Linear and Variational Problems

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

Motivation

Part I:

Linear algebra \subseteq Geometry
 "Geometry of flat spaces"

Part II:

Geometry \subseteq Optimization

Quick intro to variational calculus

Motivation

Part I:

Linear algebra \subseteq "Geometry ffuts peeses"

Intro to terrible notation.

Review and Notation

(Column) vector: $\mathbf{x} \in \mathbb{R}^{n}$
Matrix: $A \in \mathbb{R}^{k \times \ell}$
Transpose: $\mathbf{x}^{\top} \in \mathbb{R}^{1 \times n}, A^{\top} \in \mathbb{R}^{\ell \times k}$

Useful shorthand:
Dot product: $\mathbf{x}^{\top} \mathbf{y}$
Quadratic form: $\mathbf{x}^{\top} A \mathbf{y}$

More Notation

$$
\mathbf{v}^{"}="\left(\begin{array}{c}
v^{1} \\
\vdots \\
v^{n}
\end{array}\right)
$$

Standard basis: $\left\{\mathbf{e}_{k}\right\}_{k=1}^{n}$

$$
\Longrightarrow \mathbf{v}=\sum_{k} v^{k} \mathbf{e}_{k}
$$

Two Roles for Matrices in Finite-Dimensional Linear Algebra

$$
\begin{aligned}
& L[\mathbf{x}+\mathbf{y}]=L[\mathbf{X}]+L[\mathbf{y}] \\
& L[c \mathbf{X}]=c L[\mathbf{X}] \\
& \text { Quadratic form (dot product): }
\end{aligned}
$$

$$
\begin{aligned}
g(\mathbf{u}, \mathbf{v}) & =g(\mathbf{v}, \mathbf{u}) \\
g(a \mathbf{u}, \mathbf{v}) & =a g(\mathbf{u}, \mathbf{v}) \\
g(\mathbf{u}+\mathbf{v}, \mathbf{w}) & =g(\mathbf{u}, \mathbf{w})+g(\mathbf{v}, \mathbf{w}) \\
g(\mathbf{u}, \mathbf{u}) & \geq 0 \quad g(\mathbf{u}, \mathbf{v})=\mathbf{u}^{\top} B \mathbf{v}
\end{aligned}
$$

Einstein Notation

$$
\mathbf{v}=v^{k} \mathbf{e}_{k}
$$

Sum repeated upper/lower indices

Same Data Structure, Two Uses

- Map between vector spaces

$$
L[\mathbf{x}]=A \mathbf{x}
$$

- Inner product

$$
g(\mathbf{u}, \mathbf{v})=\mathbf{u}^{\top} B \mathbf{v}
$$

Linear Map

$$
\left(\begin{array}{cccc}
L_{1}^{1} & L_{2}^{1} & \cdots & L_{n}^{1} \\
L_{1}^{2} & L_{2}^{2} & \cdots & L_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
L_{1}^{m} & L_{2}^{m} & \cdots & L_{n}^{m}
\end{array}\right)\left(\begin{array}{c}
v^{1} \\
v^{2} \\
\vdots \\
v^{n}
\end{array}\right)=\left(\begin{array}{c}
\Sigma_{k=1}^{n} L_{k}^{1} v^{k} \\
\Sigma_{k=1}^{n} L_{k}^{2} v^{k} \\
\vdots \\
\Sigma_{k=1}^{n} L_{k}^{m} v^{k}
\end{array}\right):=\left(\begin{array}{c}
w^{1} \\
w^{2} \\
\vdots \\
w^{m}
\end{array}\right)
$$

Quadratic Form

$$
\begin{aligned}
g(\mathbf{u}, \mathbf{v}) & =g\left(u^{k} \mathbf{e}_{k}, v^{\ell} \mathbf{e}_{\ell}\right) \\
& =u^{k} v^{\ell} g\left(\mathbf{e}_{k}, \mathbf{e}_{\ell}\right) \\
& =u^{k} v^{\ell} g_{k \ell}
\end{aligned}
$$

Typechecking

$$
\begin{gathered}
\left(\begin{array}{cccc}
\left(\begin{array}{ccc}
L_{1}^{1} & L_{2}^{1} & \cdots
\end{array} L_{n}^{1}\right. \\
L_{1}^{2} & L_{2}^{2} & \cdots & L_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
L_{1}^{m} & L_{2}^{n} & \cdots & L_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
v^{1} \\
v^{2} \\
\vdots \\
v^{n}
\end{array}\right)=\left(\begin{array}{c}
c_{k=1}^{n} L_{k}^{1} v_{k}^{k} \\
v_{k=1}^{n} L_{k}^{2} v^{k} \\
\vdots \\
\Sigma_{k=1}^{n} L_{k}^{m} v^{k}
\end{array}\right):=\left(\begin{array}{c}
w^{1} \\
w^{2} \\
\vdots \\
w^{m}
\end{array}\right) \\
\begin{array}{c}
g(\mathbf{u}, \mathbf{v})=g\left(u^{k} \mathbf{e}_{k}, v^{\ell} \mathbf{e}_{\ell}\right. \\
=u^{k} v^{\ell} g\left(\mathbf{e}_{k}, \mathbf{e}_{\ell}\right. \\
=u^{k} v^{\ell} g_{k \ell}
\end{array} \\
\hline
\end{gathered}
$$

Upper/lower indices matter

New Terminology

linear operator

Abstract Example: Linear Algebra

$$
\begin{aligned}
& C^{\infty}(\mathbb{R}) \\
& \mathcal{L}[f]:=-d^{2} f / d x^{2}
\end{aligned}
$$

Eigenvectors?
["Eigenfunctions!"]

Bual to reality:
 Linear System of Equations

Simple "inverse problem"

Common Strategies

- Gaussian elimination
- $O\left(n^{3}\right)$ time to solve $A x=b$ or to invert
- But: Inversion is unstable and slower!
- Never ever compute A^{-1} if you can avoid it.

Interesting Perspective

Linear Solver Considerations

- Never construct A^{-1} explicitly (if you can avoid it)
- Added structure helps Sparsity, symmetry, positive definiteness, bandedness

$$
\operatorname{inv}(\mathrm{A}) * \mathrm{~b} \ll\left(\mathrm{~A}^{\prime} * \mathrm{~A}\right) \backslash\left(\mathrm{A}^{\prime} * \mathrm{~b}\right) \ll \mathrm{A} \backslash \mathrm{~b}
$$

Example of a Structured Problem

$$
\frac{d^{2} f}{d x^{2}}=g, f(0)=f(1)=0
$$

$$
\left(\begin{array}{ccccccc}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
& & & \ddots & & \\
& & & 1 & -2 & 1 \\
& & & & 1 & -2
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)=\left(\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{n}
\end{array}\right)
$$

Very Common: Sparsity

Two Classes of Solvers

- Direct (explicit matrix)
- Dense: Gaussian elimination/LU, QR for least-squares
- Sparse: Reordering (SuiteSparse, Eigen)
- Iterative (apply matrix repeatedly)
- Positive definite: Conjugate gradients
- Symmetric: MINRES, GMRES
- Generic: LSOR

For 6.8410

- No need to implement a linear solver
- If a matrix is sparse, your code should store it as a sparse matrix!

Motivation

Part I:

Linear algebra \subseteq Geometry
 "Geometry of flat spaces"

Part II:

Geometry \subseteq Optimization

Quick intro to variational calculus

Motivation

Part II:

Geometry \subseteq Optimization
 Quick intro to variational calculus

Aside: Matrix Calculus

The Matrix Cookbook
[http://matrixcookbook.com]
Kaare Brandt Petersen Michael Syskind Pedersen

Version: November 15, 2012

Matrix Calculus Documentation About
Matrix Calculus
MatrixCalculus provides matrix calculus for everyone. It is an online tool that computes vector and matrix derivatives (matrix calculus)

Optimization Terminology

$$
\begin{array}{rl}
\min _{\mathbf{x} \in \mathbb{R}^{n}} & f(\mathbf{x}) \\
\text { s.t. } & g(\mathbf{x})=0 \\
h(\mathbf{x}) \geq 0
\end{array}
$$

Objective ("Energy Function")

Optimization Terminology

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \\
& \text { s.t. } g(\mathbf{x})=0 \\
& h(\mathbf{x}) \geq 0
\end{aligned}
$$

Equality Constraints

Optimization Terminology

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \\
& \text { s.t. } g(\mathbf{x})=0 \\
& h(\mathbf{x}) \geq 0
\end{aligned}
$$

Inequality Constraints

Encapsulates Many Problems

$$
\begin{gathered}
\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \\
\text { s.t. } g(\mathbf{x})=0 \\
h(\mathbf{x}) \geq 0 \\
A \mathbf{x}=\mathbf{b} \leftrightarrow f(\mathbf{x})=\|A \mathbf{x}-\mathbf{b}\|_{2} \\
A \mathbf{x}=\lambda \mathbf{x} \leftrightarrow f(\mathbf{x})=\mathbf{x}^{\top} A \mathbf{x}, g(\mathbf{x})=\|\mathbf{x}\|_{2}-1 \\
\text { Roots of } g(\mathbf{x}) \leftrightarrow f(\mathbf{x})=0
\end{gathered}
$$

Notions from Calculus

$$
\begin{aligned}
& f: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
& \rightarrow \nabla f=\left(\frac{\partial f}{\partial x^{1}}, \frac{\partial f}{\partial x^{2}}, \ldots, \frac{\partial f}{\partial x^{n}}\right)
\end{aligned}
$$

Gradient

Notions from Calculus

$$
\begin{aligned}
f & : \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
\rightarrow(D f)_{j}^{i} & =\frac{\partial f^{i}}{\partial x^{j}}
\end{aligned}
$$

Differential

$$
\begin{gathered}
f: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
d f_{\mathbf{x}_{0}}(\mathbf{v}):=\lim _{h \rightarrow 0} \frac{f\left(\mathbf{x}_{0}+h \mathbf{v}\right)-f\left(\mathbf{x}_{0}\right)}{h}
\end{gathered}
$$

Proposition. $\boldsymbol{d} \boldsymbol{f}_{\boldsymbol{x}_{\mathbf{0}}}$ is a linear operator.
$d f_{\mathbf{x}_{0}}(\mathbf{v})=\nabla f\left(\mathbf{x}_{0}\right) \cdot \mathbf{v}$

Notions from Calculus

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R} \rightarrow H_{i j}=\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}
$$

$f(\mathbf{x}) \approx f\left(\mathbf{x}_{0}\right)+\nabla f\left(\mathbf{x}_{0}\right)^{\top}\left(\mathbf{x}-\mathbf{x}_{0}\right)+\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\top} H f\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)$

Hessian

From Optimization to Root-Finding

$$
\nabla f(\mathbf{x})=0
$$

Saddle point

Local max

Local min

Critical point

Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Use of Lagrange Multipliers

Turns constrained optimization into unconstrained root-finding.

$$
\begin{aligned}
\nabla f(x) & =\lambda \nabla g(x) \\
g(x) & =0
\end{aligned}
$$

Example: Symmetric Eigenvectors

$$
\begin{aligned}
f(x) & =x^{\top} A x \Longrightarrow \nabla f(x)=2 A x \\
g(x) & =\|x\|_{2}^{2} \Longrightarrow \nabla g(x)=2 x \\
& \Longrightarrow A x=\lambda x
\end{aligned}
$$

(New for 2023!) See Course Notes For Details

- Lagrange multipliers
- KKT conditions
- Special cases:
- Linear problems
- Eigenvalue problems

Advanced Topic: Variational Calculus

Sometimes your unknowns are not numbers!

Can we use calculus to optimize anyway?

Gâteaux Derivative

$$
d \mathcal{F}[u ; \psi]:=\left.\frac{d}{d h} \mathcal{F}[u+h \psi]\right|_{h=0}
$$

Vanishes for all ψ at a critical point!

Analog of derivative at u in ψ direction

Example: Cubic Splines

Linear and Variational Problems

Justin Solomon
6.8410: Shape Analysis

Spring 2023

MIT EECS

