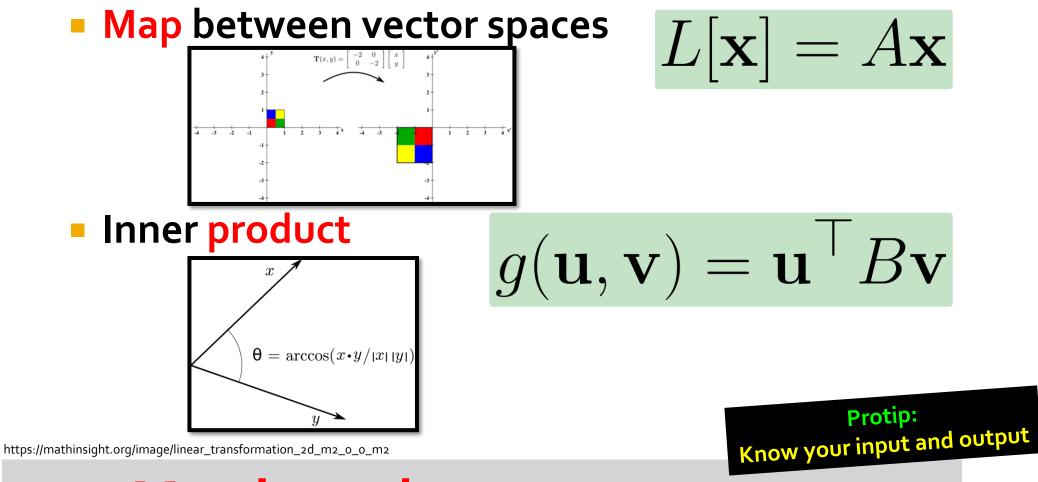
Useful shorthand:Dot product:
$$\mathbf{x}^{\top} \mathbf{y}$$
Quadratic form: $\mathbf{x}^{\top} A \mathbf{y}$

More Notation

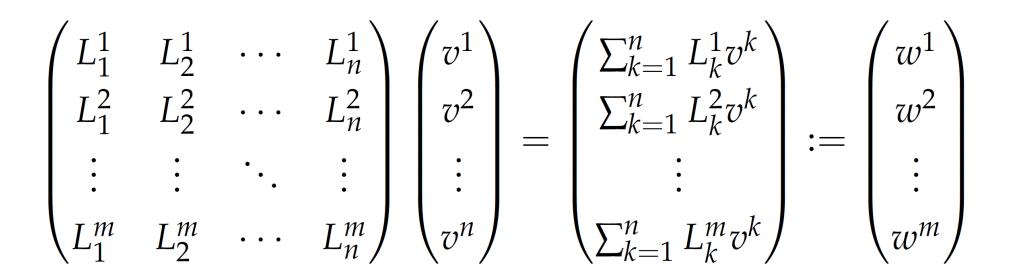
$$\mathbf{v}^{"} = \left(\begin{array}{c} v^{1} \\ \vdots \\ v^{n} \end{array} \right)$$

Standard basis: $\{\mathbf{e}_{k}\}_{k=1}^{n}$
 $\implies \mathbf{v} = \sum_{k} v^{k} \mathbf{e}_{k}$

Two Roles for Matrices in Finite-Dimensional Linear Algebra

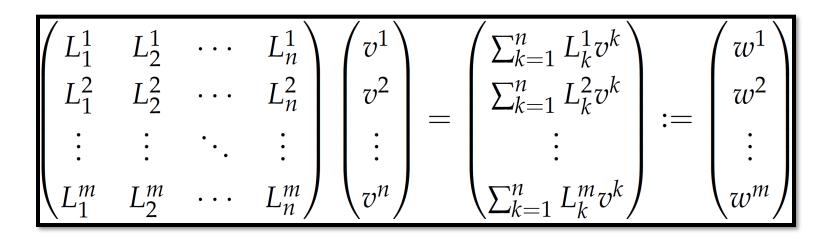

Einstein Notation

$$\mathbf{v} = v^k \mathbf{e}_k$$


Sum repeated upper/lower indices

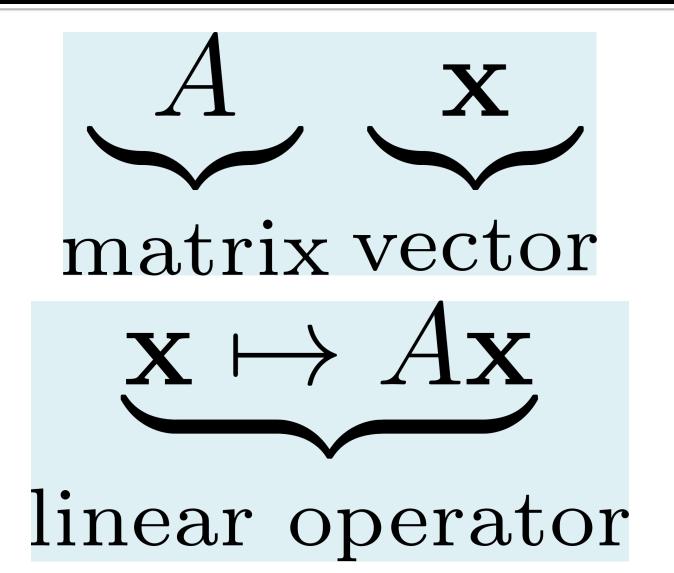
Same Data Structure, Two Uses

Matrices obscure geometry


Linear Map

Quadratic Form

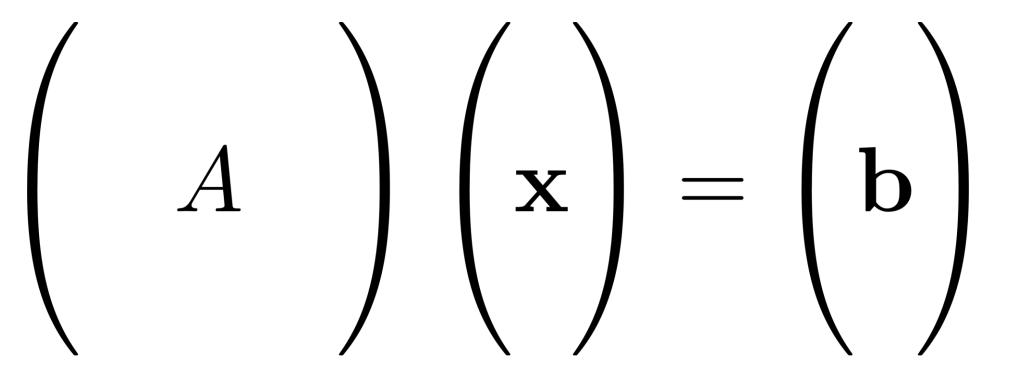
$$g(\mathbf{u}, \mathbf{v}) = g(u^{k} \mathbf{e}_{k}, v^{\ell} \mathbf{e}_{\ell})$$
$$= u^{k} v^{\ell} g(\mathbf{e}_{k}, \mathbf{e}_{\ell})$$
$$= u^{k} v^{\ell} g_{k\ell}$$


Typechecking

$$\begin{split} g(\mathbf{u},\mathbf{v}) &= g(u^k \mathbf{e}_k, v^\ell \mathbf{e}_\ell) \\ &= u^k v^\ell g(\mathbf{e}_k, \mathbf{e}_\ell) \\ &= u^k v^\ell g_{k\ell} \end{split}$$

Upper/lower indices matter

New Terminology



Abstract Example: Linear Algebra

 $C^{\infty}(\mathbb{R})$ $\mathcal{L}[f] := -d^2 f/dx^2$

Eigenvectors? ["Eigenfunctions!"]

Simple "inverse problem"

Common Strategies

Gaussian elimination

- O(n³) time to solve Ax=b or to invert
- **But:** Inversion is unstable and slower!
- Never ever compute A⁻¹ if you can avoid it.

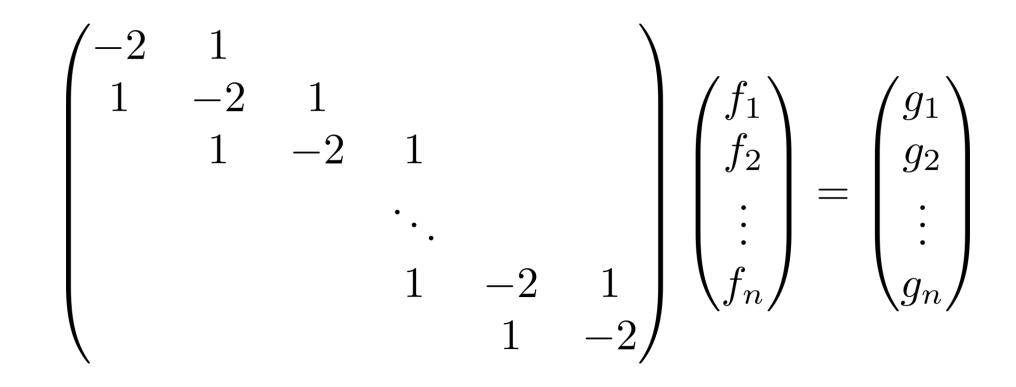
Interesting Perspective

								-		×	
[1201.6035] How Accurate × +											
(arxiv.org/abs/1201.603	5	C	Q Search		☆	Ê	+ 1		9	≡	
Cornell University Library					We	gratefi		ie Simo	e suppo ons Fou ber inst	ndation	
arXiv.org > cs > arXiv:1201.6035	Search or Article ID inside arXiv	/ All	papers 🗸 🔍	Broaden you	ır sea	arch u	sing Ser	nantic	Schola	r Q	
<	(<u>Help Advanced search</u>)										
Computer Science > Numerical A	nalysis					De		- d -			
How Accurate is inv(A)*b? Alex Druinsky, Sivan Toledo							 Download: PDF Other formats (license) 				
(Submitted on 29 Jan 2012)						Current browse context:					
Several widely-used textbooks lead the reader to believe that solving a linear system of equations Ax = b by multiplying the vector b by a computed inverse inv(A) is inaccurate. Virtually all other textbooks on numerical analysis and numerical linear algebra advise against using computed inverses without stating whether this is accurate or not. In fact, under reasonable assumptions on how the inverse is computed, x = inv(A)*b is as accurate as the solution computed by the best backward-stable solvers. This fact is not new, but obviously obscure. We review the literature on the accuracy of this computation and present a self-contained numerical analysis of it.							<pre>cs.NA < prev next > new recent 1201</pre>				
							Change to browse by:				
							cs math math.NA				
Subjects: Numerical Analysis (cs.NA); Numerical Analysis (math.NA) Cite as: arXiv:1201.6035 [cs.NA]							NASA ADS				
(or arXiv:1201.6035v1 [cs.NA] for this version)						1 blog link (what is this?)					
Submission history							DBLP - CS Bibliography listing bibtex				
From: Alex Druinsky [view email]							Alex Druinsky				
[v1] Sun, 29 Jan 2012 12:55:30 GMT (20kb,D)						Sivan Toledo					
Which authors of this paper are endorsers? Disable MathJax (What is MathJax?)						Bookmark (what is this?) ■ ぷ ☎ ■ ☆ ☆ 🚟					

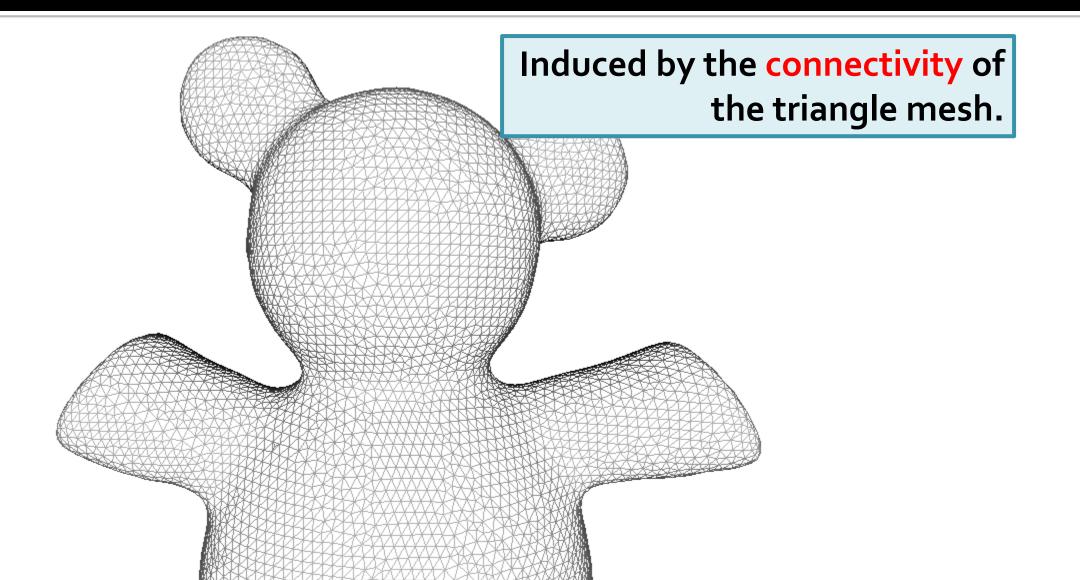
Link back to: arXiv, form interface, contact.

Linear Solver Considerations

Never construct A⁻¹ explicitly (if you can avoid it)


Added structure helps

<u>Sparsity</u>, symmetry, positive definiteness, bandedness


$inv(A)*b \ll (A'*A) \setminus (A'*b) \ll A \setminus b$

Example of a Structured Problem

$$\frac{d^2f}{dx^2} = g, f(0) = f(1) = 0$$

Very Common: Sparsity

Two Classes of Solvers

Direct (explicit matrix)

- Dense: Gaussian elimination/LU, QR for least-squares
- Sparse: Reordering (SuiteSparse, Eigen)
- Iterative (apply matrix repeatedly)
 - Positive definite: Conjugate gradients
 - Symmetric: MINRES, GMRES
 - Generic: LSQR

For 6.8410

No need to implement a linear solver

If a matrix is sparse, your code should store it as a sparse matrix!

👶 Sparse Arrays - The Julia Languag 🗙 🕂			- 🗆 ×				
← → C	/v0.7.0/stdlib/SparseArrays/	☆	🛆 🙆 🍥 💮 E				
julia	» Standard Library » Sparse Arrays	Q Edit on Git	tHub				
	Sparse Arrays						
Search docs	Julia has support for sparse vectors and sparse matrices in the Spar	, , , , , , , , , , , , , , , , , , , ,	are				
Home	arrays that contain enough zeros that storing them in a special data execution time, compared to dense arrays.	A Sparse Matrices - MATLAB & Sim × +	-	– 🗆 X			
Manual		← → C	rks.com/help/matlab/sparse-matrices.html	🖈 🛆 🙆 🌘 :			
Getting Started		Contact Us How to Buy Justin -					
Variables	Compressed Sparse Column (CSC) Sparse M						
Integers and Floating-Point	In Julia, sparse matrices are stored in the Compressed Sparse Colu	Documentation All Exa	mples Functions	Search R2018b Documentation Documentation - Q			
Numbers	the type SparseMatrixCSC (Tv, Ti), where Tv is the type of the st storing column pointers and row indices. The internal representation	CONTENTS Close		🌲 Trial Software 🛛 📮 Product Updates 🚯 Translate This Page			
Mathematical Operations and Elementary Functions	storing column pointers and row indices. The internal representation	« Documentation Home	Sparse Matrices	R2018b			
Complex and Rational Numbers	<pre>struct SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSpa m::Int</pre>	« MATLAB « Mathematics	Elementary sparse matrices, reordering algorithms, iterative methods, Sparse matrices provide efficient storage of double or logical data to	sparse linear algebra hat has a large percentage of zeros. While <i>full</i> (or <i>dense</i>) matrices store every single element in			
Strings	colptr::Vector{Ti} # Column i is in colptr[:	Elementary Math	memory regardless of value, <i>sparse</i> matrices store only the nonzero e amount of memory required for data storage.	lements and their row indices. For this reason, using sparse matrices can significantly reduce the			

Motivation

Part I:

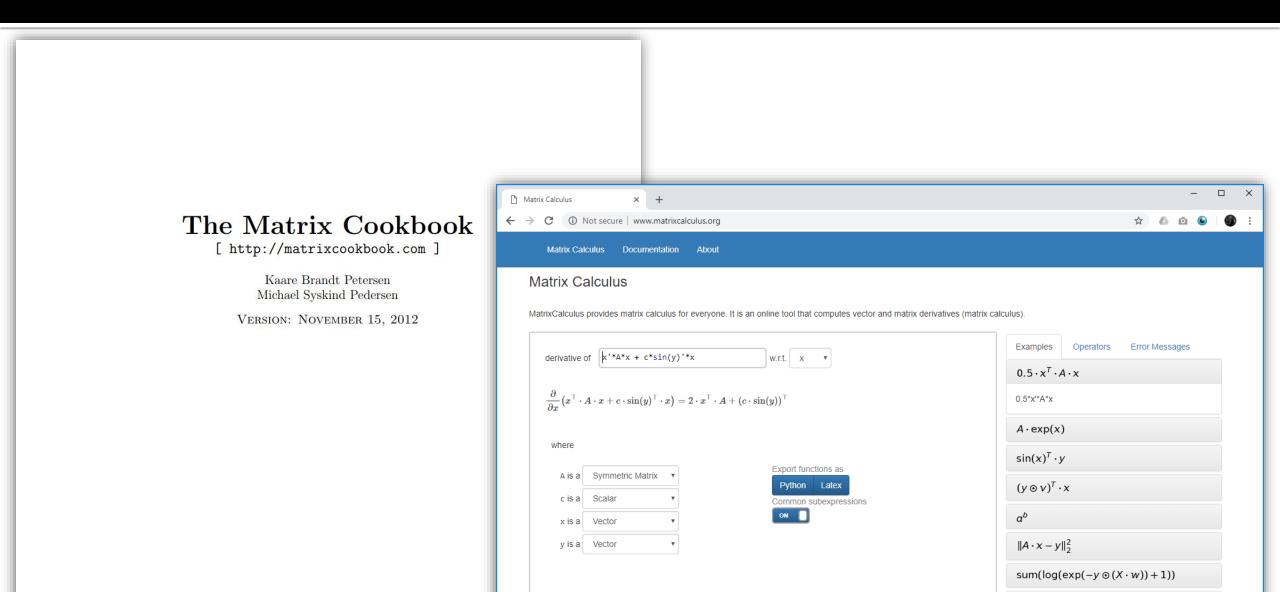
Linear algebra \subseteq **Geometry**

"Geometry of flat spaces"

Part II:

Geometry \subseteq **Optimization**

Quick intro to variational calculus


Motivation

Part II:

Geometry \subseteq **Optimization**

Quick intro to variational calculus

Aside: Matrix Calculus

Optimization Terminology

$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{f(\mathbf{x})}{\operatorname{s.t.} g(\mathbf{x})} = 0$ $h(\mathbf{x}) \ge 0$

Objective ("Energy Function")

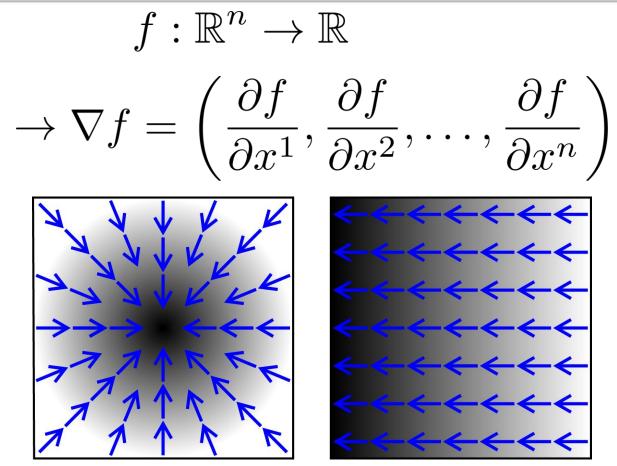
Optimization Terminology

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \\ \text{s.t.} \ g(\mathbf{x}) = 0 \\ h(\mathbf{x}) \ge 0$$

Equality Constraints

Optimization Terminology

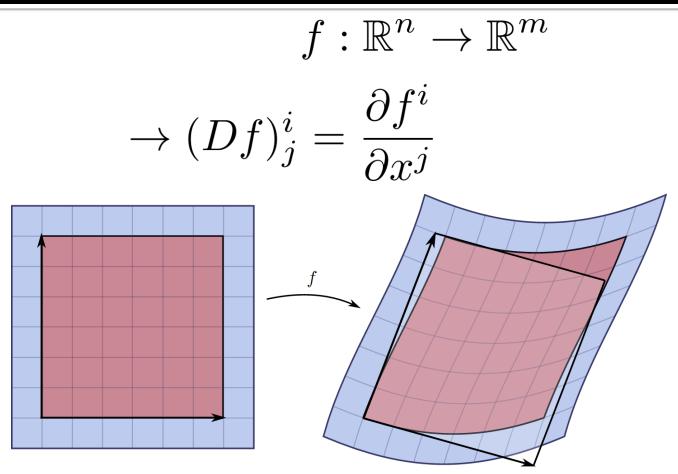
$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \\ \text{s.t. } g(\mathbf{x}) = 0 \\ h(\mathbf{x}) \ge 0$


Inequality Constraints

Encapsulates Many Problems

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \\ \text{s.t.} g(\mathbf{x}) = 0 \\ h(\mathbf{x}) \ge 0$$

$$A\mathbf{x} = \mathbf{b} \leftrightarrow f(\mathbf{x}) = ||A\mathbf{x} - \mathbf{b}||_2$$
$$A\mathbf{x} = \lambda \mathbf{x} \leftrightarrow f(\mathbf{x}) = \mathbf{x}^\top A\mathbf{x}, g(\mathbf{x}) = ||\mathbf{x}||_2 - 1$$
Roots of $g(\mathbf{x}) \leftrightarrow f(\mathbf{x}) = 0$


Notions from Calculus

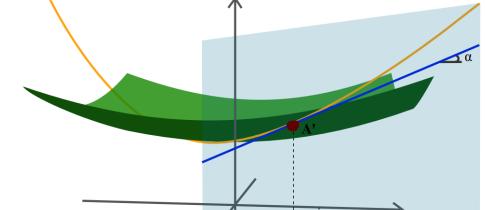
https://en.wikipedia.org/?title=Gradient

Gradient

Notions from Calculus

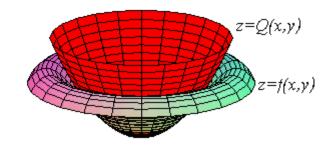
https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Jacobian


Differential

$$f:\mathbb{R}^n\to\mathbb{R}$$

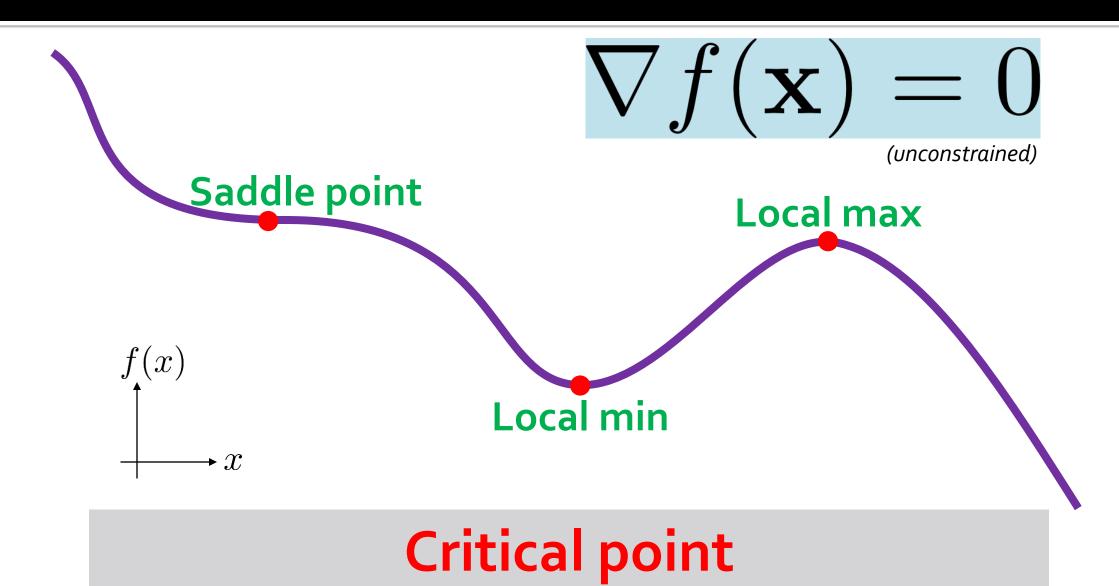
$$df_{\mathbf{x}_0}(\mathbf{v}) := \lim_{h \to 0} \frac{f(\mathbf{x}_0 + h\mathbf{v}) - f(\mathbf{x}_0)}{h}$$


Proposition. df_{x_0} is a linear operator.

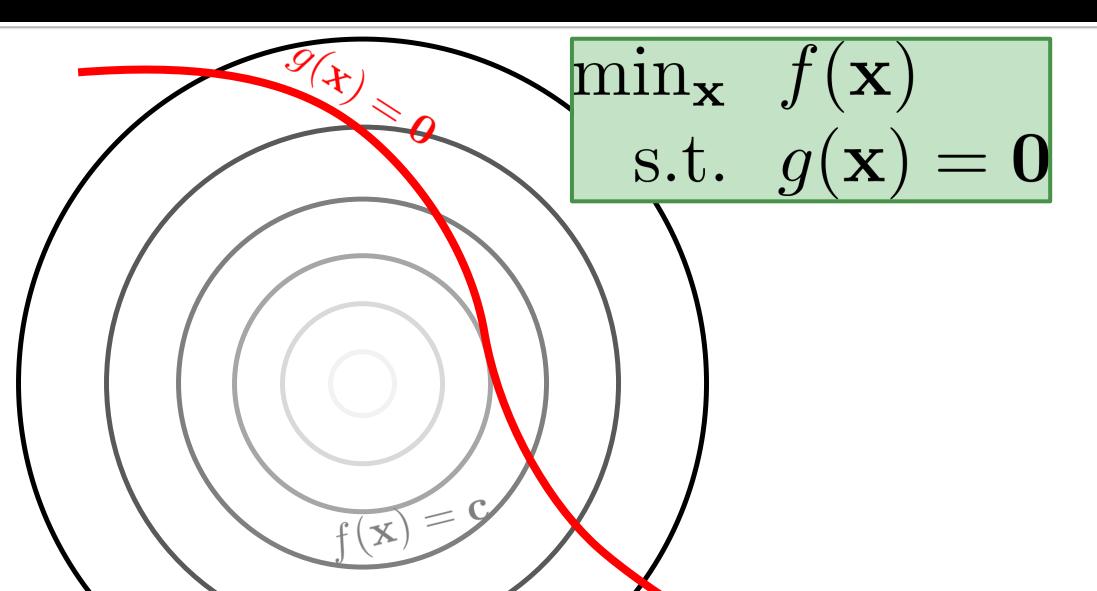
$$df_{\mathbf{x}_0}(\mathbf{v}) = \nabla f(\mathbf{x}_0) \cdot \mathbf{v}$$

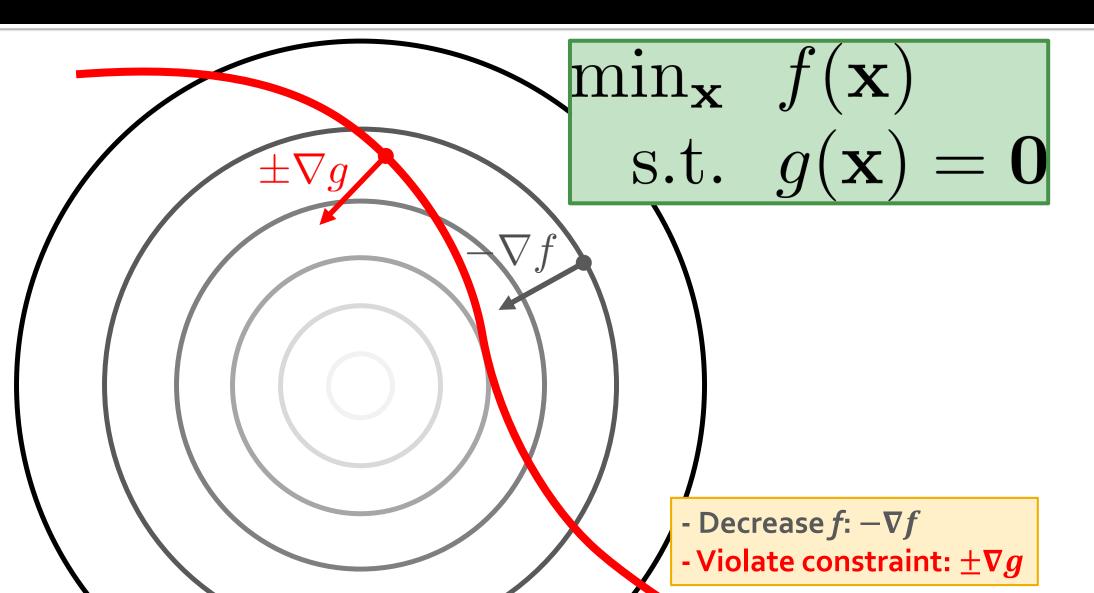
Notions from Calculus

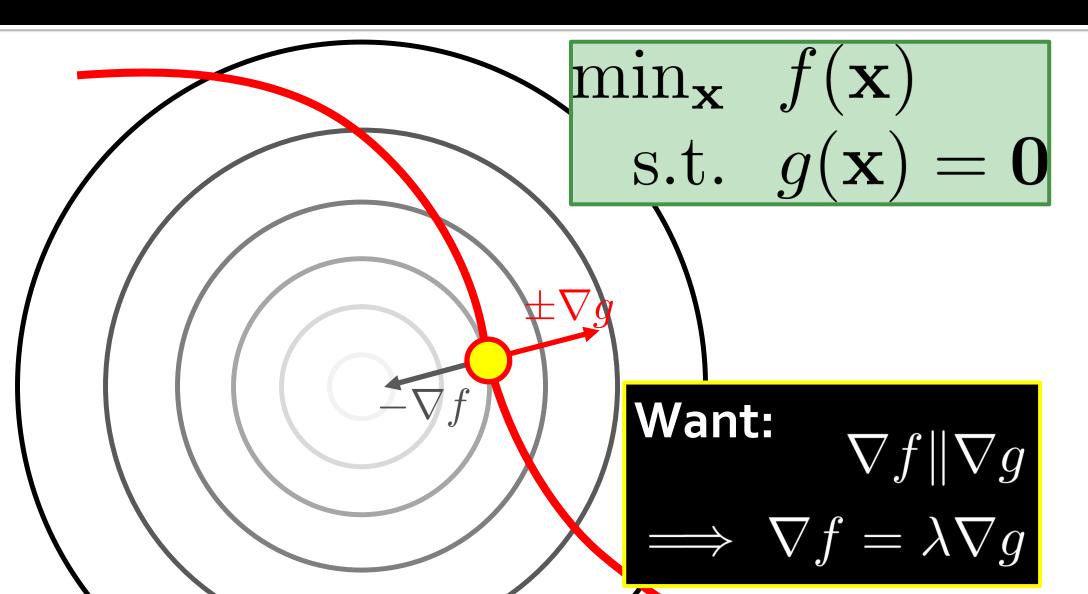
$$f: \mathbb{R}^n \to \mathbb{R} \to H_{ij} = \frac{\partial^2 f}{\partial x^i \partial x^j}$$



$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\top} (\mathbf{x} - \mathbf{x}_0) + (\mathbf{x} - \mathbf{x}_0)^{\top} H f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0)$$


http://math.etsu.edu/multicalc/prealpha/Chap2/Chap2-5/10-3a-t3.gif


From Optimization to Root-Finding


Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Use of Lagrange Multipliers

Turns constrained optimization into unconstrained root-finding.

$$\nabla f(x) = \lambda \nabla g(x)$$
$$g(x) = 0$$

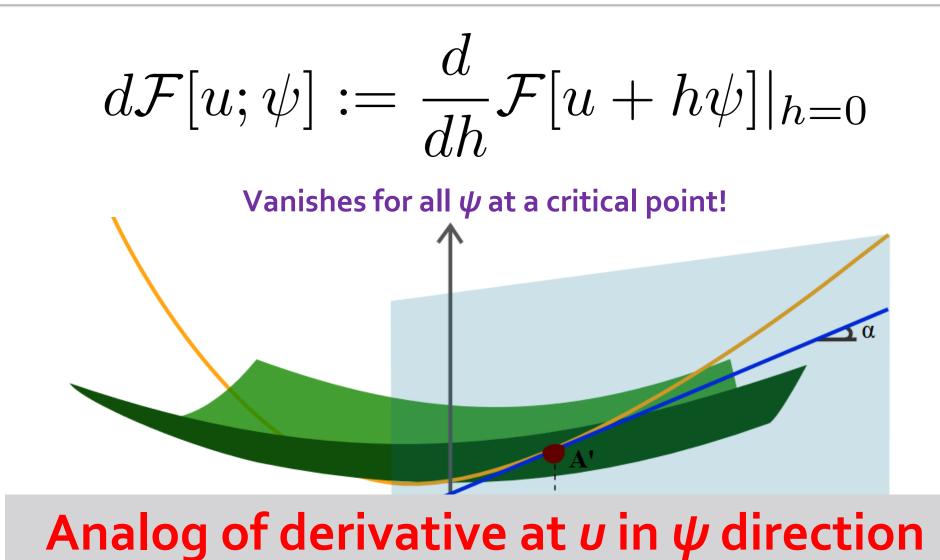
Example: Symmetric Eigenvectors

$$f(x) = x^{\top} A x \implies \nabla f(x) = 2Ax$$
$$g(x) = \|x\|_2^2 \implies \nabla g(x) = 2x$$
$$\implies Ax = \lambda x$$

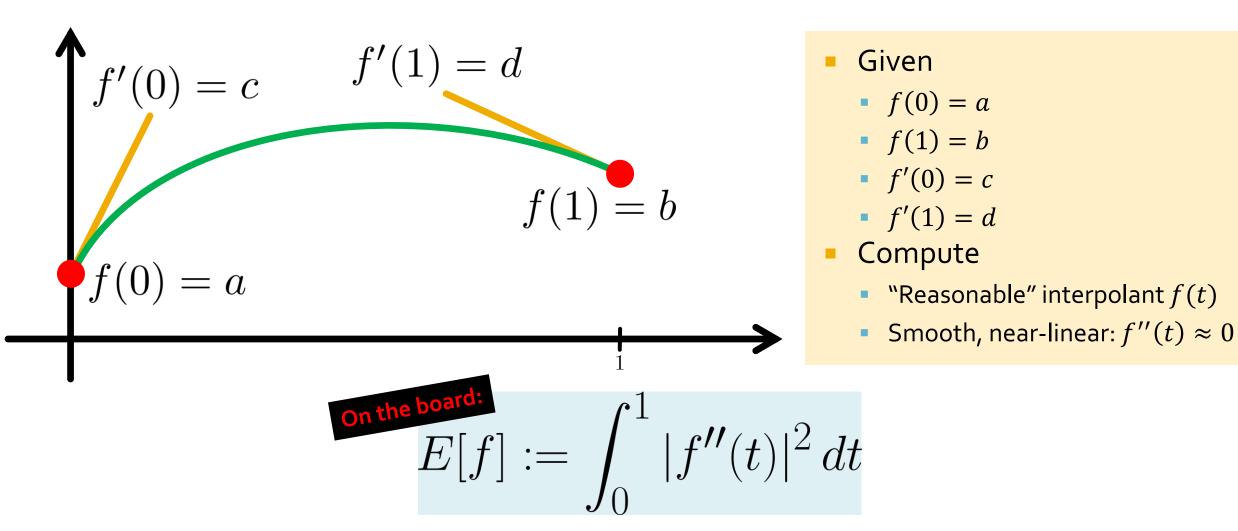
(New for 2023!) See Course Notes For Details

Lagrange multipliers

KKT conditions


- Special cases:
 - Linear problems
 - Eigenvalue problems

Advanced Topic: Variational Calculus


Sometimes your unknowns are not numbers!

Can we use calculus to optimize anyway?

Gâteaux Derivative

Example: Cubic Splines

Linear and Variational Problems

Justin Solomon

6.8410: Shape Analysis Spring 2023

